JPS6269005A - Method of controlling temperature of turbine bypass desuperheater - Google Patents

Method of controlling temperature of turbine bypass desuperheater

Info

Publication number
JPS6269005A
JPS6269005A JP20638385A JP20638385A JPS6269005A JP S6269005 A JPS6269005 A JP S6269005A JP 20638385 A JP20638385 A JP 20638385A JP 20638385 A JP20638385 A JP 20638385A JP S6269005 A JPS6269005 A JP S6269005A
Authority
JP
Japan
Prior art keywords
temperature
steam
turbine bypass
valve
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20638385A
Other languages
Japanese (ja)
Inventor
史郎 日野
柴田 洋一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Engineering Corp
Toshiba Corp
Original Assignee
Toshiba Engineering Corp
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Engineering Corp, Toshiba Corp filed Critical Toshiba Engineering Corp
Priority to JP20638385A priority Critical patent/JPS6269005A/en
Publication of JPS6269005A publication Critical patent/JPS6269005A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Turbines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、蒸気発生器から直接復水器に送られる高圧・
高温の蒸気を適温の水にコントロールすスタービンバイ
パス蔵痒誌粁の漏音制御方決に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides high-pressure
This article relates to a noise control method for a turbine bypass tank that controls high-temperature steam to water at an appropriate temperature.

〔従来の技術〕[Conventional technology]

一般K、蒸気タービン設備は、タービンバイパス減温装
置が採用されている。タービンバイパス減温装置は、電
力系統がさほど電力を要求していない場合や起動時のよ
うに蒸気の圧力・温度が所定に達していない場合等にお
いて蒸気発生器から復水器に直接蒸気を流すために採用
されたものであって、蒸気発生器からの比較的高圧高温
の蒸気に冷却水を加え、適温の水として復水器に流すも
のである。適温の水として復水器に流す理由は、復水器
の構造物に熱変形等の常置を防止するからである。
For general steam turbine equipment, a turbine bypass cooling device is adopted. Turbine bypass temperature reduction equipment allows steam to flow directly from the steam generator to the condenser when the power system does not require much electricity or when the steam pressure and temperature have not reached a specified level such as during startup. In this system, cooling water is added to relatively high-pressure, high-temperature steam from a steam generator, and water at an appropriate temperature is passed to a condenser. The reason for flowing water at an appropriate temperature into the condenser is to prevent permanent thermal deformation in the structure of the condenser.

ところで、最近、ガスタービン設備と蒸気タービン設備
とを組合せたいわゆるコンバインドサイクル発電の採用
が、わが国においても活発化しており、このコンバイン
ドサイクル発電にも、上述過剰負荷の処理、蒸気が所定
圧力・@度になるまでの待期等を考慮して、タービンバ
イパス減温装置を採用する傾向にある。すなわち、第6
図は、代表的なコンバインドサイクル発電の概略実施例
であって、この設備は、大別してガスタービン設備、排
熱回収設備、蒸気タービン設備からなる。
By the way, recently, the adoption of so-called combined cycle power generation, which combines gas turbine equipment and steam turbine equipment, has become active in Japan. There is a trend towards adopting turbine bypass detemperature devices, taking into consideration the waiting period until temperatures reach 30 degrees. That is, the sixth
The figure is a schematic example of a typical combined cycle power generation system, and this equipment is roughly divided into gas turbine equipment, exhaust heat recovery equipment, and steam turbine equipment.

ガスタービン設備は、図示のように圧縮機(1)、燃焼
! (2)、ガスタービン(3)から構成されており、
圧縮機(1)から高圧にして送り出された空気は燃焼器
(2)において燃料が加えられ、高温ガスとしてガスタ
ービン(3)に至り、ここで仕事をした後、排ガスを排
熱回収設備に送るようにしている。排熱回収設備は、立
形の排熱ボイラ(6)を有するものであつ)て、排熱ボ
イラ(6)の内部には節炭器(7)、蒸発器(7a)、
(7b) 、過熱器(9)が胴軸に沿って配設されてお
り、特に蒸発器(7a)にはドラム(8)が設けられて
いる。そして、節炭器(7)に送られてくる給水は、こ
こで予熱され、さらに蒸発器(7a)に送られる。
As shown in the diagram, the gas turbine equipment includes a compressor (1), combustion! (2), a gas turbine (3),
The air sent out at high pressure from the compressor (1) is added with fuel in the combustor (2), and reaches the gas turbine (3) as high-temperature gas. After doing work here, the exhaust gas is sent to the exhaust heat recovery equipment. I'm trying to send it. The waste heat recovery equipment has a vertical waste heat boiler (6), and inside the waste heat boiler (6) there are a coal saver (7), an evaporator (7a),
(7b) A superheater (9) is arranged along the barrel axis, and in particular the evaporator (7a) is provided with a drum (8). The supplied water sent to the economizer (7) is preheated here and further sent to the evaporator (7a).

蒸発器(7a)を出た蒸気はドラム(8)において水と
蒸気とに分離され、その蒸気は再度、過熱器(9)に送
られ、ここで乾き蒸気として蒸気タービン設備に送られ
ている。
The steam leaving the evaporator (7a) is separated into water and steam in the drum (8), and the steam is again sent to the superheater (9), where it is sent as dry steam to the steam turbine equipment. .

蒸気タービン設備は、主蒸気管(12a)とタービンバ
イパス管(12b)とを有する。前者は、蒸気加減弁C
1zを経て蒸気タービン(5)に結ばれ、後者はタービ
ンバイパス弁(13、減温器α滲、冷却水弁0艶ヲ有し
、復水器Ii■に結ばれている。また、蒸気タービン(
5)とガスタービン(3)とは、共通軸で結ばれた発電
機αaが介挿されている。          −しか
して、排熱ボイラ(6)の過熱器(9)を出た乾き蒸気
は、蒸気加減弁(121で流量コントロールされ、蒸気
タービン(5)に至り、ここで蒸気の膨張によって発電
機Iを回動する。蒸気タービン(5)を出た蒸気は、復
水器α1で冷却され、復水としてポンプ(11)を経て
、一方が排熱ボイラ(6)の節炭器(7)に、他方がタ
ービンバイパス減温装置の冷却水弁住3にそれぞれ送ら
れるようになっている。
The steam turbine equipment has a main steam pipe (12a) and a turbine bypass pipe (12b). The former is a steam control valve C
The latter is connected to the steam turbine (5) via the steam turbine (5), and the latter has a turbine bypass valve (13, a desuperheater α), a cooling water valve (0), and is connected to the condenser Ii. (
5) and the gas turbine (3) are interposed with a generator αa connected by a common shaft. -The dry steam leaving the superheater (9) of the waste heat boiler (6) is flow controlled by the steam control valve (121) and reaches the steam turbine (5), where the expansion of the steam causes the generator I The steam leaving the steam turbine (5) is cooled in the condenser α1, passes through the pump (11) as condensate, and one side is sent to the economizer (7) of the waste heat boiler (6). , and the other is sent to the cooling water valve 3 of the turbine bypass temperature reducing device.

第7図は、上記タービンバイパス減温装置の概略制御系
統図を示し、主蒸気管(12a)には圧力検出器住eが
設けられている。圧力検出器(1eは蒸気の圧力を常時
検出しており、その検出信号は圧力調節計αηを経てタ
ービンバイパス弁α3に送られるようになっており、こ
れによってタービンバイパス弁α3は開閉動作する。他
方、タービンバイノくス弁α3に直列接続する減温器I
には、冷却水弁(IQから水が送られるようになってい
るが、この冷却水弁(151の開閉は、減温器(14)
の出口側の温度検出器部からの温度信号を温度調節計(
11に送り、ここで演算後、その信号を冷却水弁−に与
えることによってなされている。
FIG. 7 shows a schematic control system diagram of the turbine bypass temperature reducing device, in which a pressure detector is provided in the main steam pipe (12a). The pressure detector (1e) constantly detects the steam pressure, and its detection signal is sent to the turbine bypass valve α3 via the pressure regulator αη, which opens and closes the turbine bypass valve α3. On the other hand, the desuperheater I is connected in series to the turbine binos valve α3.
Water is sent from the cooling water valve (IQ), but the opening and closing of this cooling water valve (151) is controlled by the desuperheater (14).
The temperature signal from the temperature sensor section on the outlet side of the temperature controller (
11, and after calculation there, the signal is given to the cooling water valve.

このようにして適温となった水は減温器(14)から復
水器(1Gに送り込まれ、復水器α1で再度冷却され、
以後、ポンプ(1υを経て排熱ボイラ(6)の節炭器(
7)に送られる。
The water that has reached the appropriate temperature in this way is sent from the desuperheater (14) to the condenser (1G), and is cooled again in the condenser α1.
After that, the pump (1υ) and the waste heat boiler (6) economizer (
7).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、減温器Iは、蒸気を減温するに当り、蒸気に
加えられる冷却水の気化熱を利用して減温するものであ
る。このため、減温器(14)の出口側に設ける温度検
出器α梯はその出口側から約25mの位置に配される関
係上、信号による遅れが発生することがある。例えば、
減温器側から復水器α1に適温な水として送っていた状
態から、タービンノ(イれると、タービンバイパス弁(
13を通過する蒸気は急激に増えるものの、その割合に
は冷却水弁t15)から減温器(L4)に送られる冷却
水は増加しておらず、結局、この原因は信号遅れに起因
すると考、tられている。信号遅れは、起動・停止、急
激な負荷二に動のときに、特に著しくあられれている。
By the way, the desuperheater I uses the heat of vaporization of the cooling water added to the steam to reduce the temperature of the steam. For this reason, since the temperature detector α ladder provided on the outlet side of the attemperator (14) is located approximately 25 m from the outlet side, a delay due to the signal may occur. for example,
When the turbine bypass valve (
Although the steam passing through the cooling water valve t15) increases rapidly, the amount of cooling water sent from the cooling water valve t15) to the desuperheater (L4) does not increase, and in the end, this is thought to be due to the signal delay. , it has been done. Signal delays are particularly noticeable during start-up, stop, and sudden load changes.

第8図および第9図は起動・停止、急激な負荷変動の場
合の蒸気流量、蒸気温度の変動をグラフ化したものであ
るが、これらの図からも理解されるように、変動幅が著
しく高く良好な制御がなされていない。
Figures 8 and 9 are graphs of fluctuations in steam flow rate and steam temperature in the case of start-up, shutdown, and rapid load changes.As can be seen from these figures, the range of fluctuation is significant. high and not well controlled.

ここで第8図は、コンバインドサイクル発電の緊急停止
や急激な負荷変動時にタービンバイパス弁C13が急関
し、蒸気の流1信号がステップ状に、変化した場合を示
すものであって、このステップ状の変化によって頭初、
信号遅れのため減温器(14)には供給される水が不足
して蒸気温度が急tiLシて高くなっている。また、ス
テップ状の信号が1終りに近付くと、今度は冷却水弁時
から減温器Iに過、Ifd水が流れ、必要以上に蒸気温
度が低下する。このよArtr?hEA”3E、hAa
、I’−溜−11515−hr*IFン−KJ12、ノ
ーシ:l”J77’1Mlが適正な温度でないため、復
水器(Inは急激な熱応力・熱衝撃をまともに受ける結
果、損傷全招来することがあった。また、第9図は、起
動時や低負荷時における減温器側から復水器(11に流
れる蒸気の流量、温度の変化をグラフ化したものである
が、このような変動は、上述信号遅れによるものと考え
られている。
Here, FIG. 8 shows a case where the turbine bypass valve C13 is suddenly engaged during an emergency stop of combined cycle power generation or sudden load fluctuation, and the steam flow 1 signal changes in a step manner. Due to the change in
Due to the signal delay, water is insufficiently supplied to the desuperheater (14), and the steam temperature suddenly rises. Moreover, when the step-like signal approaches the end, Ifd water flows into the desuperheater I from the time of the cooling water valve, and the steam temperature decreases more than necessary. Is this Artr? hEA”3E, hAa
, I'-Reservoir-11515-hr*IF-KJ12, NOSI:l"J77'1Ml was not at the appropriate temperature, so the condenser (In) was subjected to sudden thermal stress and thermal shock, resulting in complete damage. In addition, Figure 9 is a graph of the flow rate and temperature changes of steam flowing from the desuperheater side to the condenser (11) during startup and low load. Such fluctuations are thought to be due to the signal delay described above.

そこで、本発明は、上記の点に徴し、起動、停止、負荷
変動時であっても信号遅れがないように、適温水として
減温器から復水器に蒸気を送ることができるよう圧する
タービンバイパス減温装置の温度制御方法を提供するこ
とを目的とする。
Therefore, in view of the above points, the present invention has been devised to create a turbine that is pressurized so that steam can be sent from the desuperheater to the condenser as appropriately heated water so that there is no signal delay even during startup, shutdown, and load fluctuations. It is an object of the present invention to provide a temperature control method for a bypass temperature reduction device.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記目的を達成するために、蒸気発生器と蒸
気タービンとを結ぶ主蒸気管を分岐して復水器に直接結
ぶタービンバイパス管K、タービンバイパス弁と減温装
置とを有し、タービンバイパス弁から減温装置に送られ
る高圧・高温蒸気に冷却水弁からの水を混入させ、適温
の水圧して復水器に送るタービンバイパス減温装置の温
度制御方法において、上記タービンバイパス弁の弁す7
ト信号に、減温装置の出口側の水温度信号を加え、その
演算信号をもって冷却水弁の開閉信号とすることを特徴
とする。
In order to achieve the above object, the present invention includes a turbine bypass pipe K that branches a main steam pipe connecting a steam generator and a steam turbine and connects directly to a condenser, a turbine bypass valve, and a temperature reducing device. In the temperature control method of the turbine bypass temperature reduction device, water from the cooling water valve is mixed with high pressure and high temperature steam sent from the turbine bypass valve to the temperature reduction device, and the water is brought to an appropriate temperature and pressure and sent to the condenser. valve valve 7
A water temperature signal on the outlet side of the temperature reducing device is added to the temperature signal, and the calculated signal is used as an opening/closing signal for the cooling water valve.

〔作用〕[Effect]

減温器(141から復水器αCに流れる蒸気の温度が起
動、停止、負荷変動によって急激に変動するのは、冷却
水弁(isに送られる開閉信号の遅れに最大の原因があ
ると考えられるため、本発明では、タービンバイパス弁
(13と冷却水弁αSとは一定の開閉関係をもたせてい
る。すなわち、タービンバイパス弁(13の弁リフトは
蒸気の増減に直接結びつくから、この弁り7ト信号を冷
却水弁(1つの開閉信号として与えれば蒸気量の増減と
冷却水量の増減とは一対一に対応し、適温の水として減
温器側から復水器α1に送ることができる。
The reason why the temperature of the steam flowing from the desuperheater (141) to the condenser αC fluctuates rapidly due to startup, shutdown, and load changes is thought to be due to the delay in the opening/closing signal sent to the cooling water valve (IS). Therefore, in the present invention, the turbine bypass valve (13) and the cooling water valve αS have a certain opening/closing relationship. That is, since the valve lift of the turbine bypass valve (13) is directly linked to the increase/decrease of steam, this valve 7 signal from the cooling water valve (if given as one open/close signal, the increase/decrease in the amount of steam and the increase/decrease in the amount of cooling water correspond one-to-one, and water at an appropriate temperature can be sent from the desuperheater side to the condenser α1. .

〔実施例〕〔Example〕

以下本発明の一実施例を図面を参照して説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図において、タービンバイパス131にハf蒸気管
(12a)を通過する蒸気の圧力が圧力検出器(lGか
ら圧力調節計1i7)を経て加えられている。この状態
において、例えば負荷「減」の指令がタービンバイパス
弁Q3に入ると、弁り7トは徐々に高まる。このとき、
リフト検出器C!υは弁リストを検出し、その検出信号
は関数演算器■で演算修正され、温度調節計(1’Jに
送られる。一方、減温器α滲を通過後の蒸気温度は温度
検出器(11によって検出されており、その検出信号は
温度調節計住1に送られる。
In FIG. 1, the pressure of steam passing through the Hf steam pipe (12a) is applied to the turbine bypass 131 via a pressure detector (from IG to pressure regulator 1i7). In this state, for example, when a command to "reduce" the load is input to the turbine bypass valve Q3, the valve pressure gradually increases. At this time,
Lift detector C! υ detects the valve list, and the detection signal is corrected by the function calculator ■ and sent to the temperature controller (1'J. On the other hand, the steam temperature after passing through the attemperator α is sent to the temperature detector (1'J). 11, and the detection signal is sent to temperature controller 1.

そして、上記弁リフト弁信号に温度検出信号が加わり、
この加算信号が冷却水弁(ls)に開閉信号として与え
られる。
Then, a temperature detection signal is added to the valve lift valve signal, and
This addition signal is given to the cooling water valve (ls) as an opening/closing signal.

このように、タービンバイパス弁(13と冷却水弁(i
sとは弁リフト信号を通じて連動関係を有するから、従
来のような信号遅れは解消され、例え、起動、停止、負
荷変動があって、第2図ないし第3図に示されるように
蒸気流量が変動しても、蒸気温度はほぼ一定値を保持で
きるようになる。
In this way, the turbine bypass valve (13) and the cooling water valve (i
Since there is an interlocking relationship with s through the valve lift signal, the conventional signal delay is eliminated, and even if there is a start, stop, or load change, the steam flow rate is Even if the temperature fluctuates, the steam temperature can be maintained at a nearly constant value.

第4図および第5図は、本発明の他の実施例を示すもの
であって、第4図は圧力検出器tteで検出された蒸気
圧力信号は圧力調節計(17)を経てタービンバイパス
弁αJに送られる一方、関数演算器■にも送られ、ここ
から温度調節計α]に送られる際、減温器Iの出口側の
温度検出器CI8からの温度信号が加えられ、この加算
信号が冷却水弁(151の開閉信号として与えられるよ
うになっている。また、第5図は圧力検出器(1Gから
の圧力信号を関数演算器(1)を経て、直接温度調節計
α優に送り、この信号に減温器α荀の出口側の温度信号
を加え、加算信号として冷却水弁(isに開閉信号を送
るようにするものである。これらの実施例は、いずれも
弁リフト信号に代えて蒸気の圧力信号を採用したもので
あるが、制御系統が第1実施にくらべて一段と簡素化さ
れるので好都合である。
4 and 5 show other embodiments of the present invention, in which the steam pressure signal detected by the pressure detector tte is transmitted to the turbine bypass valve via the pressure regulator (17). While being sent to αJ, it is also sent to the function calculator ■, and from there to the temperature controller α], where the temperature signal from the temperature detector CI8 on the outlet side of the desuperheater I is added, and this added signal is given as the opening/closing signal of the cooling water valve (151). In addition, Fig. 5 shows that the pressure signal from the pressure detector (1G) is sent directly to the temperature controller α through the function calculator (1). The temperature signal on the outlet side of the desuperheater α is added to this signal, and an opening/closing signal is sent to the cooling water valve (IS) as an added signal.In both of these embodiments, the valve lift signal is In this embodiment, a steam pressure signal is used instead of the first embodiment, which is advantageous because the control system is further simplified compared to the first embodiment.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、タービンバイパ
ス弁の弁リフト信号と、減温器の出口側の蒸気温度信号
とより冷却水弁の開閉18号として用いるようにしであ
るから、起動、停止、負荷変動等によってタービンバイ
パス弁を通過する蒸気が急激に増加しても、冷却水弁か
らは蒸気増加量に見合う冷却水が流れ、適温の水として
復水器仄流すことができ、その結果、復水器の損傷を一
段と軽減することが期待される。
As explained above, according to the present invention, since the valve lift signal of the turbine bypass valve and the steam temperature signal on the outlet side of the attemperator are used as the opening/closing number 18 of the cooling water valve, the startup, Even if the steam passing through the turbine bypass valve suddenly increases due to shutdowns, load fluctuations, etc., cooling water corresponding to the increased amount of steam flows from the cooling water valve, and water at an appropriate temperature can flow through the condenser. As a result, it is expected that damage to the condenser will be further reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施を示す概略系統図、第2図およ
び第3図は本発明によって得られた特性線図、第4図お
よび第5図は本発明の他の実施例を示す概略系統図、第
6図は従来の実施例を示す概略系統図、第7図は第6図
のタービンバイパス減温装置の一部を取り出した部分拡
大図、第8図および第9図は従来の実施例によって得ら
れた特性線図である。 12a ・・主蒸fi管x2b・・・タービンバイパス
管13・・・タービンバイパス弁 14・減温器15・
・冷却水弁     16・・圧力検出器【7・・・圧
力調節計    18  温度検出器19一温度調節計
    20・関数演算器21・・リフト検出器 第 2 図         第 3 国策4図 第5図
FIG. 1 is a schematic system diagram showing one embodiment of the present invention, FIGS. 2 and 3 are characteristic diagrams obtained by the present invention, and FIGS. 4 and 5 show other embodiments of the present invention. Schematic system diagram; Figure 6 is a schematic diagram showing a conventional embodiment; Figure 7 is a partial enlarged view of a part of the turbine bypass temperature reducing device in Figure 6; Figures 8 and 9 are a diagram showing a conventional example. FIG. 3 is a characteristic diagram obtained in Example. 12a...Main steam FI pipe x2b...Turbine bypass pipe 13...Turbine bypass valve 14・Desuperheater 15・
- Cooling water valve 16... Pressure detector [7... Pressure regulator 18 Temperature detector 19 - Temperature regulator 20 - Function calculator 21... Lift detector Fig. 2 Fig. 3 National policy Fig. 4 Fig. 5

Claims (1)

【特許請求の範囲】[Claims] 蒸気発生器と蒸気タービンとを結ぶ主蒸気管を分岐して
復水器に直接結ぶタービンバイパス管に、タービンバイ
パス弁と減温装置とを有し、タービンバイパス弁から減
温装置に送られる高圧・高温蒸気に冷却水弁からの水を
混入させ、適温の水にして復水器に送るタービンバイパ
ス減温装置の温度制御方法において、上記タービンバイ
パス弁の弁リフト信号に、減温装置の出口側の水温度信
号を加え、その演算信号をもつて冷却水弁の開閉信号と
することを特徴とするタービンバイパス減温装置の温度
制御方法。
The main steam pipe that connects the steam generator and the steam turbine is branched off, and the turbine bypass pipe that connects directly to the condenser has a turbine bypass valve and a temperature reducing device, and high pressure is sent from the turbine bypass valve to the temperature reducing device.・In a temperature control method for a turbine bypass attemperature device in which water from a cooling water valve is mixed with high-temperature steam and water is made into appropriate temperature water and sent to a condenser, the outlet of the attemperation device is 1. A temperature control method for a turbine bypass temperature reduction device, characterized by adding a side water temperature signal and using the calculated signal as an opening/closing signal for a cooling water valve.
JP20638385A 1985-09-20 1985-09-20 Method of controlling temperature of turbine bypass desuperheater Pending JPS6269005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20638385A JPS6269005A (en) 1985-09-20 1985-09-20 Method of controlling temperature of turbine bypass desuperheater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20638385A JPS6269005A (en) 1985-09-20 1985-09-20 Method of controlling temperature of turbine bypass desuperheater

Publications (1)

Publication Number Publication Date
JPS6269005A true JPS6269005A (en) 1987-03-30

Family

ID=16522431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20638385A Pending JPS6269005A (en) 1985-09-20 1985-09-20 Method of controlling temperature of turbine bypass desuperheater

Country Status (1)

Country Link
JP (1) JPS6269005A (en)

Similar Documents

Publication Publication Date Title
EP0236959B1 (en) Method for starting thermal power plant
US4793141A (en) Gland sealing steam supply system for steam turbines
JP2000161014A (en) Combined power generator facility
JP2000161014A5 (en)
JPS6239648B2 (en)
JPS6269005A (en) Method of controlling temperature of turbine bypass desuperheater
JPH0932512A (en) Steam supply device of steam turbine gland seal
JPS61187503A (en) Temperature decreasing controller of turbine gland sealing steam
JPS6291703A (en) Steaming preventive device for fuel economizer
JPH0734810A (en) Method for starting of single-shaft type combined cycle generating equipment
JPS5926765B2 (en) Control method and device for a turbine plant having a turbine bypass line
JPH1193618A (en) Steam pressure control method for gas turbine steam cooling system
JPS60252109A (en) Compound generation plant
JPH03199601A (en) Control of vapor temperature at superheater/reheater outlet of complex power plant
JP3010086B2 (en) Cogeneration power plant
JPH0330687B2 (en)
JPS61184306A (en) Steam-turbine reheater heating-steam pressure controller
JPH0475363B2 (en)
JPH09195718A (en) Main steam temperature control device
CA1163814A (en) Method of varying turbine output of a supercritical- pressure steam generator-turbine installation
JPH0336123B2 (en)
JPH0472962B2 (en)
JPS6211283Y2 (en)
JPH0399101A (en) Controller of exhaust heat recovering heat exchanger
JPS6056110A (en) Control method of ventilator