JPS626864Y2 - - Google Patents

Info

Publication number
JPS626864Y2
JPS626864Y2 JP1981102121U JP10212181U JPS626864Y2 JP S626864 Y2 JPS626864 Y2 JP S626864Y2 JP 1981102121 U JP1981102121 U JP 1981102121U JP 10212181 U JP10212181 U JP 10212181U JP S626864 Y2 JPS626864 Y2 JP S626864Y2
Authority
JP
Japan
Prior art keywords
yoke
moving coil
air gap
magnetic flux
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1981102121U
Other languages
Japanese (ja)
Other versions
JPS589083U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP10212181U priority Critical patent/JPS589083U/en
Publication of JPS589083U publication Critical patent/JPS589083U/en
Application granted granted Critical
Publication of JPS626864Y2 publication Critical patent/JPS626864Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Linear Motors (AREA)

Description

【考案の詳細な説明】 本考案は、物体を予め設定された範囲内の任意
の位置に移動させるための、可動コイル型リニア
モータの構造に関するものである。
[Detailed Description of the Invention] The present invention relates to the structure of a moving coil type linear motor for moving an object to an arbitrary position within a preset range.

従来長いモータストロークを得るリニアモータ
として特開昭55−83453号公報に開示されている
リニアモータがあり、第1図Aはその構成を示
し、同図Bは同図AのX−X断面図を示す。同図
において、可動コイル型リニアモータは平板状で
厚み方向に着磁され、かつ着磁方向が互いに反対
方向になる様に交互に(図に示す様に長手方向
に)複数個並べられた永久磁石片1A,1B、前
記永久磁石片1A,1Bを片面に接着により保持
している2組の互いに平行な平板状のヨーク2、
上記永久磁石1A,1Bと対向して置かれた平板
状のセンターヨーク3およびヨーク2とセンター
ヨーク3を両端で固定しているサイドヨーク4か
ら構成され、上記永久磁石片1A,1Bとセンタ
ーヨーク3の間の空隙5に一様な磁束密度を生ず
る様にした磁気回路と、上記空隙5内を磁束と直
角方向に運動でき、かつ1つのコイルボビン6上
に上記永久磁石片1A,1Bのほぼ半分の巻線巾
を有する2つの巻線部分7A,7Bを有する可動
コイル8、可動コイル8を保持し、ガイドローラ
9でヨーク2上に設けられている溝を案内に水平
方向に滑動可能なスライダ10によつて構成され
ている。
Conventionally, there is a linear motor disclosed in Japanese Unexamined Patent Publication No. 55-83453 as a linear motor that obtains a long motor stroke, and FIG. 1A shows its configuration, and FIG. shows. In the figure, a moving coil type linear motor has a flat plate shape and is magnetized in the thickness direction, and a plurality of permanent motors are arranged alternately (in the longitudinal direction as shown in the figure) so that the magnetization directions are opposite to each other. two sets of parallel flat yokes 2 holding the magnet pieces 1A, 1B and the permanent magnet pieces 1A, 1B on one side by adhesive;
It is composed of a flat center yoke 3 placed facing the permanent magnets 1A, 1B, and side yokes 4 fixing the yoke 2 and the center yoke 3 at both ends, and includes the permanent magnet pieces 1A, 1B and the center yoke. 3, a magnetic circuit capable of generating a uniform magnetic flux density in the gap 5 between the permanent magnet pieces 1A and 1B, and a magnetic circuit that can move within the gap 5 in a direction perpendicular to the magnetic flux, and a coil bobbin 6 with almost all of the permanent magnet pieces 1A and 1B. A movable coil 8 having two winding portions 7A and 7B each having half the winding width, holds the movable coil 8, and can slide horizontally using a guide roller 9 guided by a groove provided on the yoke 2. It is composed of a slider 10.

このような可動コイル型リニアモータにおいて
は、可動コイル8の駆動電流により生じた起磁力
が磁気回路空隙部に作用し、空隙5内の磁束の流
れに影響を与え、この結果空隙5内における可動
コイル8の位置および可動コイルに流す電流の向
きによつて空隙5内の磁束密度分布が変動し、発
生力に偏差が生じた。この偏差は駆動電流値によ
つても異なり、電流値が高くなる程大きくなる。
従つて位置決めに高速性が要求される今日におい
ては、どうしても駆動電流値を高くする必要があ
り、そのために駆動方向による発生力の偏差も無
視できない大きさとなつた。このようなモータを
制御回路と結合し位置決め動作を行なわせると、
外乱によつて位置決め位置より偏位が生じた場
合、その復元力の大きさが外乱の方向および位置
決め位置によつて異なり、安定した制御動作が得
られず高精度で、正確な制御動作を行なわせるた
めには制御系が複雑となる欠点があつた。
In such a moving coil type linear motor, the magnetomotive force generated by the drive current of the moving coil 8 acts on the magnetic circuit gap, affecting the flow of magnetic flux in the gap 5, and as a result, the movable force in the gap 5 is The magnetic flux density distribution within the air gap 5 varied depending on the position of the coil 8 and the direction of the current flowing through the movable coil, resulting in a deviation in the generated force. This deviation also differs depending on the drive current value, and becomes larger as the current value becomes higher.
Therefore, in today's world where high-speed positioning is required, it is absolutely necessary to increase the drive current value, and for this reason, the deviation in the generated force depending on the drive direction has become too large to be ignored. When such a motor is connected to a control circuit and used for positioning operation,
If a deviation occurs from the positioning position due to a disturbance, the magnitude of the restoring force varies depending on the direction of the disturbance and the positioning position, making it difficult to obtain stable control operations and to perform accurate control operations with high precision. This had the disadvantage that the control system was complicated.

磁気回路の空隙5を流れる磁束は磁気回路の永
久磁石片1A,1Bによつて常時供給されている
一定磁束Bmと、可動コイル8に電流を印加した
とき、その電流によつて生じた起磁力によつて流
れる磁束Bcの和である。空隙5内において上記
磁束BmおよびBcによつて生じる磁束密度分布を
調べると、Bmによる磁束密度分布は空隙5の全
巾にわたつて一定の分布を示すが、Bcによる磁
束密度分布は空隙5内における可動コイル8の位
置および可動コイル8に流す電流の向きによつて
その分布状態が異なる。従つてBmとBcの和とし
て生じる空隙磁束密度分布状態は空隙5内におけ
る可動コイル8の位置および可動コイル8に流す
電流の向きによつて異なり、その結果可動コイル
8の巻線部を鎖交する磁束量も上記条件によつて
異なる。
The magnetic flux flowing through the air gap 5 of the magnetic circuit is a constant magnetic flux Bm that is constantly supplied by the permanent magnet pieces 1A and 1B of the magnetic circuit, and a magnetomotive force generated by the current when a current is applied to the moving coil 8. is the sum of the magnetic flux Bc flowing due to Examining the magnetic flux density distribution caused by the magnetic fluxes Bm and Bc in the air gap 5, the magnetic flux density distribution due to Bm shows a constant distribution over the entire width of the air gap 5, but the magnetic flux density distribution due to Bc shows a constant distribution within the air gap 5. The distribution state differs depending on the position of the moving coil 8 and the direction of the current flowing through the moving coil 8. Therefore, the air gap magnetic flux density distribution state generated as the sum of Bm and Bc differs depending on the position of the moving coil 8 in the air gap 5 and the direction of the current flowing through the moving coil 8, and as a result, the winding portion of the moving coil 8 is interlinked. The amount of magnetic flux generated also differs depending on the above conditions.

この様に空隙5内における可動コイル8の位置
および可動コイル8に流す電流の向きによつて発
生力に偏差が出ることは、磁気回路の構成上本質
的な問題であり、この偏差を零にすることは不可
能であつた。
This deviation in the generated force due to the position of the moving coil 8 in the air gap 5 and the direction of the current flowing through the moving coil 8 is an essential problem in the configuration of the magnetic circuit, and this deviation can be reduced to zero. It was impossible.

本考案の目的は、一般にモータの位置決め制御
系におけるモータの加減速時間が10ms〜20ms前
後であることに注目し、過渡的に発生力の偏差の
発生を遅らせ、上述した加減速時間範囲内ではそ
の影響ができるだけ少なくなる様にしたものであ
る。
The purpose of the present invention is to focus on the fact that the motor acceleration/deceleration time in a motor positioning control system is generally around 10ms to 20ms, and to temporarily delay the occurrence of deviations in the generated force. The aim is to minimize that influence as much as possible.

上記目的を達成するために、本考案は、センタ
ーヨーク3上に鉄等の透磁率の高い材質よりなる
線材と、銅あるいはアルミ等の鉄よりも比抵抗が
小さい導体よりなる線材を組にして巻線し、可動
コイル8への印加電流によつて生じた磁束を、電
磁誘導によつて導体製の線材に一時的に発生した
渦電流による磁束によつて過渡的に打消し、発生
力偏差の発生原因である可動コイル8への印加電
流による空隙5の磁束密度分布変化を遅らせ、発
生力の過渡補償を図つたものである。
In order to achieve the above object, the present invention combines a wire made of a material with high magnetic permeability such as iron on the center yoke 3 and a wire made of a conductor such as copper or aluminum having a lower resistivity than iron. The magnetic flux generated by the current applied to the moving coil 8 is transiently canceled by the magnetic flux caused by the eddy current temporarily generated in the conductor wire by electromagnetic induction, and the generated force deviation is This is to delay the change in the magnetic flux density distribution in the air gap 5 due to the current applied to the moving coil 8, which is the cause of the generation of force, and to compensate for the transient force generated.

以下本考案について図面を用いて説明する。 The present invention will be explained below with reference to the drawings.

第2図Aは本考案の一実施例で磁気回路部のみ
を示し、同図Bは同図AのY−Y断面を示す。な
お、第1図と同一部分は同一符号で示す。センタ
ヨーク3上空隙5に面する部分に同一径の鉄線1
1と銅線12とを対に、センターヨーク3上で交
互に並ぶべく相接して組合せ、センターヨーク長
手方向と直交するように巻線し、上述した効果を
得るようにしたものである。第2図においては同
一径の円形断面の線材(丸線)を用いているが、
同一寸法の矩形断面の線材(角線)あるいは各々
厚さが同一で巾が異なる線材(角線)を用いても
同じ効果が得られることは明らかである。
FIG. 2A shows only the magnetic circuit portion of an embodiment of the present invention, and FIG. 2B shows a YY cross section of FIG. 2A. Note that the same parts as in FIG. 1 are indicated by the same symbols. An iron wire 1 of the same diameter is placed on the part facing the air gap 5 above the center yoke 3.
1 and copper wires 12 are combined in pairs on the center yoke 3 so as to be alternately lined up and adjacent to each other, and are wound perpendicularly to the longitudinal direction of the center yoke to obtain the above-mentioned effect. In Figure 2, wire rods (round wires) with a circular cross section of the same diameter are used.
It is clear that the same effect can be obtained by using wire rods with a rectangular cross section of the same dimensions (square wires) or wire rods having the same thickness and different widths (square wires).

実施例によると電流印加後20ms程度で発生力
の偏差が定常状態に達していたのが、上記補償を
施すことによつて電流印加後10ms〜20ms間磁束
の変化が抑えられ、50ms〜80ms後に発生力の偏
差が定常状態に達するようになつた。
According to the example, the deviation of the generated force reached a steady state about 20ms after the current was applied, but by performing the above compensation, the change in the magnetic flux was suppressed for 10ms to 20ms after the current was applied, and the deviation reached a steady state after 50ms to 80ms. The deviation of the generated force has reached a steady state.

従つて可動コイル8は上述したモータの加減速
時間内においては、可動コイル8への印加電流に
よる空隙5内の磁束密度変化をほとんど受けるこ
となく、常に一定な発生力を受ける。
Therefore, during the acceleration/deceleration time of the motor mentioned above, the movable coil 8 is almost never subject to changes in the magnetic flux density in the air gap 5 due to the current applied to the movable coil 8, and always receives a constant generated force.

このように本発明はセンターヨーク上、空隙に
面する部分に銅あるいはアルミ等の鉄よりも比抵
抗が小さい良導体よりなる線材と鉄のように透磁
率の高い磁性体よりなる線材を組にして巻線する
ことによつて、可動コイルへの印加電流によつて
生ずる発生力の偏差の発生を遅らせ、モータの過
渡特性の改善を可能にした。また同時に、従来広
く知られているように可動コイルへの印加電流に
よる磁束変化を可動コイル周囲の導体表面に発生
した渦電流の発生磁束によつて相殺することは、
可動コイルのインダクタンスを低下させることで
もあり、この結果可動コイルの電気時定数は低下
し、このモータを制御系と結合し制御動作を行わ
せた場合、より高速化と安定な制御動作を得られ
ることを可能にした。
In this way, the present invention combines a wire made of a good conductor such as copper or aluminum with a lower specific resistance than iron and a wire made of a magnetic material with high magnetic permeability such as iron on the center yoke in the part facing the air gap. By winding the coil, it is possible to delay the occurrence of deviations in the generated force caused by the current applied to the moving coil, and to improve the transient characteristics of the motor. At the same time, as is widely known in the past, it is possible to cancel the change in magnetic flux caused by the current applied to the moving coil by the magnetic flux generated by the eddy current generated on the surface of the conductor around the moving coil.
It also lowers the inductance of the moving coil, and as a result, the electrical time constant of the moving coil decreases, and when this motor is connected to a control system to perform control operations, faster and more stable control operations can be obtained. made it possible.

又本考案はセンタヨーク上に一様に導体層を設
置した場合のように、空隙長が導体層の厚さ分だ
け増加し、磁気回路が大型化することなく、ほぼ
鉄材のみのセンターヨークで得られる空隙磁束密
度が得られると共に、同様の補償効果を得る事が
可能である。かつ加工法も極めて容易な巻線工事
のみであり、センターヨークに導体を一様に巻き
つけたり、あるいはセンターヨーク上に溝を加工
し、導体を巻きつける様な多くの作業工程の増加
や特殊な加工も伴なわず、製造コストの大巾な増
加なく特性の良好なモータが実現される。
In addition, the present invention allows the gap length to increase by the thickness of the conductor layer, unlike when the conductor layer is uniformly placed on the center yoke, and the magnetic circuit does not become larger, and the center yoke is made of almost only iron. It is possible to obtain the same compensation effect as well as obtain the obtained air gap magnetic flux density. Moreover, the processing method is only winding work, which is extremely easy, and requires many additional work steps such as uniformly winding the conductor around the center yoke, or machining grooves on the center yoke and winding the conductor. A motor with good characteristics can be realized without any machining and without a significant increase in manufacturing costs.

従つて本考案によればモータストローク中どの
位置にあつても、モータ加減速時間内においては
一定な発生力を受け、制御回路と結合し位置決め
動作を行わせた場合にも、常に安定な動作を行
う。
Therefore, according to the present invention, no matter what position the motor is in during its stroke, it receives a constant generated force during the acceleration/deceleration time of the motor, and even when connected to a control circuit to perform positioning operations, stable operation is always achieved. I do.

以上本考案の趣旨を逸脱しない範囲においての
変形は可能であり、以上の記述が本発明の範囲を
限定するものではない。
Modifications can be made without departing from the spirit of the present invention, and the above description does not limit the scope of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図Aは従来方式の可動コイル型リニアモー
タの構成を示す図面、第1図Bは第1図AのX−
X断面図、第2図Aは本考案の可動コイル型リニ
アモータの磁気回路構成を示す図面、第2図Bは
第2図AのY−Y断面図である。 図において、1A,1Bは永久磁石、2はヨー
ク、3はセンターヨーク、4はサイドヨーク、5
は空隙、6はコイルボビン、7A,7Bはコイル
巻線部、8は可動コイル、9はガイドローラ、1
0はスライダー、11は透磁率の高い材質よりな
る線材、12は比抵抗が小さい導体よりなる巻線
である。
Figure 1A is a diagram showing the configuration of a conventional moving coil type linear motor, and Figure 1B is a diagram showing the configuration of a conventional moving coil type linear motor.
2A is a diagram showing the magnetic circuit configuration of the moving coil type linear motor of the present invention, and FIG. 2B is a YY sectional view of FIG. 2A. In the figure, 1A and 1B are permanent magnets, 2 is a yoke, 3 is a center yoke, 4 is a side yoke, and 5 is a
is a gap, 6 is a coil bobbin, 7A, 7B are coil winding parts, 8 is a moving coil, 9 is a guide roller, 1
0 is a slider, 11 is a wire made of a material with high magnetic permeability, and 12 is a winding made of a conductor with low specific resistance.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 厚み方向に着磁されかつ各々着磁方向が異なる
様に交互に長手方向に配置された永久磁石片を片
面に有するヨーク、上記永久磁石片と対向して配
置されたセンターヨークおよび前記ヨークとセン
ターヨークを保持するサイドヨークから構成さ
れ、前記永久磁石片とセンターヨークの間の空隙
に磁束を生ずるようにした磁気回路と、上記空隙
内を磁束と直角方向に運動できかつコイルボビン
上に前記永久磁石片の幅のほぼ半分を巻線幅とす
る巻線部を2個有する可動コイルによつて構成さ
れるごとき可動コイル型リニアモータにおいて、
前記センターヨーク上空隙に面する部分に、透磁
率の高い材質よりなる線材と比抵抗が小さい導体
よりなる線材とを対に、センターヨーク3上で交
互に並ぶべく相接して組合せ、前記センターヨー
ク長手方向と直交して成した巻線を有することを
特徴とする可動コイル型リニアモータ。
A yoke having permanent magnet pieces on one side that are magnetized in the thickness direction and arranged alternately in the longitudinal direction so that each magnetization direction is different, a center yoke arranged opposite to the permanent magnet pieces, and the yoke and the center. A magnetic circuit consisting of a side yoke that holds a yoke and generates magnetic flux in the air gap between the permanent magnet piece and the center yoke, and a magnetic circuit that can move within the air gap in a direction perpendicular to the magnetic flux and that is mounted on a coil bobbin. In a moving coil type linear motor configured by a moving coil having two winding portions whose winding width is approximately half of the width of one piece,
A pair of wire rods made of a material with high magnetic permeability and a wire rod made of a conductor with low specific resistance are arranged in pairs so as to be arranged alternately on the center yoke 3 in a portion facing the air gap above the center yoke, and A moving coil linear motor characterized by having a winding perpendicular to the longitudinal direction of a yoke.
JP10212181U 1981-07-09 1981-07-09 Moving coil type linear motor Granted JPS589083U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10212181U JPS589083U (en) 1981-07-09 1981-07-09 Moving coil type linear motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10212181U JPS589083U (en) 1981-07-09 1981-07-09 Moving coil type linear motor

Publications (2)

Publication Number Publication Date
JPS589083U JPS589083U (en) 1983-01-20
JPS626864Y2 true JPS626864Y2 (en) 1987-02-17

Family

ID=29896772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10212181U Granted JPS589083U (en) 1981-07-09 1981-07-09 Moving coil type linear motor

Country Status (1)

Country Link
JP (1) JPS589083U (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5583453A (en) * 1978-11-15 1980-06-23 Nec Corp Moving coil type linear motor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5078922U (en) * 1973-11-20 1975-07-08

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5583453A (en) * 1978-11-15 1980-06-23 Nec Corp Moving coil type linear motor

Also Published As

Publication number Publication date
JPS589083U (en) 1983-01-20

Similar Documents

Publication Publication Date Title
JP3916048B2 (en) Linear motor
JPS5921273A (en) Linear motor
JP2002238241A (en) Linear motor
JPS626864Y2 (en)
JPS5583453A (en) Moving coil type linear motor
JP2001211630A (en) Linear slider
US4908592A (en) Electromagnetic actuating device
JPH11313475A (en) Linear motor
JP5135870B2 (en) Linear actuator
US4540905A (en) Electromagnetic driving device
JPH11196561A (en) Linear motor with adjustable braking characteristics
JPS626865Y2 (en)
US5887334A (en) Method for splicing a linear stepper motor platen
US4904971A (en) Superconductive electromagnet
KR0131611Y1 (en) A voice coil motor
JP4756438B2 (en) Linear motor
JPH05111229A (en) Converter for electric energy and mechanical energy
JPS61277362A (en) Three-phase linear inductor type synchronous motor
JP3824032B2 (en) Voice coil motor
JPS627362A (en) Ladder type inductor
JP2002058232A (en) Coreless linear motor
KR0121687Y1 (en) Voice coil motor
JP2024004489A (en) linear motor
JPS63316658A (en) Multipolar magnetization
JP3111228B2 (en) Moving coil type linear motor