JPS6268693A - Welded structure for high temperature service - Google Patents

Welded structure for high temperature service

Info

Publication number
JPS6268693A
JPS6268693A JP20887085A JP20887085A JPS6268693A JP S6268693 A JPS6268693 A JP S6268693A JP 20887085 A JP20887085 A JP 20887085A JP 20887085 A JP20887085 A JP 20887085A JP S6268693 A JPS6268693 A JP S6268693A
Authority
JP
Japan
Prior art keywords
weight
less
welded
weld metal
high temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20887085A
Other languages
Japanese (ja)
Inventor
Takashi Ebisutani
戎谷 隆
Masao Yamamoto
正夫 山本
Osamu Watanabe
修 渡辺
Masayuki Yamada
政之 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP20887085A priority Critical patent/JPS6268693A/en
Publication of JPS6268693A publication Critical patent/JPS6268693A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/308Fe as the principal constituent with Cr as next major constituent
    • B23K35/3086Fe as the principal constituent with Cr as next major constituent containing Ni or Mn

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)

Abstract

PURPOSE:To provide a welded structure having excellent strength and ductility in high-temp. and high-pressure environment and to prevent weld crack by welding an austenitic steel contg. Cr, Ni and N with a deposited metal having a specific compsn. CONSTITUTION:The deposited metal is composed, by weight, of >=0.02%- <=0.12% C, >=0.1%-<=1.5% Si, >=0.2%-<=2.0% Mn, >=0.11%-<=0.3% N, >=8%-<=14% Ni, >=15%-<=20% Cr, >=0.01%-<=0.3% V, >2.0%-<=3.5% Mo as essential components and the balance Fe. The austenitic steel is welded by using such deposited metal and the structure which has the durability in terms of strength even at and under the high temp. and high pressure is obtd.

Description

【発明の詳細な説明】 [発明の技術分野] 未発明は十−ステナイト系鋼を耐熱性に優れた溶着金属
で溶接して成る高温用溶接構造物に関し、更に詳しくは
、超高圧・高温の水法気雰囲気ドで使用するタービン構
成部材として有用な高温用溶接構造物に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a high-temperature welded structure made by welding ten-stenitic steel with a welded metal having excellent heat resistance, and more specifically relates to a welded structure for ultra-high pressure and high temperature. The present invention relates to a high-temperature welded structure useful as a turbine component used in a water-legal atmosphere.

[発明の技術的背景とその問題点] オーステナイト系鋼は耐食性が優れているので腐食性環
境下で多用Sれている。またこの鋼は。
[Technical background of the invention and its problems] Austenitic steel has excellent corrosion resistance and is therefore widely used in corrosive environments. Also, this steel.

フェライト系鋼に比べて機械的性質の温度依存性が小さ
いので、強度の点からみてその使用限界温度は高い。す
なわち、高温特性が良好である。
Since the temperature dependence of mechanical properties is smaller than that of ferritic steel, its service temperature limit is high from the viewpoint of strength. That is, the high temperature properties are good.

更には、この鋼は溶接性が優れていて溶接時の予熱及び
後熱が不要になり各種の溶接構造物用の材料としてその
用途は拡大している。
Furthermore, this steel has excellent weldability and does not require preheating or postheating during welding, so its use as a material for various welded structures is expanding.

しかしながら、このオーステナイト系鋼に厚板又は拘束
度大の継手を溶接すると、用いた溶着金属から成る溶接
部及び熱影響部に溶接割れ(高温割れ)を起し易い。こ
の溶接割れは、溶接棒(溶接金属)と母材の化学!l成
、溶接法、被覆剤の種類、1m手の形状、拘束度などの
因子によって影15を受けるのが、とりわけ溶接金属の
組織が均一なオーステナイト相になると割れの多発する
ことが知られている。このオーステナイト系鋼溶接時の
溶着金属の割れを防止するためには、その組成を変えた
り、ある種の元素を添加してフェライト相を析出させて
いる。フェライト相が析出した2相組織の場合は溶接割
れが極めて少ないからである。
However, when thick plates or highly constrained joints are welded to this austenitic steel, weld cracks (high temperature cracks) are likely to occur in the weld zone and heat affected zone made of the weld metal used. This welding crack is caused by the chemistry between the welding rod (welding metal) and the base metal! It is known that cracks occur frequently, especially when the structure of the weld metal becomes a uniform austenite phase, which is affected by factors such as the welding process, welding method, type of coating material, shape of the 1m hand, degree of restraint, etc. There is. In order to prevent cracking of the deposited metal during welding of this austenitic steel, the composition is changed or certain elements are added to precipitate a ferrite phase. This is because weld cracking is extremely rare in the case of a two-phase structure in which a ferrite phase is precipitated.

つまり、従来からオーステナイト系鋼の溶接には、母材
の種類により、20%Cr−10%Nl系。
In other words, conventionally, austenitic steel has been welded using a 20% Cr-10% Nl system, depending on the type of base metal.

18%Cr−12%Ni−2%Ha系、18%Cr−9
%Ni−Nb系。
18%Cr-12%Ni-2%Ha system, 18%Cr-9
%Ni-Nb system.

19%Cr−9%Ni−Ti系などのオーステナイト鋼
心線を用いた被覆アーク溶接、サブマージドアーク溶接
、イナートガスアーク溶接(旧GおよびTIG)などの
方法が適用されているが、これは得られた溶着金属の組
織の中に 4〜12%のフェライト相が析出して溶接割
れが防止されるからである。
Methods such as coated arc welding, submerged arc welding, and inert gas arc welding (formerly G and TIG) using austenitic steel core wires such as 19%Cr-9%Ni-Ti have been applied; This is because 4 to 12% of ferrite phase is precipitated in the structure of the deposited metal, thereby preventing weld cracking.

しかしながら、オーステナイト相中に数%析出したフェ
ライト相は、溶着金属の耐食性を低下させるとともに、
高温下における使用中にシグマ相に変化して溶接部の脆
化を招く。しかも、フェライト相を含む溶着金属は、加
熱−冷却の反復により熱疲労が加速され、また、高温下
における長時間使用時のクリープ破断強度、クリープ破
断伸びなどの特性が母材のそれよりも低下する。
However, a few percent of the ferrite phase precipitated in the austenite phase reduces the corrosion resistance of the weld metal, and
During use at high temperatures, it changes to a sigma phase, leading to embrittlement of the weld. Moreover, thermal fatigue of weld metal containing a ferrite phase is accelerated by repeated heating and cooling, and properties such as creep rupture strength and creep rupture elongation during long-term use at high temperatures are lower than those of the base metal. do.

このようなことから、高温下で使用するオーステナイト
系鋼の溶接構造物の製造に用いる溶着金属は、フェライ
ト相を含むことのない均一なオーステナイト相であり、
かつ溶接割れを起さないものであることが必要とされる
For this reason, the weld metal used in the manufacture of austenitic steel welded structures used at high temperatures is a uniform austenite phase that does not contain a ferrite phase.
In addition, it is required that the material does not cause weld cracking.

ところで、石油や石炭を燃料とする火力発毛プラントに
おいてはその熱効率を向ヒさせるために、蒸気条件の一
層の高温、高圧化が進められていて、それに対応できる
ターヒン構成用部材の開発は強く要請されている。
By the way, in order to improve the thermal efficiency of thermal power plants that use petroleum or coal as fuel, steam conditions are being made higher and higher, and there is a strong need to develop materials for the construction of Tahin that can handle this. It is requested.

従来、このような部材としてはCr −M o −V 
Qf4のようなマルテンサイテト系鋼が汎用されてきた
が、しかし、この材料は高温強度のへで不充分であるた
め、最近はより高温強度特性に優れるオーステナイト系
鋼が使用されはじめている。
Conventionally, such members include Cr-Mo-V
Martensitic steels such as Qf4 have been widely used, but this material has insufficient high-temperature strength, so recently austenitic steels, which have better high-temperature strength characteristics, have begun to be used.

とくに、溶接構造体であるケーシングは、ハス圧力によ
る負荷を受けるため、高圧の洗気条件下の使用に耐える
ためには、高温下における強度。
In particular, the casing, which is a welded structure, is subjected to loads from the lotus pressure, so it must have sufficient strength under high temperature conditions in order to withstand use under high-pressure air washing conditions.

延性が優れかつ溶接割れを起さない溶着金属で溶接され
ていることが望ましい。
It is desirable to weld with a deposited metal that has excellent ductility and does not cause weld cracking.

また、各種の化学プラントにおいても上記と同様の理由
により高温高圧の環境下にあっても強度的に耐性を有す
る溶接構造物が求められる。
Furthermore, in various chemical plants, welded structures that are strong and resistant even in high temperature and high pressure environments are required for the same reasons as above.

このように、溶接構造物の使用環境がより過酷な方向に
移行している中で、溶着金属として前記したフェライト
相を含まない完全なオーステナイト相から成り、溶接性
、#熱性に優れたもので溶接した高温用溶接構造物の開
発が求められている。
As the usage environment of welded structures is becoming more severe, welded metals are made of a completely austenite phase that does not contain the ferrite phase described above, and have excellent weldability and thermal properties. There is a need for the development of welded structures for high temperatures.

[発明の目的] 本発明は−に記要請に応え、溶接性、高温下における強
度1通性に優れた高温用溶接構造物の提供を目的とする
[Object of the Invention] The present invention meets the requirements set forth in (-) and aims to provide a welded structure for high temperature use that is excellent in weldability and strength permeability at high temperatures.

[発明の概要コ 本発明の溶接構造物は、Cr、 NiおよびNを含有す
るオーステナイト系鋼と、C0,02ta%以上0.1
2重量%以下、 Si 0.1重量%以」二1,5重付
%以下、 Mn 0.2重量%以上2.0重量%以下、
 N o、11毛1%以上0.3重量%以下、 Ni 
8重寸%以上14重φ%以下、Cr15重量%以上20
東着%以下、 V O,01重4%以上 0.3重量%
以下、にo2.01賃%より大3.5重量%以下を必須
成分とし残部が実質的にFeである溶着金属との溶接体
であることを特徴とする。
[Summary of the Invention] The welded structure of the present invention comprises an austenitic steel containing Cr, Ni and N, and a C content of 0.1% or more.
2% by weight or less, Si 0.1% by weight or less, 21.5% by weight or less, Mn 0.2% by weight or more and 2.0% by weight or less,
No, 11 hair 1% or more and 0.3% by weight or less, Ni
8 weight% or more and 14 weight φ% or less, Cr15 weight% or more and 20
East arrival% or less, VO,01 weight 4% or more 0.3 weight%
Hereinafter, it is characterized by being a welded body with a deposited metal in which O2.01% to 3.5% by weight is an essential component and the remainder is substantially Fe.

本発明の構造物は、Cr、 NiおよびNを含有するオ
ーステナイト系鋼を上記した組成の溶着金属で溶接して
成るものである。
The structure of the present invention is made by welding austenitic steel containing Cr, Ni, and N with a deposited metal having the above-mentioned composition.

本発明にがかる溶着金属において、Cはオーステナイト
相を安定化して溶着金属を強化するとともに、溶接割れ
の減少のために有効な元素であり4少なくとも0.02
ffi lit%は必要である。しかし、過剰に添加す
ると溶接時に偏析を生じ、溶接部の機械的性質、耐食性
を劣化されるので一ヒ限を0.12毛−f1%とする。
In the weld metal according to the present invention, C is an element effective for stabilizing the austenite phase and strengthening the weld metal, as well as reducing weld cracking, and is at least 0.02
ffi lit% is required. However, if it is added in excess, it will cause segregation during welding and deteriorate the mechanical properties and corrosion resistance of the welded part, so the limit is set at 0.12 hair-f1%.

クリープ破断強度、クリープ破断伸び、絞りを向1−せ
しめるという観点からすると0.04重量%以上0.0
8重工形以下にすることが望ましい。
From the viewpoint of increasing creep rupture strength, creep rupture elongation, and reduction of area, 0.04% by weight or more 0.0
It is desirable to make it 8 heavy engineering type or less.

Siは溶接時の脱酸剤として作用する元素で少なくとも
 a、13z砥%は必要であるが、しかし、過剰に添加
すると溶接、171れを起こしやすくなるので1−限を
 1.5料量%とする。望ましくは0.1〜0.9重量
%とすることが良いが、さらに望ましくは0.3〜07
重量%重量る。
Si is an element that acts as a deoxidizing agent during welding, and at least 13% is required. However, if added in excess, it tends to cause welding cracks, so the 1-limit is set at 1.5%. shall be. The content is preferably 0.1 to 0.9% by weight, more preferably 0.3 to 0.7% by weight.
Weight%.

Mnは81回様に溶接時の脱酸剤として作用するととも
に、オーステナイト相生成元素としてオーステナイト相
を安定化させるために有効な元素で少なくとも Q、:
)毛i%は必要である。しかし、多量に添加すると耐酸
化性などの耐食性を害するので上限を 2.0重積%と
する。望ましくは(1,5〜0.9屯縫%である。
Mn acts as a deoxidizing agent during welding, and is an effective element for stabilizing the austenite phase as an austenite phase forming element.
) Hair i% is required. However, if added in large amounts, corrosion resistance such as oxidation resistance will be impaired, so the upper limit is set at 2.0% by weight. Desirably it is (1.5 to 0.9 tonne stitch%).

Nはオーステナイト相を安定化するとともに十−ステナ
イト相中に固溶したり、または窒化物を形成したりして
溶n金屈の耐力やクリープ破断強度を向上させるために
有効な元素であり、0.11!1!量%は必要である。
N is an effective element for stabilizing the austenite phase and improving the yield strength and creep rupture strength of the molten metal by forming a solid solution in the ten-stenite phase or forming a nitride. 0.11!1! Amount % is required.

しかし過剰に添加すると溶接時にピンホールやブローホ
ールを形成するとともに粒界に窒化物を形成してクリー
プ破断強度やクリープ破断伸び、絞り、さらには靭性を
害することになるので上限を 0.3重量%とする。特
に溶接構造物ではピンホール、ブローホールは極力避け
ることが必要であるため望ましくは0,11〜0.2毛
量%とすることが好適である。
However, if added in excess, pinholes and blowholes will be formed during welding, and nitrides will be formed at grain boundaries, impairing creep rupture strength, creep rupture elongation, reduction of area, and even toughness, so the upper limit is set at 0.3 weight. %. Particularly in welded structures, it is necessary to avoid pinholes and blowholes as much as possible, so it is preferable that the amount of hair be 0.11 to 0.2%.

N1は溶着金属の組織をオーステナイト化すると同時に
耐食性、溶接性を向上するために必須な元素で少なくと
も 8重量%は必要である。しかし、過剰に添加すると
溶接割れを助長しやすくなるので上限を14重量%とす
る。オーステナイト相の安定化、クリープ破断強度、ク
リープ破断伸び、絞りの観点からすると 8.5〜13
重量%とすることか望ましい。
N1 is an essential element for austenitizing the structure of the weld metal and at the same time improving corrosion resistance and weldability, and it is necessary to contain at least 8% by weight. However, excessive addition tends to promote weld cracking, so the upper limit is set at 14% by weight. From the viewpoint of stabilization of austenite phase, creep rupture strength, creep rupture elongation, and reduction of area: 8.5 to 13
It is preferable to use weight percent.

C[は室温、高温下における強度を高めるとともに、耐
食性、#酸化性を向とさせるために必要な元素であり1
5重重量以上は必要である。しかし、多量に添加すると
高温下で長時間使用したときシグマ相を生成して靭性を
害すること、およびフェライト相を形成してオーステナ
イト単相を得難くすることからして上限を20重量%と
する。Nl量とのバランスおよびNの含有を容易にする
ことを考慮すると16〜18.5重量%とすることが望
ましい。
C[ is an element necessary to increase strength at room temperature and high temperature, as well as improve corrosion resistance and oxidation resistance.
A weight of 5 weight or more is required. However, if added in a large amount, a sigma phase will form when used for a long time at high temperatures, impairing toughness, and a ferrite phase will form, making it difficult to obtain a single austenite phase, so the upper limit is set at 20% by weight. . Considering the balance with the amount of Nl and the ease of containing N, it is desirable to set the content to 16 to 18.5% by weight.

■は本発明において特に重要な元素であって、オーステ
ナイト相中に固溶したり、NやCと作用して微細な析出
物を形成してクリープ破断強度。
(2) is a particularly important element in the present invention, and increases the creep rupture strength by forming a solid solution in the austenite phase or forming fine precipitates by interacting with N and C.

クリープ破断伸び、絞りを向上させるために必要な元素
であり、0.01玉賃%以上必要である。
It is an element necessary to improve creep rupture elongation and reduction of area, and is required in an amount of 0.01% or more.

しかし、過剰に添加すると偏析を生じクリープ破断強度
、クリープ破断伸び、絞りを低18せることがら」1限
を 0.3重罎%とする。高温下における機械的性質を
考慮すると0.05〜0.3毛砥%とすることが望まし
いが、さらにクリープ破断絞りの観点からすると0.0
5〜0.25m−fi%とすることが望ましい。
However, if added in excess, it may cause segregation and lower creep rupture strength, creep rupture elongation, and area of area.''The first limit is set at 0.3%. Considering the mechanical properties at high temperatures, it is desirable to set the content to 0.05 to 0.3%, but from the viewpoint of creep rupture reduction, the content is 0.0%.
It is desirable to set it as 5-0.25 m-fi%.

阿0は溶着金属のクリープ破断伸び、絞りを向上させる
とともに溶接割れの減少に有効な元素で少なくとも :
) 、 Q 、R>−%を超えることが必要である。
A0 is an element that is effective in improving the creep rupture elongation and reduction of area of weld metal and reducing weld cracking, and at least:
), Q, R>-%.

しかし、過剰に添加するとフェライト相を生成したり偏
析を生じたりして高温特性を低下させるので1−限を 
3.5+’[φ%とする3 2.2〜2,8毛量%とす
ることが望ましい。そしてFeは実質的に残部を構成す
るバランス成分である。
However, if added in excess, ferrite phase may be generated or segregation may occur, reducing high-temperature properties.
3.5+'[φ% 32.2 to 2.8 hair amount% is desirable. And Fe is a balance component that substantially constitutes the remainder.

この溶着金属において、そのクロム当;正、ニッケル当
ψをそれぞれa%、b%としたとき、 a、 bはQ、
79X a+b≧31%、  1.1×a−b≦ 8.
8%、 b≦20%の関係を満足することが望ましい。
In this weld metal, when its chromium equivalent and nickel equivalent ψ are respectively a% and b%, a and b are Q,
79X a+b≧31%, 1.1×a-b≦8.
8%, and b≦20%.

0.79×a+bが31%より小ぎい場合には、溶着金
属のクリープ破断強度が低下し、また1、1×a−bが
8.8%より大きい場合は溶着金属中にフェライト相が
析出しはじめ均一なオーステナイト組織が得がたくなる
。更にbが20%より大きくなるとその溶着金属のクリ
ープ破断強度は著しく低下するからである。
If 0.79 x a + b is smaller than 31%, the creep rupture strength of the weld metal will decrease, and if 1,1 x a - b is larger than 8.8%, a ferrite phase will precipitate in the weld metal. At the beginning of the process, it becomes difficult to obtain a uniform austenite structure. Furthermore, if b exceeds 20%, the creep rupture strength of the weld metal will drop significantly.

なお、この場合のa、 bはそれぞれ、各配合成分)借
との関係では、a=  (%Or) +  1.2X 
 (%Si)+ (5×a) +  5X  (%v)
、  b=  (%Ni) + 30X(%C)+ 2
5.7X  (%N)+  0.5X  (5×a)で
計算される値である。
In addition, a and b in this case are each compounded component) in relation to each other, a = (%Or) + 1.2X
(%Si) + (5×a) + 5X (%v)
, b= (%Ni) + 30X (%C) + 2
This is a value calculated by 5.7X (%N) + 0.5X (5×a).

本発明の溶着金属は、以下の組成をもって必須とするが
、更に、Nb、 Ti、 B、 Wを含有したものであ
ってもよい。ここで、Nbはクリープ破断強度を向上さ
せ、二次クリープ速度を抑えるために有効な元素であり
、0.01重量%以上の添加が望ましいが、過剰の添加
は局部的にフェライト相を生成させたり、溶接時に偏析
を生じ靭性やクリープ破断強度、クリープ破断伸び、絞
りを低下させることからして上限を 0.3重量%とす
る。偏析、高温特性を考慮すると0.02〜0゜15重
重量とすることがよく、さらに望ましくは0.05〜0
.1重量%である。
The weld metal of the present invention essentially has the following composition, but may also contain Nb, Ti, B, and W. Here, Nb is an effective element for improving creep rupture strength and suppressing the secondary creep rate, and it is desirable to add 0.01% by weight or more, but excessive addition may cause local formation of ferrite phase. The upper limit is set at 0.3% by weight because it causes segregation during welding and reduces toughness, creep rupture strength, creep rupture elongation, and area of area. Considering segregation and high-temperature properties, the weight should preferably be 0.02 to 0.15%, more preferably 0.05 to 0.
.. It is 1% by weight.

Tiはクリープ破断強度を向上させるために有効な元素
で0.002重量%以上の添加が望ましいが、過剰の添
加は偏析を生じクリープ破断伸びや絞りを低下させるの
で上限を 0.3重量%とする。高温特性の観点からす
ると0.02〜0.15重量%とすることが望ましい。
Ti is an effective element for improving creep rupture strength, and it is desirable to add 0.002% by weight or more, but excessive addition causes segregation and decreases creep rupture elongation and area of area, so the upper limit is set to 0.3% by weight. do. From the viewpoint of high-temperature properties, the content is preferably 0.02 to 0.15% by weight.

日はクリープ破断強度を向上させるとともに三次クリー
プにおける伸びを向上させるために有効な元素であり0
.0005重量%以上の添加が望ましいが、過剰に添加
すると粒界を脆弱にするので上限を0.01重量%とす
る。さらに望ましくは 0.003〜0.007重量%
である。
It is an effective element for improving creep rupture strength and elongation in tertiary creep.
.. It is desirable to add 0.005% by weight or more, but if added in excess, the grain boundaries become brittle, so the upper limit is set to 0.01% by weight. More preferably 0.003 to 0.007% by weight
It is.

Wはオーステナイト相中に固溶して、クリープ破断強度
を向上させるために有効な元素であり 10重量%以北
の添加が望ましいが、過剰に添加すると溶接性を害する
ので上限を 3.0重量%とする。更に望ましくは 1
.5〜2.5毛針%である。
W is an element that dissolves solidly in the austenite phase and is effective for improving creep rupture strength, and it is desirable to add 10% by weight or more, but since adding too much will impair weldability, the upper limit should be 3.0% by weight. %. More preferably 1
.. It is 5 to 2.5%.

このNb、 Ti、 B、 Wを更に含有して成る溶着
金属においても、そのクロム当量a%、ニッケル、j7
fflb%に関しては、前記したと同様の関係を満足し
ていることが好ましい。
Even in this weld metal further containing Nb, Ti, B, and W, its chromium equivalent a%, nickel, j7
Regarding fflb%, it is preferable that the same relationship as described above be satisfied.

なお、そのときのaは、 a=  (%Cr) +  
1.2X(%Si)  +   (%阿o)  +  
 5X   (%v)+   o、sx   (%1f
b)+  1.5X  (%Ti) +40X  (%
B)+0.75X  (%料。
In addition, a at that time is a= (%Cr) +
1.2X (%Si) + (%Ao) +
5X (%v) + o, sx (%1f
b) + 1.5X (%Ti) +40X (%
B) +0.75X (% fee.

bはb= (%Ni) +30X (%C)+ 25.
7x (%N)+O,S X  (%Mo)の式に基づ
いて計算される数値である。
b = (%Ni) +30X (%C) + 25.
This is a numerical value calculated based on the formula: 7x (%N) + O, S x (%Mo).

溶着金属にはP、 S、 AMなどが不純物として不可
避的に混入するが、これら不純物は粒界を脆弱にするの
みならず溶接割れを助長するのでその混入を極力避ける
べきである。これら不純物の総量は0.05重量%以下
に抑制されることが望ましい。
P, S, AM, etc. are inevitably mixed into the weld metal as impurities, but since these impurities not only weaken grain boundaries but also promote weld cracking, their mixing should be avoided as much as possible. It is desirable that the total amount of these impurities be suppressed to 0.05% by weight or less.

本発明構造物における溶接対象である十−ステナイト鋼
は、CO,04〜0.08重軟%、 Si 0.3〜0
.7重量%、 Mn o、’i−0,9重廣%、 N 
O,11〜0.2 iI<:i%、Ni  8.5〜1
3.5ff重量%、Cr   18〜18.5重量%。
The ten-stenite steel to be welded in the structure of the present invention has CO, 04 to 0.08 %, and Si 0.3 to 0.
.. 7% by weight, Mno,'i-0,9% by weight, N
O, 11~0.2 iI<:i%, Ni 8.5~1
3.5ff wt%, Cr 18-18.5 wt%.

V O,05〜0.35重量%、 Mo 1.5〜3.
0重量%、そして残部が実質的にFeから成るもの、ま
たは、上記組成に加えNb、 Ti、 B、 Wの群か
ら選ばれる少なくとも 1種をそれぞれ0.02〜0.
15重量%、 0.02〜0.15重呈%、  0.0
03〜0.007重量%、 1〜3重量06含有して成
るものである。
VO, 05-0.35% by weight, Mo 1.5-3.
0% by weight, and the remainder substantially consists of Fe, or in addition to the above composition, at least one selected from the group of Nb, Ti, B, and W, each containing 0.02 to 0.0% by weight.
15% by weight, 0.02-0.15% by weight, 0.0
03 to 0.007% by weight, and 1 to 3% by weight of 06.

[発明の実施例] 実施例1〜18 (1)溶着金属の調製 高周波誘導溶解炉を用いて溶製した鋼を伸線加工し、径
4mmφの溶接棒としたのち、肉盛溶接を行なって:5
1表に示した組成の各種溶着金属を調製した。肉盛溶接
は、母材(SO3316)に設けた幅20mm深さ20
a+mの溝の中に溶接電流 150−17OA。
[Embodiments of the Invention] Examples 1 to 18 (1) Preparation of weld metal After wire-drawing the steel melted using a high-frequency induction melting furnace to make a welding rod with a diameter of 4 mmφ, overlay welding was performed. :5
Various weld metals having the compositions shown in Table 1 were prepared. Overlay welding is done using a 20 mm wide and 20 mm deep weld on the base metal (SO3316).
Welding current 150-17OA in groove a+m.

溶接電圧25〜35Vで7層21バス行なった。なお、
溶着金属の化学分析は母材からの希釈がない部分を取り
だして行なった。比較例1は、重版の溶接棒Y316 
(SUS316用)から得られたものに相当する。
Seven layers and 21 baths were welded at a welding voltage of 25-35V. In addition,
Chemical analysis of the weld metal was carried out by removing the portion that was not diluted from the base metal. Comparative example 1 is a reprinted welding rod Y316
(for SUS316).

これら各溶着金属の各特性評価、X線回折による主体凶
相の決定を行なった。また、700℃。
Characteristics of each of these weld metals were evaluated, and the main negative phase was determined by X-ray diffraction. Also, 700℃.

18kg/mm2の条件でクリープ破断試験を行ない破
断時間(hr)、破断伸び(%)、破断絞り (%)を
J11定した。さらに T形溶接割れ試験により割れ率
(%)を測定して溶接割れの程度を評価した。以上の結
果を一括して第1表に示した。
A creep rupture test was conducted under the condition of 18 kg/mm2, and the time to break (hr), elongation at break (%), and area of area at break (%) were determined as J11. Furthermore, the degree of weld cracking was evaluated by measuring the cracking rate (%) using a T-shaped weld cracking test. The above results are collectively shown in Table 1.

表の結果から明らかなように、未発明にかかる溶着金属
は組織中にフェライト(α)を含まない均=−なオース
テナイト(γ)組織であるにもかかわらず、フェライト
を含ませることで溶接割れの防11ユ効果を発現してい
る従来の5US316鋼用溶看金1zル(比較例1)と
同程度の割れ率を示し、溶接割れを起こしにくいことが
わかる。また、クリープ破断時間は比較試料に比べ大幅
に長くなっており、優れた高温強度を示すことがわかる
As is clear from the results in the table, although the weld metal according to the uninvented invention has a uniform austenitic (γ) structure that does not contain ferrite (α) in its structure, the inclusion of ferrite causes weld cracking. It can be seen that the cracking rate was comparable to that of the conventional 5US316 steel welding metal 1zl (Comparative Example 1), which exhibits the effect of preventing welding cracks. In addition, the creep rupture time was significantly longer than that of the comparative sample, indicating that it exhibits excellent high-temperature strength.

(2)溶接構W物の製作 第2表に2i(シた組成のA:5IJS318. B:
改良5IJS316のオーステナイトmを構の田川とし
て用姪した。
(2) Manufacture of welded structures Table 2 shows 2i (composition of A: 5IJS318. B:
Improved 5 IJS316 austenite m was used as the structure tagawa.

第2表 この構造用鋼を、実施例10.実施例17.比較例1の
溶着金属を用いて溶接継手とした。溶接継手は、板厚2
0mmの同種の構造用鋼を開先角度60度。
Table 2 This structural steel is shown in Example 10. Example 17. A welded joint was made using the deposited metal of Comparative Example 1. Welded joints have a plate thickness of 2
0 mm of the same type of structural steel with a groove angle of 60 degrees.

ルート間隔2mm、 X形開先による突合わせ溶接で製
作した。得られた溶接継手から試験片を採取し、 70
0°C918kg/1Ilff12の条件下でクリープ
破断試験を行ないその結果を第3表に示した。
Manufactured by butt welding with an X-shaped groove with a root spacing of 2 mm. A test piece was taken from the obtained welded joint, and 70
A creep rupture test was conducted under the conditions of 0°C, 918 kg/1 lff12, and the results are shown in Table 3.

表の結果から明らかなように、本発明による溶着金属お
よび構造用鋼改良5O3318(Nを含む)により製作
した溶接継手は、従来方法により製作した溶接継手(比
較例構造物4)に比ヘク’)−7’ElffM時間が大
幅に長くなっている。また比較例構造物1.3に示すよ
うに溶着金属として本発明に係る溶着金属を用いても構
造用鋼として従来の5OS31B(Nを含まない)を使
用した場合には破断位置は構造用鋼にあり、強度は溶着
金属が高いことを示している。
As is clear from the results in the table, the welded joint manufactured using the deposited metal and modified structural steel 5O3318 (containing N) according to the present invention has a comparatively higher )-7'ElffM time is significantly longer. Furthermore, as shown in Comparative Example Structure 1.3, even when the weld metal according to the present invention is used as the weld metal, when the conventional 5OS31B (not containing N) is used as the structural steel, the fracture position is the same as that of the structural steel. , indicating that the strength of the welded metal is high.

さらに、構造用鋼として改良5US31B(Nを含む)
を用いても溶着金属が従来材の場合(比較例構造物2)
には溶着金属の位置で破断し、溶着金属より改良5U3
318の方が強いことがわかる。
In addition, improved 5US31B (including N) is used as structural steel.
Even if the weld metal is a conventional material (comparative example structure 2)
It broke at the weld metal position and was improved from the weld metal 5U3.
It can be seen that 318 is stronger.

[発明の効果] 以上の説明で明らかなように、本発明の溶接構造物は優
れた高温特性を備えていて、タービン構成部材とりわけ
蒸気タービンのケーシングに適用して有用でありその工
業的価値は大である。
[Effects of the Invention] As is clear from the above description, the welded structure of the present invention has excellent high-temperature properties, and is useful when applied to turbine components, particularly steam turbine casings, and its industrial value is high. It's large.

Claims (1)

【特許請求の範囲】 1、クロム、ニッケルおよび窒素を含有するオーステナ
イト系鋼と、炭素0.02重量%以上0.12重量%以
下、ケイ素0.1重量%以上1.5重量%以下、マンガ
ン0.2重量%以上2.0重量%以下、窒素0.11重
量%以上0.3重量%以下、ニッケル8重量%以上14
重量%以下、クロム15重量%以上20重量%以下、バ
ナジウム0.01重量%以上0.3重量%以下、モリブ
デン2.0重量%より大3.5重量%以下を必須成分と
し残部が実質的に鉄である溶着金属との溶接体であるこ
とを特徴とする高温用溶接構造物。 2、該溶着金属におけるクロム当量をa%、ニッケル当
量をb%としたとき、a、bはそれぞれ0.79×a+
b≧31%、1.1×a−b≦8.8%、b≦20%の
関係を満足する数である特許請求の範囲第1項記載の高
温用溶接構造物。 3、該溶着金属における、炭素、ケイ素、マンガン、窒
素、ニッケル、クロム、バナジウム、モリブデン量をそ
れぞれ%C、%Si、%Mn、%N、%Ni、%Cr、
%V、%Moと表示したとき、該溶着金属のクロム当量
a%、ニッケル当量b%がそれぞれ、 a=(%Cr)+1.2×(%Si)+(%Mo)+5
×(%V)、 b=(%Ni)+30×(%C)+25.7×(%N)
+0.5×(%Mo) で示される特許請求の範囲第2項記載の高温用溶接構造
物。 4、該溶着金属が炭素0.04重量%以上0.08重量
%以下、ケイ素0.3重量%以上0.7重量%以下、マ
ンガン0.5重量%以上0.9重量%以下、窒素0.1
1重量%以上0.2重量%以下、ニッケル8.5重量%
以上13.5重量%以下、クロム16重量%以上18.
5重量%以下、バナジウム0.05重量%以上0.25
重量%以下、モリブデン2.2重量%より大2.8重量
%以下を必須成分とし残部が実質的に鉄である特許請求
の範囲第1〜第3項のいずれかに記載の高温用溶接構造
物。 5、該溶着金属が、炭素0.02重量%以上0.12重
量%以下、ケイ素0.1重量%以上1.5重量%以下、
マンガン0.2重量%以上2.0重量%以下、窒素0.
11重量%以上0.3重量%以下、ニッケル8重量%以
上14重量%以下、クロム15重量%以上20重量%以
下、バナジウム0.01重量%以上0.3重量%以下、
モリブデン2.0重量%より大3.5重量%以下を必須
成分とし、更にニオブ0.01重量%以上0.3重量%
以下、チタン0.002重量%以上0.3重量%以下、
ボロン0.0005重量%以上0.01重量%以下、タ
ングステン1.0重量%以上3.0重量%以下の少なく
とも1種を含有し、残部が実質的に鉄である特許請求の
範囲第1項又は第2項記載の高温用溶接構造物。 6、該溶着金属における、炭素、ケイ素、マンガン、窒
素、ニッケル、クロム、バナジウム、モリブデン、ニオ
ブ、チタン、ボロン、タングステンの量をそれぞれ%C
、%Si、%Mn、%N、%Ni、%Cr、%V、%M
o、%Nb、%Ti、%B、%Wと表示したとき、該溶
着金属のクロム当量a%、ニッケル当量b%がそれぞれ
、 a=(%Cr)+1.2×(%Si)+(%Mo)+5
×(%V)+0.5×(%Nb)+1.5×(%Ti)
+40×(%B)+0.75×(%W)、 b=(%Ni)+30×(%C)+25.7×(%N)
+0.5×(%Mo) で示される特許請求の範囲第5項記載の高温用溶接構造
物。 7、該溶着金属が、炭素0.04重量%以上0.08重
量%以下、ケイ素0.3重量%以上0.7重量%以下、
マンガン0.5重量%以上0.9重量%以下、窒素0.
11重量%以上0.2重量%以下、ニッケル8.5重量
%以上13.5重量%以下、クロム16重量%以上18
.5重量%以下、バナジウム0.05重量%以上0.2
5重量%以下、モリブデン2.2重量%より大2.8重
量%以下を必須成分とし、更にニオブ0.02重量%以
上0.15重量%以下、チタン0.02重量%以上0.
15重量%以下、ボロン0.003重量%以上0.00
7重量%以下、タングステン1.0重量%以上3.0重
量%以下の少なくとも1種を含有し、残部が実質的に鉄
である特許請求の範囲第5項又は第6項記載の高温用溶
接構造物。 8、該溶接体が、タービン構成部材である特許請求の範
囲第1項記載の高温用溶接構造体。 9、該タービン構成部材がケーシングである特許請求の
範囲第8項記載の高温用溶接構造体。
[Claims] 1. Austenitic steel containing chromium, nickel and nitrogen, carbon 0.02% to 0.12% by weight, silicon 0.1% to 1.5% by weight, manganese 0.2% by weight or more and 2.0% by weight or less, nitrogen 0.11% by weight or more and 0.3% by weight or less, nickel 8% by weight or more14
Essential components include 15% to 20% by weight of chromium, 0.01% to 0.3% by weight of vanadium, and 2.0% to 3.5% by weight of molybdenum, and the remainder is substantial. A welded structure for high temperature use, characterized in that it is a welded body with a welded metal that is iron. 2. When the chromium equivalent in the weld metal is a% and the nickel equivalent is b%, a and b are each 0.79×a+
The welded structure for high temperature use according to claim 1, wherein the number satisfies the following relationships: b≧31%, 1.1×a−b≦8.8%, and b≦20%. 3. The amounts of carbon, silicon, manganese, nitrogen, nickel, chromium, vanadium, and molybdenum in the weld metal are %C, %Si, %Mn, %N, %Ni, %Cr, respectively.
When expressed as %V and %Mo, the chromium equivalent a% and nickel equivalent b% of the weld metal are respectively a=(%Cr)+1.2×(%Si)+(%Mo)+5
×(%V), b=(%Ni)+30×(%C)+25.7×(%N)
The welded structure for high temperature use according to claim 2, which is represented by +0.5×(%Mo). 4. The weld metal contains 0.04% to 0.08% by weight of carbon, 0.3% to 0.7% by weight of silicon, 0.5% to 0.9% by weight of manganese, and 0% of nitrogen. .1
1% by weight or more and 0.2% by weight or less, 8.5% by weight of nickel
13.5% by weight or less, 16% or more by weight of chromium18.
5% by weight or less, vanadium 0.05% by weight or more 0.25
The high-temperature welded structure according to any one of claims 1 to 3, wherein the essential component is less than 2.2% by weight and less than 2.8% by weight of molybdenum, and the remainder is substantially iron. thing. 5. The weld metal contains 0.02% by weight or more and 0.12% by weight or less of carbon, 0.1% by weight or more and 1.5% by weight or less of silicon,
Manganese 0.2% to 2.0% by weight, nitrogen 0.
11 wt% or more and 0.3 wt% or less, nickel 8 wt% or more and 14 wt% or less, chromium 15 wt% or more and 20 wt% or less, vanadium 0.01 wt% or more and 0.3 wt% or less,
More than 2.0% by weight and less than 3.5% by weight of molybdenum is an essential component, and 0.01% by weight or more and 0.3% by weight of niobium.
Below, titanium 0.002% by weight or more and 0.3% by weight or less,
Claim 1 containing at least one of boron from 0.0005% by weight to 0.01% by weight and tungsten from 1.0% to 3.0% by weight, with the remainder being substantially iron. Or the high temperature welded structure according to item 2. 6. The amounts of carbon, silicon, manganese, nitrogen, nickel, chromium, vanadium, molybdenum, niobium, titanium, boron, and tungsten in the weld metal are %C, respectively.
, %Si, %Mn, %N, %Ni, %Cr, %V, %M
o, %Nb, %Ti, %B, %W, the chromium equivalent a% and nickel equivalent b% of the weld metal are respectively a=(%Cr)+1.2×(%Si)+( %Mo)+5
×(%V)+0.5×(%Nb)+1.5×(%Ti)
+40×(%B)+0.75×(%W), b=(%Ni)+30×(%C)+25.7×(%N)
The welded structure for high temperature use according to claim 5, which is represented by +0.5×(%Mo). 7. The weld metal contains 0.04% by weight or more and 0.08% by weight or less of carbon, and 0.3% by weight or more and 0.7% by weight or less of silicon;
Manganese 0.5% to 0.9% by weight, nitrogen 0.
11 wt% or more and 0.2 wt% or less, nickel 8.5 wt% or more and 13.5 wt% or less, chromium 16 wt% or more18
.. 5% by weight or less, vanadium 0.05% by weight or more 0.2
The essential components are 5% by weight or less, molybdenum from 2.2% to 2.8% by weight, and 0.02% to 0.15% by weight of niobium, and 0.02% to 0.02% by weight of titanium.
15% by weight or less, boron 0.003% by weight or more 0.00
7% by weight or less, tungsten at least one of 1.0% by weight and 3.0% by weight, the balance being substantially iron, the high temperature welding according to claim 5 or 6. Structure. 8. The welded structure for high temperature use according to claim 1, wherein the welded body is a turbine component. 9. The high temperature welded structure according to claim 8, wherein the turbine component is a casing.
JP20887085A 1985-09-24 1985-09-24 Welded structure for high temperature service Pending JPS6268693A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20887085A JPS6268693A (en) 1985-09-24 1985-09-24 Welded structure for high temperature service

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20887085A JPS6268693A (en) 1985-09-24 1985-09-24 Welded structure for high temperature service

Publications (1)

Publication Number Publication Date
JPS6268693A true JPS6268693A (en) 1987-03-28

Family

ID=16563481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20887085A Pending JPS6268693A (en) 1985-09-24 1985-09-24 Welded structure for high temperature service

Country Status (1)

Country Link
JP (1) JPS6268693A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014039950A (en) * 2012-08-22 2014-03-06 Kobe Steel Ltd Welding metal, band electrode, sintered type flux and submerged arc welding method
WO2015190534A1 (en) * 2014-06-11 2015-12-17 株式会社神戸製鋼所 Buildup welded metal and machine structure
WO2015190574A1 (en) * 2014-06-11 2015-12-17 株式会社神戸製鋼所 Buildup welded body

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014039950A (en) * 2012-08-22 2014-03-06 Kobe Steel Ltd Welding metal, band electrode, sintered type flux and submerged arc welding method
WO2015190534A1 (en) * 2014-06-11 2015-12-17 株式会社神戸製鋼所 Buildup welded metal and machine structure
WO2015190574A1 (en) * 2014-06-11 2015-12-17 株式会社神戸製鋼所 Buildup welded body
JP2016000412A (en) * 2014-06-11 2016-01-07 株式会社神戸製鋼所 Padding metal, and mechanical structure
JP2016000411A (en) * 2014-06-11 2016-01-07 株式会社神戸製鋼所 Padding body

Similar Documents

Publication Publication Date Title
EP0016225B2 (en) Use of an austenitic steel in oxidizing conditions at high temperature
JP3315702B2 (en) Method for producing ferritic iron-based alloy and heat-resistant ferritic steel
JP3982069B2 (en) High Cr ferritic heat resistant steel
WO1998022255A1 (en) Wire for welding high-chromium steel
JPH10280085A (en) Welding material for low cr ferritic steel, excellent in toughness
JPH0517850A (en) High chromium ferrite-based heat resistant steel excellent in copper checking resistance
KR100378786B1 (en) Steel for boiler excellent in butt seam weldability and electroseamed steel pipe for boiler using the same
WO2020196431A1 (en) COVERED ELECTRODE FOR HIGH-Cr FERRITIC HEAT-RESISTANT STEELS
JP2908228B2 (en) Ferritic steel welding material with excellent resistance to hot cracking
JPS5950437B2 (en) Covered arc welding rod for Cr-Mo based low alloy steel
JP3222113B2 (en) Welding material for high Cr ferritic heat resistant steel, TIG welding rod, submerged arc welding rod, welding wire and coated arc welding rod made of this material
JPS63309392A (en) Filler material for tig welding for austenitic heat resistant alloy
JPS6268693A (en) Welded structure for high temperature service
JPWO2018066573A1 (en) Austenitic heat-resistant alloy and welded joint using the same
JPH0543986A (en) High chromium ferritic heat resisting steel reduced in deterioration in strength in weld heat-affected zone
JPS61186446A (en) Heat resistant alloy
JPS6317038B2 (en)
JP2017202493A (en) Weld material for austenitic heat-resistant steel
JP2543801B2 (en) Coated arc welding rod for high Cr ferritic heat resistant steel
JPS6264493A (en) Welded structure for high temperature service
JPH0885848A (en) High chromium ferritic heat resistant steel
RU2437746C1 (en) Composition of wise for automated assembly
JPH02280993A (en) Welding material for high-cr ferrite steel
JP7492106B2 (en) Welding material for ferritic heat-resistant steel and manufacturing method for welded joint of ferritic heat-resistant steel
JPH07155988A (en) Coated arc electrode for high-cr ferritic heat resisting steel