JPS6269147A - Measuring method for visibility - Google Patents

Measuring method for visibility

Info

Publication number
JPS6269147A
JPS6269147A JP20976085A JP20976085A JPS6269147A JP S6269147 A JPS6269147 A JP S6269147A JP 20976085 A JP20976085 A JP 20976085A JP 20976085 A JP20976085 A JP 20976085A JP S6269147 A JPS6269147 A JP S6269147A
Authority
JP
Japan
Prior art keywords
light
emitting part
per unit
light emitting
unit area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20976085A
Other languages
Japanese (ja)
Other versions
JPH0531100B2 (en
Inventor
Yoshisuke Nishinomiya
西宮 由弼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NICHIBEI DENSHI KK
Original Assignee
NICHIBEI DENSHI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NICHIBEI DENSHI KK filed Critical NICHIBEI DENSHI KK
Priority to JP20976085A priority Critical patent/JPS6269147A/en
Publication of JPS6269147A publication Critical patent/JPS6269147A/en
Publication of JPH0531100B2 publication Critical patent/JPH0531100B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
    • G01N21/538Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke for determining atmospheric attenuation and visibility

Abstract

PURPOSE:To derive exactly the visibility for every intrinsic object without being influenced by solar light and night illumination, by measuring the brightness per unit are of an approximate black body part and background light at the time when the luminous radiation of a light emitting part of a viewed body is zero, and the brightness per unit area of the light emitting part at the time when the luminous radiation has been executed. CONSTITUTION:A viewed body body 1 having a light emitting part 3, an approximate black body part and an illumination meter 5, and a solid-state camera 2 which has a light shielding cylinder 6 containing a telephoto lens and connected to a microcomputer type control device 7 are provided in an opposed shape at some interval. Light from a light source goes to parallel rays by a lens, radiated to the camera 2, and an image which is caught by the camera 2 is sent to the device 7. In such a state, the luminous radiation of the light emitting part 3 is set to zero and brightness per unit area of the approximate black body part 4 and the background light is measured. Next, the luminous radiation is executed from the light emitting part 3, brightness per unit are of the light emitting part 3 of the time is measured, and also brightness per unit area of an external light is derived by the illumination meter 5. These values are sent to the device 7, and the visibility of each object is calculated by using a prescribed expression.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は空港や港湾あるいは高速道路等に於いて即座に
かつ正確に視程を計測する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for instantly and accurately measuring visibility at airports, ports, expressways, etc.

〈従来の技術及びその問題点〉 従来からの視距離測定法としては、単分散エアロゾル(
全て同一1;ηff: 0) i!数粒子から成る)気
体の理論により霧中を走る光の減光係数σを計算しKo
schm i ederの式V=3/σ又は39/σに
よって視距離Vを算出ずろ方法や、目視対電物から来る
光をホトセルで光電変換してアナログ電圧を出力し、エ
アロゾルに、1ろ散乱光のみを計算し減光係数σを求め
、同し/、 Kosehmiederの式によ−)で視
距離■を算出する方法がある。
<Conventional technology and its problems> The conventional visual distance measurement method uses monodisperse aerosol (
All the same 1; ηff: 0) i! Calculate the attenuation coefficient σ of light traveling through fog using the theory of gases (consisting of several particles), and calculate Ko
The visual distance V is calculated using the formula V = 3/σ or 39/σ of Schm i Eder, and the light coming from an electrical object is photoelectrically converted with a photocell and outputted as an analog voltage, and then scattered into an aerosol. There is a method in which only the light is calculated, the attenuation coefficient σ is determined, and the viewing distance (■) is calculated using the equation of Kosehmieder.

しかるにこれらの方法は、多分散エアロ゛jル(種々の
粒径の微粒子から成る)気体の1総合的効果としての減
光係数σの算出過程で、1:立1¥分市の精密測定には
成功をしていても多分散モデルの尤に対する反応の数学
的解析が非常に困カfであるという問題点かあり、又視
距離vを求める際に物体の背景から来る光を直接測定す
る事なく単に無限遠を見た時の光量で置きff1iでい
ろ為に物体の背景に比較的近くの森や山がある場合には
視距離■に大きな誤差が出ろという問題点があった。
However, these methods cannot be used for precise measurements of 1:1 in the process of calculating the extinction coefficient σ as a comprehensive effect of polydisperse aerosol gas (consisting of fine particles of various particle sizes). Even if successful, the problem is that the mathematical analysis of the response to the likelihood of the polydispersity model is extremely difficult, and when calculating the viewing distance v, the light coming from the background of the object must be directly measured. Since the light intensity when looking at infinity is simply set at ff1i, there is a problem in that if there is a relatively nearby forest or mountain in the background of the object, there will be a large error in the viewing distance (■).

〈問題点を解決する為の手段〉 本発明では上述の諸問題を解決せ/しとするものてあり
、その要旨は発光部と近似黒体部と照度シY2とを具備
する被視体と、観δtII用固体力に5・とを用い、被
視体発光部の充放q4をOとし近似黒体部υ)単位面積
あfコりの明るさを11及びそのイY景光の単位面積あ
ノ:りの明ろざlとを測定(7、次いで被視体発光部か
ら光放射を行ないその時の発光部の単位面積あたりの明
るさ壜3を測定し、又−1−記照度言1により外来光の
単位面積あたりの明るさ・\(0)<i’f求め、これ
らの31.′″&、−3及びA(0)Jり個々の物体の
視程を計算する方法である。
<Means for Solving the Problems> The present invention aims to solve the above-mentioned problems. , using 5 for the solid force for the view δtII, and assuming the charging and discharging q4 of the light-emitting part of the object to be O as O, the brightness of the approximate black body υ) unit area A is 11 and the unit of Y scene light. Measure the area (7), then emit light from the light emitting part of the subject, measure the brightness per unit area of the light emitting part at that time, and -1- illuminance According to the formula 1, the brightness per unit area of the external light is determined by \(0)<i'f, and the visibility of each object is calculated using these 31.''&, -3 and A(0)J. be.

〈実施例及び作用〉 以下本発明方法を、それを実施する装置を示す図面を参
酌し乍ら詳述する。
<Embodiments and Operations> The method of the present invention will be described in detail below with reference to the drawings showing an apparatus for carrying out the method.

第1図は本発明方法で用いる装置の一例を示す説明図で
あり、被視体(1)と観測用固体カメラ(2)とをある
距離を隔て\対面状に配設しでいろ1、被視体(1)(
ま第2図に示す様に発光部(3)、近似黒体部(4)及
び照度S↑(5)を具備しており、又固体力ノラ(2)
は第3図に示ず様に望遠レシズを内a L を二遮光筒
(13)を有し、かつマイコン式制御装置(7)と接続
されている。
FIG. 1 is an explanatory diagram showing an example of the apparatus used in the method of the present invention, in which a subject (1) and an observation solid-state camera (2) are arranged face-to-face with a certain distance apart. Subject (1) (
As shown in Fig. 2, it is equipped with a light emitting part (3), an approximate black body part (4), and an illuminance S↑ (5), and also has a solid force polarity (2).
As shown in FIG. 3, the telephoto lens a L has two light-shielding tubes (13), and is connected to a microcomputer type control device (7).

被視体(1)の内部構造を第4図に示すが、この様に光
源からの光If L、ンズによって平行光線となされ、
固体Jjメ一2(2)へ、向って放射するもので、例又
は第J 鼎−(不ず様な固体)!メラ(2)がその受光
面に把犬I−映像をマイコシ式制御装置(7)へ送り込
むのであり、従ってこの被視体の映像はその、t゛・マ
イコシ式制御装置(7)内の主記憶装置に格納された画
像と解してもよい。
The internal structure of the object to be viewed (1) is shown in FIG.
It radiates towards a solid Jj Mei 2 (2), an example or J ding - (unusual solid)! The camera (2) sends the dog I-image to the Mycosi type control device (7) on its light receiving surface, and therefore the image of this object is sent to the main body in the t'Maikosi type control device (7). It may also be understood as an image stored in a storage device.

さて光を贈詩了の浮遊ずろ気体(エアロ・jル気体)に
入射させろと、光は散乱、吸収され入射光の強度は次第
(ζ減衰して行く。入射光が平行光線の場合この関係は
しfoe”で与左られ、この式ばBouguer (又
は■、anIl+ert−Beerjの法則と呼ばれて
いる。ここCIoは入射光の初期強度、■は光が距離e
f″!、け進/1t′点の強度、(Σは微粒子の減光係
数である。
Now, when light is incident on a floating aerosol gas (aero gas), the light is scattered and absorbed, and the intensity of the incident light gradually (ζ attenuates).If the incident light is a parallel ray, this relationship This formula is called the law of Bouguer (or ■, anIl + ert-Beerj. Here, CIo is the initial intensity of the incident light, and
f''!, extremity/1t' intensity, (Σ is the attenuation coefficient of the fine particles.

このBougucrの法則を、地上に於ける任意物体の
観測に適用すると 物体から出た光に対し   B+(N)−田(0)e物
体の背景から来る光に対し B2 (/ l−謁(0) e” 太陽、夜間照明等からの散乱光に対し Bヨ D’  )=  83  (”)  (1−e 
   )従って、物体の位置(1−01でのコント−ノ
スi、c(0)は、 C(0)−三昔刊■= )+1 物体から距離eの位置てのコントラスト(■1シ、B+
 (0) 、 B2 (01 II!各’2 B+ (
i’ )、 B2 (1)(7’)J−0に於ける値で
あり、またB3(”)は83(1りのe−無限大に於け
る極限値である。[33(fりはdB/dl−−σB十
Baなる(数分方程式を積分して()でおり、B3(■
) = Ba/σである。natal:弔位反当りの太
陽光の混入量、σBは単位長当りの散乱によろa魔少量
である3、 本方式では、近似的に取り扱一つ−〇いるが、より精密
なWl!I定をしたいとき(ま、太陽光のふりそ\ぐ角
度に応じて、83(・η)=Ba/aの83 (ω)が
異なることを指摘しておく。
Applying Bougucr's law to the observation of an arbitrary object on the ground, for the light emitted from the object B + (N) - 田 (0) e for the light coming from the background of the object B2 (/ l - audience (0 ) e" B yo D' ) = 83 (") (1-e
) Therefore, the position of the object (contonus i, c(0) at 1-01 is C(0)-3) = )+1 The contrast at the distance e from the object (■1, B+
(0), B2 (01 II! Each '2 B+ (
i' ), B2 (1) (7') is the value at J-0, and B3 ('') is the limit value at 83 (1 e-infinity. [33 (f r is dB/dl--σB+Ba (integrated fractional equation is (), and B3(■
) = Ba/σ. natal: The amount of sunlight mixed in per unit length, σB, is a small amount due to scattering per unit length3. In this method, it is handled approximately as follows, but Wl! is more precise. When you want to determine the I constant (well, I should point out that 83 (ω) of 83 (・η) = Ba/a differs depending on the angle of the sunlight.

本発明方法では、固体カメラ(2)内の受光素子又はカ
メラフィルタを人の目の分光特性である標準比視感度特
性のものとして、又被視体の発光部(3)をマイコン式
制御装置(7)からの指令で点滅自在としておき次の測
定を行なう。即ら、波視体発光部の光放射を0(光源減
灯)として測定をする。その結果、近似黒体部(第2図
4)の表面の単位面積あたりの明るさ′!A1と、その
背景光(第5図6)の単位面積当りの明るさ遣2が得ら
れる。
In the method of the present invention, the light-receiving element or camera filter in the solid-state camera (2) has a standard luminous efficiency characteristic that is the spectral characteristic of the human eye, and the light-emitting part (3) of the object to be viewed is controlled by a microcomputer-based control device. With the command from (7), the light is set to blink freely and the next measurement is performed. That is, the measurement is performed with the light emission of the wave optic body light emitting section set to 0 (light source dimmed). As a result, the brightness per unit area of the surface of the approximate black body (Fig. 2, 4)'! A1 and the brightness ratio 2 per unit area of the background light (FIG. 5, 6) are obtained.

ここて、固体カメラと被視体の間の距離馬は一定で既知
であるので、式(1)から、次式を得る。
Here, since the distance between the solid-state camera and the subject is constant and known, the following equation is obtained from equation (1).

但し式(2)では、減光係数σと太陽等散乱光極限値B
3(Oo)及び、背景光初期値B2 (0)は未知数の
ま5である。
However, in equation (2), the attenuation coefficient σ and the solar equiscattered light limit value B
3 (Oo) and the background light initial value B2 (0) are unknown quantities.

次に被視体発光部の光放射を行なって測定をする。) 物体光の観測値を13、光源の初期値を既知としB+(
0)とすると、次式を得ろ。
Next, the measurement is performed by emitting light from the light emitting section of the object. ) Assuming that the observed value of the object light is 13 and the initial value of the light source is known, B+(
0), obtain the following equation.

13−81 (アl)) +83 (J?o)−Br 
(&o)’M+(注)11は式(1)で得lこもの 一’、13−’A1−Br (ffo l −8+’ 
(0) e”(注)B:(01≠8+(0)、゛、σ−
女旬e缶  式(3) 上記の′!113の観測に於いては、エアロゾルによる
光束の拡散が生じているが、この拡散分を画像処理プロ
グラムで除去して召ヨを観測する。
13-81 (Al)) +83 (J?o)-Br
(&o)'M+(Note) 11 is obtained by formula (1), 13-'A1-Br (ffo l -8+'
(0) e” (Note) B: (01≠8+(0), ゛, σ-
Female e-can formula (3) above'! In the observation of No. 113, the light flux is diffused due to aerosol, but this diffusion is removed by an image processing program and the image is observed.

この様にして得られた、エアロゾルの減光係数σを式(
2)に代入すると、 となって太陽等の散乱光の極限値B3 (ω)及び背景
光初期値B2 (0)が求、上る、。
The attenuation coefficient σ of the aerosol obtained in this way is calculated using the formula (
2), the limit value B3 (ω) of scattered light from the sun, etc. and the initial value B2 (0) of background light are found.

さて物体の固有の明るさB+(0)は、その物体がおか
れている場所の現環境、現在時刻下に於ける明るさA 
(0)に、その物体の光に対する反射率(アルベド)γ
を乗じたものである。即ら、B+ (0) −= f 
A (0)     式(5)但し、その物体が白から
も光を放射しているときには、放射光強度をD(0)と
して B+’(0)−デ’A (0) 十D (0)    
式(6)tは、自発光時に於ける外来光に対ずろ反射率
である。(’7’zOと近似し=C差しつかんのないと
きがある。) fは、まさに物体固イJのものであるが物体に当る光の
色によっても異なる値をとるのでコンピュータに記憶さ
せろ場合に、色毎に記憶させておく事が重要である。
Now, the inherent brightness B+(0) of an object is the brightness A in the current environment where the object is placed and at the current time.
(0), the reflectance (albedo) of the object for light γ
It is multiplied by That is, B+ (0) −= f
A (0) Equation (5) However, if the object emits light from the white side, the intensity of the emitted light is set to D(0) and B+'(0)-De'A (0) 10D (0)
Equation (6) t is the reflectance of external light during self-emission. (Approximate to '7'zO = C There are times when it is unavoidable.) f is exactly the value of the object J, but it takes a different value depending on the color of the light hitting the object, so it is necessary to store it in the computer. It is important to memorize each color.

本発明方法では、外来光強度A(0)は照度計(5)に
よって実測され、式(5)又(よ式(6)(但しj’z
O)によって8+(Q)又はB+(01が計算できる。
In the method of the present invention, the external light intensity A(0) is actually measured by an illuminance meter (5), and is expressed by equation (5) or (yo equation (6) (where j'z
8+(Q) or B+(01) can be calculated by O).

式(3)によってエアロゾル減光係数σ、式(4)によ
って太陽や夜間照明の光の散乱による観測光軸への混入
量の極限値B3 (α))、背景光の初期値B2(0)
が1−1られ、さらに照度計による観測によって物体の
固有の明るさB+(0)が求まる。また自発光物体の放
射強度D(0)は、被視体発光部の放射強度の切換によ
って幾通りかに別けて数式に代入して行くことが出来る
。かくしてコシI・ラストC(4)はC(’ )−+汗
Hl   式(7) %式%(0) として、物体から任意の距離eに於けろコシトラス1−
C(1)が算出できる。
Equation (3) gives the aerosol attenuation coefficient σ, Equation (4) gives the limit value B3 (α) of the amount of light that enters the observation optical axis due to scattering of light from the sun and night lighting, and the initial value B2 (0) of the background light.
is calculated by 1-1, and the intrinsic brightness B+(0) of the object is determined by observation using an illuminance meter. Furthermore, the radiation intensity D(0) of the self-luminous object can be divided into several ways and substituted into the formula by switching the radiation intensity of the light emitting part of the object. Thus, stiffness I and last C(4) are C(' )-+sweat Hl Formula (7) % formula %(0) At any distance e from the object, stiffness 1-
C(1) can be calculated.

しかも、このC(a)は色々な反r+−を率rをもつ物
体の個/Zについて、現実の測定環境下でC(/lが如
何なる値をとるのかが計算できろし、自発光体(こ対し
てもB+(#)−イ(0) x e″とおくこと(こ上
ってc(Bを求められる。(B+(0)は自発光体の放
射光強度) 〈発明の効果〉 以上述へて来た本発明方法によれば、襞間て太陽光の強
度が大あるいは夜間照明の強度が大の様な場合でもそれ
らの光に影響されろ事なく、シかも固イfの物体毎の視
程を正直i:に求める′f(が出来ろものである。
Furthermore, it is possible to calculate the value of C(/l) under the actual measurement environment for various anti-r + - objects with ratio r. (For this as well, set B + (#) - I (0) x e'' (By going up, c (B can be found. (B + (0) is the emitted light intensity of the self-luminous body) <Effects of the invention 〉 According to the method of the present invention described above, even when the intensity of sunlight or nighttime lighting is high between the folds, the area between the folds will not be affected by the light, and there will be no problem. It is possible to honestly find the visibility of each object in i: 'f(.

即ら、従来の方法では、 82 (0) −B3 (=:01と仮定、C(+り−
・C(0)e−20を1すてイt:oこれはKosch
micdcrの公式と、Lばれろ周知の公式である。上
記に於いて、我々のたてた式に82 (0) = 83
 (α〕)を代入ずろと、C(1)=C(0)e  が
得られる事が確j、3されている。しかし、物体の背景
が遠方の天空で満たされているときはBz (0) −
83(■)として良いが物体の背賊に比較的近くの森、
山等が入っている場合は、背賊光の主たるものが、それ
等の森や山に当った太陽光や夜間照明の散乱光になるの
で、太陽光や夜間照明光の強度が大のときにはB2 (
0) = 83 (ω)と仮定してはいけないのである
。その意味で82 (0)と83(・η)とを基本的に
別個のものとした本発明方法は、Koschmioed
er氏の明記した公式導出条件を正しく理解した装置と
なる点て、従来の方式とは全く異なろ新17い方式てあ
り、従来昼間に於いて又は夜間照明の明るい場所での測
定誤差(人に上る視程の実測値と装置に、Lる実測値と
の差)が大きく出ていたのである。
That is, in the conventional method, assuming that 82 (0) -B3 (=:01, C(+ri-
・Throw away one C(0)e-20:o This is Kosch
These are the micdcr formula and the well-known Lbarero formula. In the above, our formula is 82 (0) = 83
It is certain that by substituting (α]), we obtain C(1)=C(0)e. However, when the background of the object is filled with the distant sky, Bz (0) −
83 (■) is good, but the forest is relatively close to the object's traitor,
If there are mountains, etc., the main source of light will be scattered light from sunlight or night lights that hit those forests or mountains, so if the intensity of sunlight or night lights is high, B2 (
0) = 83 (ω) should not be assumed. In this sense, the method of the present invention, in which 82 (0) and 83 (·η) are basically separate, is
It is a new method that is completely different from the conventional method in that it is a device that correctly understands the formula derivation conditions specified by Mr. Er. There was a large difference between the actual measured value of visibility and the actual value measured by the equipment.

更に、従来の方法ては、Koschmioederの公
式%式% はC1,05−e−”となろeを視程と定義してるが、
これはe−0に於ける固有コントラス1.c(0)が大
なるほど遠方からその物体を見分は易くなるという実体
験に反する定義であり、本発明方法では、実測と計算か
らC(0)とびとを割り出し、cB)そのものを算出し
ている点て、従来相対的であ一〕tコ視程の定義を絶対
化したと評せられろ。このことは反射率の異なる物体を
次/7と取換又で、現実の測定環境に置く実験を計算に
よ−)て:JE、ニレ・−1−j、て、物体毎の視程を
算出ずろ画期的なシステムを実現する。この事は従来の
相対的視程の定義からは導出する事が不+11能であっ
た。
Furthermore, in the conventional method, Koschmioeder's formula % defines C1,05-e-'' and e as the visibility,
This is the unique contrast 1. at e-0. This definition is contrary to actual experience, which states that the larger c(0) becomes, the easier it is to distinguish the object from a distance.In the method of the present invention, C(0) intervals are determined from actual measurements and calculations, and cB) itself is calculated. It can be said that the definition of visibility, which was previously relative, has been made absolute. This can be calculated by exchanging objects with different reflectances as follows and placing them in the actual measurement environment. Realize a revolutionary system. It was impossible to derive this fact from the conventional definition of relative visibility.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法で用いる計測装置の概要説明図、第
2図は第1図に於けるA−A矢視図、第3図は第1図に
於けろB−B矢視図、第4図は被視体の内部構造説明図
、第5図は固体カメラの把えろ映像の説明図。 図中、  (1)被視体 (2)固体力、メラ (3)発光部 (4)近似黒体部 (5)照度計 (6)遮光筒 (7)マイコン式制御装置
FIG. 1 is a schematic explanatory diagram of the measuring device used in the method of the present invention, FIG. 2 is a view taken along the line A-A in FIG. 1, and FIG. 3 is a view taken along the line B-B in FIG. FIG. 4 is an explanatory diagram of the internal structure of the object to be viewed, and FIG. 5 is an explanatory diagram of an image captured by a solid-state camera. In the figure: (1) Subject (2) Solid force, camera (3) Light emitting part (4) Approximate black body part (5) Illuminance meter (6) Light shield tube (7) Microcomputer type control device

Claims (1)

【特許請求の範囲】[Claims] 1、発光部と近似黒体部と照度計とを具備する被視体と
、観測用固体カメラとを用い、被視体発光部の光放射を
0とし近似黒体部の単位面積あたりの明るさをY_1及
びその背景光の単位面積あたりの明るさY_2とを測定
し、次いで被視体発光部から光放射を行ないその時の発
光部の単位面積あたりの明るさY_3を測定し、又上記
照度計により外来光の単位面積あたりの明るさA(0)
を求め、これらのY_1、Y_2、Y_3及びA(0)
より個々の物体の視程を計算する方法。
1. Using a subject equipped with a light-emitting part, an approximate blackbody part, and an illuminance meter, and a solid-state camera for observation, set the light emission of the light-emitting part of the subject to 0, and calculate the brightness per unit area of the approximate blackbody part. Measure the brightness Y_1 and the brightness per unit area of the background light Y_2, then emit light from the light emitting part of the object and measure the brightness Y_3 per unit area of the light emitting part at that time. Brightness per unit area of external light A(0)
Find these Y_1, Y_2, Y_3 and A(0)
A way to calculate the visibility of more individual objects.
JP20976085A 1985-09-20 1985-09-20 Measuring method for visibility Granted JPS6269147A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20976085A JPS6269147A (en) 1985-09-20 1985-09-20 Measuring method for visibility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20976085A JPS6269147A (en) 1985-09-20 1985-09-20 Measuring method for visibility

Publications (2)

Publication Number Publication Date
JPS6269147A true JPS6269147A (en) 1987-03-30
JPH0531100B2 JPH0531100B2 (en) 1993-05-11

Family

ID=16578173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20976085A Granted JPS6269147A (en) 1985-09-20 1985-09-20 Measuring method for visibility

Country Status (1)

Country Link
JP (1) JPS6269147A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01141339A (en) * 1987-11-27 1989-06-02 Mitsubishi Electric Corp Smog transmittivity measuring instrument
JP2004037474A (en) * 2003-10-17 2004-02-05 Mitsubishi Electric Corp Laser radar device
EP1596185A1 (en) * 2004-05-10 2005-11-16 C.R.F. Società Consortile per Azioni Visibility measuring system and method
WO2007104925A2 (en) * 2006-03-11 2007-09-20 University Of Durham Optical transmissometer and light source and light detector for such optical transmissometer
CN102539386A (en) * 2012-01-09 2012-07-04 北京大学 Forward scattering type visibility meter based on white light, and visibility measurement method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01141339A (en) * 1987-11-27 1989-06-02 Mitsubishi Electric Corp Smog transmittivity measuring instrument
JP2004037474A (en) * 2003-10-17 2004-02-05 Mitsubishi Electric Corp Laser radar device
EP1596185A1 (en) * 2004-05-10 2005-11-16 C.R.F. Società Consortile per Azioni Visibility measuring system and method
WO2007104925A2 (en) * 2006-03-11 2007-09-20 University Of Durham Optical transmissometer and light source and light detector for such optical transmissometer
WO2007104925A3 (en) * 2006-03-11 2007-12-06 Univ Durham Optical transmissometer and light source and light detector for such optical transmissometer
CN102539386A (en) * 2012-01-09 2012-07-04 北京大学 Forward scattering type visibility meter based on white light, and visibility measurement method thereof

Also Published As

Publication number Publication date
JPH0531100B2 (en) 1993-05-11

Similar Documents

Publication Publication Date Title
Nicodemus Radiance
ES2203658T3 (en) PROCEDURE AND DEVICE FOR MEASUREMENTS OF AND REMISSION AND SPECTRAL TRANSMISSION.
CN105424558B (en) A kind of burning particles multiparameter measuring device and method using blue light back lighting
CN107561089A (en) Endoporus detection optical system and endoporus detection device
CN105549231B (en) Liquid crystal display defect detecting device and method
Tang et al. A new visibility measurement system based on a black target and a comparative trial with visibility instruments
US20200064185A1 (en) Method and apparatus for detecting a laser
CN104977155A (en) Rapid measurement method of LED light distribution curve
CN103148942B (en) Deconvolution-based double-optical path spectral measurement system
JPS6269147A (en) Measuring method for visibility
CN105651380B (en) A kind of big visual field negative angle uniform source of light system
CN203259248U (en) Portable colorimeter
Penczek et al. 65‐1: Distinguished Paper: Photometric and Colorimetric Measurements of Near‐Eye Displays
Chrzanowski Review of night vision metrology
US2690511A (en) Comparative emission pyrometer
JPS63298065A (en) Speed measuring instrument for body
US2803987A (en) Device for measuring the variations of opacity of the flame of a thomas converter and automatically determining the end of the operation
WO2016082416A1 (en) Retro-reflection measuring device
USH1655H (en) Backscatter haze measurement using a distributed light source
Presle et al. Visibility in turbid media with colored illumination
TW200821564A (en) Stray light measuring system and method thereof
RU2547891C1 (en) Lighting unit of small-sized spectrophotometer
Zaytseva Integral and spectral sensitivity assessment of the active-pulse television systems
Gazzi et al. Distant contrast measurements through fog and thick haze
Arbuzov et al. Real-time coloured visualization of phase flows by the schlieren method