JPS6268334A - Optical pfm signal demodulation circuit - Google Patents

Optical pfm signal demodulation circuit

Info

Publication number
JPS6268334A
JPS6268334A JP60206676A JP20667685A JPS6268334A JP S6268334 A JPS6268334 A JP S6268334A JP 60206676 A JP60206676 A JP 60206676A JP 20667685 A JP20667685 A JP 20667685A JP S6268334 A JPS6268334 A JP S6268334A
Authority
JP
Japan
Prior art keywords
capacitor
circuit
optical
pfm
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60206676A
Other languages
Japanese (ja)
Other versions
JPH0315387B2 (en
Inventor
Takashi Ushikubo
牛窪 孝
Ryozo Furukawa
古川 量三
Yorio Iio
飯尾 順生
Nozomi Watanabe
望 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP60206676A priority Critical patent/JPS6268334A/en
Publication of JPS6268334A publication Critical patent/JPS6268334A/en
Publication of JPH0315387B2 publication Critical patent/JPH0315387B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver

Abstract

PURPOSE:To miniaturize a circuit by constituting an optical PFM demodulation circuit with an optical signal converting element and plural passive elements only so as to simplify a circuit constitution remarkably more than a conventional circuit constitution in spite of having the same degree of the PFM demodulation characteristic. CONSTITUTION:An optical PFM signal is irradiated to an optical signal converting element D constituting a part of a series resonance circuit 20 through an optical fiber 11. The said series resonance circuit 20 is constituted by connecting a coil L and the 1st capacitor C1 sequentially between the anode and cathode of the element D. A capacitor charge circuit 21 is connected to the series resonance circuit 20, the capacitor charging circuit 21 is connected across the 1st capacitor C1 and the 1st capacitor C1 is charged via the 1st resistor R1 from a power supply E0 such as a battery. Further, the 2nd resistor R2 and the 2nd capacitor C2 are connected across the capacitor C1 from the connecting point between the coil L and the 1st capacitor C1 sequentially and the 2nd resistor R2 and the 2nd capacitor C2 constitute an integration circuit 22.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明はPFM変調された光信号を復調し、電気信号
に変換するだめの光PFM信号復調回路に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an optical PFM signal demodulation circuit that demodulates a PFM-modulated optical signal and converts it into an electrical signal.

(従来の技術) 従来、この種の光PFM信号復調回路として文献:(「
光通信システム」、重井芳治監修、テレビジョン学会偏
、昭晃堂、P243〜253)に開示されるものがある
。第2図は、従来の光PFM信号復調回路の一構成例を
示すブロック線図である。図中11は光ファイバ、12
は光ファイバと光学的に結合された受光ダイオード、1
3は前置増幅器、14はパルス整形回路、15は低域F
波器、16は出力端子である。
(Prior art) Conventionally, this type of optical PFM signal demodulation circuit has been published in the literature:
There is one disclosed in "Optical Communication System", edited by Yoshiharu Shigei, published by Television Society, Shokodo, pp. 243-253). FIG. 2 is a block diagram showing a configuration example of a conventional optical PFM signal demodulation circuit. In the figure, 11 is an optical fiber, 12
is a light receiving diode optically coupled to an optical fiber, 1
3 is a preamplifier, 14 is a pulse shaping circuit, and 15 is a low frequency F.
16 is an output terminal.

光PFM変調信号は振幅およびパルス幅が一定なパルス
信号より構成され、パルス間隔が変調信号の振幅に比例
する光パルス信号である。この光PFM信号は、主とし
て光ファイバによる帯域制限と受信低域P波器の組み合
わせで復調を行い得るという理由で、一般に、光通信用
の変調方式に用いられている。
The optical PFM modulation signal is composed of a pulse signal with constant amplitude and pulse width, and is an optical pulse signal in which the pulse interval is proportional to the amplitude of the modulation signal. This optical PFM signal is generally used in a modulation method for optical communications, mainly because demodulation can be performed by a combination of band limitation using an optical fiber and a receiving low-band P-wave device.

次に、従来の光PFM復調回路の動作方法を簡単に説明
する。
Next, the operating method of the conventional optical PFM demodulation circuit will be briefly explained.

光PFN信号は光ファイバ11により伝送され、受光ダ
イオード12を照射する。受光ダイオード12により光
PFM信号に対応する電気的なPFM信号17に変換さ
れる。電気的PFM信号17は前置増幅器13により十
分に増幅された後、パルス整チバイブレータ、シュミッ
トトリガ−回路等を以って構成されている。振幅及びパ
ルス幅のととのったPFM信号18は低域戸波器15に
より低周波成分のみ取り出され、出力端子16から変調
信号19が取り出される。
The optical PFN signal is transmitted by optical fiber 11 and illuminates light receiving diode 12 . The light receiving diode 12 converts the optical PFM signal into an electrical PFM signal 17 corresponding to the optical PFM signal. The electrical PFM signal 17 is sufficiently amplified by the preamplifier 13, and is then configured with a pulse vibrator, a Schmitt trigger circuit, and the like. Only the low frequency components of the PFM signal 18 having a high amplitude and pulse width are extracted by the low frequency filter 15, and a modulated signal 19 is extracted from the output terminal 16.

(発明が解決しようとする問題点) しかしながら、上述したような構成の従来の復調回路で
は、光PFM信号を電気的PFM信号に変換しかつ増幅
、波形整形及び低域戸波を行う必要があるため、回路構
成が複雑となり、それゆえに、回路の小形化が図れない
という問題点があった。
(Problems to be Solved by the Invention) However, in the conventional demodulation circuit configured as described above, it is necessary to convert the optical PFM signal into an electrical PFM signal, and perform amplification, waveform shaping, and low-frequency waveforming. However, there was a problem that the circuit configuration was complicated, and therefore, the circuit could not be made smaller.

また、これら回路構成中には能動素子が設けられている
ため、電力消費が大であり大型の電源が必要であり、ま
た、九−電気集積化(0KIC化)に不適当であった。
Furthermore, since active elements are provided in these circuit configurations, power consumption is large, a large power source is required, and they are unsuitable for nine-electronic integration (0KIC).

この発明の目的は上述した従来の復調回路の複雑化の欠
点を除去し、回路構成が簡単でかつ小型化出来る光PF
M復調回路を提供することにある。
The purpose of the present invention is to eliminate the above-mentioned drawbacks of complication of the conventional demodulation circuit, and to provide an optical PF that has a simple circuit configuration and can be miniaturized.
An object of the present invention is to provide an M demodulation circuit.

(問題点を解決するための手段) この目的の達成を図るため、この発明の光PFM復調回
路によれば、光信号の入射光量により変化するS字型負
性特性を有する光信号変換素子を含む共振回路と、コン
デンサ充電回路と、この直列共振回路に生じた電圧信号
から出力信号を取り出すための積分回路とを具え、これ
ら直列共振回路、コンデンサ充電回路及び積分回路を受
動素子のみで構成したことを特徴とする。
(Means for Solving the Problem) In order to achieve this object, the optical PFM demodulation circuit of the present invention uses an optical signal conversion element having an S-shaped negative characteristic that changes depending on the amount of incident light of the optical signal. The series resonant circuit, the capacitor charging circuit, and the integrating circuit are composed of only passive elements. It is characterized by

この発明の実施に当り、共振回路を光電変換素子と、コ
イルと第一コンデンサとを直列に接続して構成し、さら
にコンデンサ充電回路を第一コ/デ/すの両端子間に接
続した第一抵抗及び電源の直列回路を以って構成し、さ
らに積分回路をコイル及び第一コンデンサの接続点か又
は光信号変換素子及びコイルの接続点と、この第一コン
デンサ及び電源の接続点との間に第二抵抗及び第二コン
デンサを順次に接続して構成し、この第二抵抗と第二コ
ンデンサとの接続点から出力信号を取り出すように構成
するのが好適である。
In carrying out this invention, a resonant circuit is constructed by connecting a photoelectric conversion element, a coil, and a first capacitor in series, and a capacitor charging circuit is constructed by connecting a capacitor charging circuit between both terminals of the first CO/D/S. A series circuit of one resistor and a power supply is configured, and an integrating circuit is connected between the connection point of the coil and the first capacitor, or the connection point of the optical signal conversion element and the coil, and the connection point of the first capacitor and the power supply. Preferably, a second resistor and a second capacitor are sequentially connected in between, and the output signal is extracted from a connection point between the second resistor and the second capacitor.

(作用) このように構成すれば、この発明の光PFM復調回路を
光信号変換素子と、複数の受動素子とのみによって構成
しているので、従来と同程度の22M復調特性を有する
にもかかわらず、回路構成が従来よりも著しく簡単とな
り、従って回路の小型化を図れる。
(Function) With this configuration, since the optical PFM demodulation circuit of the present invention is configured only by the optical signal conversion element and a plurality of passive elements, it has the same 22M demodulation characteristics as the conventional one. First, the circuit configuration is significantly simpler than the conventional one, and therefore the circuit can be miniaturized.

またこの発明の光PFM復調回路は能動素子を含んでい
ないので、電力消費は極めて少なく、従って、電源とし
て電池を使用でき、回路の小型化が図れると共に、0E
I(3化に好適な回路構成となる。
Furthermore, since the optical PFM demodulation circuit of the present invention does not include any active elements, power consumption is extremely low. Therefore, a battery can be used as a power source, making it possible to miniaturize the circuit and achieve 0E
I (The circuit configuration is suitable for 3).

(実施例) 以下、図面によりこの発明の実施例につき説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図はこの発明の一実施例を示す回路図であリ、光P
FM信号は光ファイバー1を通じて直列共振回路20の
一部分を構成する光信号変換素子D(図中、ダイオード
として示す)を照射する。この直列共振回路20は光信
号変換素子りのアノード及びカソード間に順次にコイル
L及び第一コンデンサC0を接続して構成したものであ
る。
FIG. 1 is a circuit diagram showing an embodiment of the present invention.
The FM signal irradiates an optical signal conversion element D (shown as a diode in the figure) forming a part of the series resonant circuit 20 through the optical fiber 1. This series resonant circuit 20 is constructed by sequentially connecting a coil L and a first capacitor C0 between an anode and a cathode of an optical signal conversion element.

さらに、この直列共振回路20にコンデンサ充電回路2
1を接続する。コンデンサ充電回路21を第一コンデン
サC工の両端子間に接続し、この第一コンデンサC工を
例えば電池のような電源E。
Furthermore, a capacitor charging circuit 2 is added to this series resonant circuit 20.
Connect 1. A capacitor charging circuit 21 is connected between both terminals of a first capacitor C, and this first capacitor C is connected to a power source E such as a battery.

から第一抵抗R工を介して充電出来るように構成する。The structure is such that charging can be performed from the first resistor R through the first resistor R.

さらに、図示の実施例では、第一コンデンサC工の両端
子間に第二抵抗R2及び第二コンデンサCをコイルLと
第一コンデンサC工との接続点側から順次に接続し、こ
れら第二抵抗R2及び第二コンデンサC2を以って積分
回路22を構成する。
Furthermore, in the illustrated embodiment, the second resistor R2 and the second capacitor C are sequentially connected between both terminals of the first capacitor C from the connection point side of the coil L and the first capacitor C, and these second An integrating circuit 22 is constituted by the resistor R2 and the second capacitor C2.

尚、この積分回路22の出力端子16を第二抵抗R2と
第二コンデンサC2との接続点に形成する。
Note that the output terminal 16 of this integrating circuit 22 is formed at the connection point between the second resistor R2 and the second capacitor C2.

従って、直列共振回路20の第一コンデンサCよの端子
間に生じた電圧信号は第二抵抗R2と第二コンデンサC
2とにより構成される低域P減作用を有する積分回路2
2の出力端子16からPFM復調された出力信号として
取り出されろ。
Therefore, the voltage signal generated between the terminals of the first capacitor C of the series resonant circuit 20 is the voltage signal generated between the terminals of the second resistor R2 and the second capacitor C.
2 and an integrating circuit 2 having a low-frequency P reduction effect.
2 as a PFM demodulated output signal.

次に、この発明に用いる光信号変換素子りにつき説明す
る。
Next, the optical signal conversion element used in the present invention will be explained.

光信号変換素子りは電気的にS字型負性抵抗をもち、負
性抵抗特性が入射光量により変化する特性を示す半導体
素子であり、その構造及び電気的光学的特性を次に示す
The optical signal conversion element is a semiconductor element that electrically has an S-shaped negative resistance and exhibits a negative resistance characteristic that changes depending on the amount of incident light. Its structure and electrical and optical characteristics are shown below.

第3図は光信号変換素子(以下、光素子という)の構造
の一例を示す断面図であり、n形GaAs基板30上に
N−Al!σaaSクラッド層31、p形G、A8治性
層32、n形GaA、活性層33、P形AAG、A8ク
ラッド層34、p IEJ caAf3コンタクト層3
5より構成され、p形GaA3コンタクト層35上にp
形オーミック電極(陽極)36、n形GaAs基板30
上にn形オーミック電極(陰極)37を付けた構造とな
っている。光PFM信号は光ファイバ11によってp形
コンタクト層35にあけた受光窓38より照射される。
FIG. 3 is a cross-sectional view showing an example of the structure of an optical signal conversion element (hereinafter referred to as an optical element), in which N-Al! σaaS cladding layer 31, p-type G, A8 curable layer 32, n-type GaA, active layer 33, P-type AAG, A8 cladding layer 34, p IEJ caAf3 contact layer 3
5, on the p-type GaA3 contact layer 35.
Ohmic electrode (anode) 36, n-type GaAs substrate 30
It has a structure in which an n-type ohmic electrode (cathode) 37 is attached on top. The optical PFM signal is irradiated through the light receiving window 38 formed in the p-type contact layer 35 through the optical fiber 11.

−この光素子は、陰極37に対して陽極36が正分 になるように電圧を印加すると、第4図に示すようなS
字型負性抵抗特性を示す。これにつき以下簡単に説明す
る。第4図は横軸に印加電圧(V)及び縦軸に光素子を
流れる電流(mA)を取って示しである。最初は、印加
電圧をOvより増加させても、電流がほとんど流れない
高抵抗状態となる。
- When a voltage is applied to this optical element so that the anode 36 becomes a positive voltage with respect to the cathode 37, an S as shown in FIG.
It exhibits a shape-shaped negative resistance characteristic. This will be briefly explained below. FIG. 4 shows the applied voltage (V) on the horizontal axis and the current (mA) flowing through the optical element on the vertical axis. Initially, even if the applied voltage is increased above Ov, a high resistance state occurs in which almost no current flows.

しかし電圧がターン電圧vtに等しくなると、この光素
子の抵抗は急激に減少して導通状態となる。
However, when the voltage becomes equal to the turn voltage vt, the resistance of this optical element decreases rapidly and becomes conductive.

さらに、ターン電圧vtは、光素子に入射する光信号の
光量により減少する。その特性の一例を第5図に示す。
Furthermore, the turn voltage vt decreases depending on the amount of light of the optical signal incident on the optical element. An example of its characteristics is shown in FIG.

第5図は横軸に入射光量(μW)及び縦軸にターン電圧
(V)を取って示してあり、この場合の光信号の波長λ
を例えば818nmとする。
Figure 5 shows the amount of incident light (μW) on the horizontal axis and the turn voltage (V) on the vertical axis, and the wavelength λ of the optical signal in this case
For example, let it be 818 nm.

図に示すように、ターン電圧V、は入射光量の増大にと
もなって、単調に減衰する特性を示す。
As shown in the figure, the turn voltage V exhibits a characteristic of monotonically attenuating as the amount of incident light increases.

次に、第1図に示したこの発明の回路の動作原理につき
説明する。
Next, the principle of operation of the circuit of the present invention shown in FIG. 1 will be explained.

最初に、光素子D1コイルL、第一抵抗Ro及び電源E
。で構成される閉回路を考える。
First, the optical element D1 coil L, the first resistor Ro and the power source E
. Consider a closed circuit consisting of.

第6図は光素子りの電圧−電流特性曲線Iと11.との
交点における電圧値はE。である。ここで、!、:lr
Dは光素子りの内部抵抗とし、コイルLの内部抵抗は無
視するものとする。この回路における負曹線■は、第6
図に示すように、光素子りの電圧−電流特性曲線Iと負
荷線■との交点a工の電圧vFがO<< VF < V
、の条件を満たすようになっている。この条件において
は、光素子りの端子電圧はV、となり、光素子りは遮断
状態となっている。
FIG. 6 shows voltage-current characteristic curves I and 11. of the optical device. The voltage value at the intersection with E is E. It is. here,! , :lr
D is the internal resistance of the optical element, and the internal resistance of the coil L is ignored. The negative soda line ■ in this circuit is the 6th
As shown in the figure, the voltage vF at the intersection point a between the voltage-current characteristic curve I of the optical device and the load line ■ is O<<VF<V
, the following conditions are satisfied. Under this condition, the terminal voltage of the optical element becomes V, and the optical element is in a cut-off state.

次に、光素子りに光が入射した場合を考える。Next, consider the case where light is incident on the optical element.

前述のように、光素子りのターン電圧V、は入射光量に
比例して減少する特性を示すため、光素子りの動作状態
は入射光量により制御される。すなわち入射光量が小さ
く、このためV、の減少量が小さくてVt> V、の状
態では、光素子りは遮断状態である。しかし、入射光量
が増してV、 ” VFの状態になると光素子りは導通
状態となり、光素子りの電圧−電流特性は第6図の点a
2となる。この点a2に対応する電圧をvF′とする。
As described above, since the turn voltage V of the optical element exhibits a characteristic of decreasing in proportion to the amount of incident light, the operating state of the optical element is controlled by the amount of incident light. That is, in a state where the amount of incident light is small and therefore the amount of decrease in V is small and Vt>V, the optical element is in a cut-off state. However, when the amount of incident light increases and the state becomes V, "VF," the optical element becomes conductive, and the voltage-current characteristic of the optical element changes to point a in Figure 6.
It becomes 2. Let the voltage corresponding to this point a2 be vF'.

次に、前述の閉回路に第一コンデンサC□を加えた回路
、すなわち光素子D、コイルL、第一コより決定される
。この場合、光素子りの端子電圧ハ第一抵抗R工、第一
コンデンサC工により決定される時定数τ、=C□・R
工によって第6図の零点a よりVF (点aよ)まで
上昇する。光素子aへの入射量カー少なくてV7 < 
Vtの状態では、光素子りは端子電圧がvFまで上昇し
、遮断状態になっているが、入射光量が十分にあってV
F、Z V、の状態では、光素子りの端子電圧が零から
V、まで上昇した時点で光素子りが導通状態となり、第
6図の点a9に動作点が移る。このことから、入射光量
によりV、の値が減少することにより光素子りが導通状
態となり、さらに遮断状態から導通状態になるまでの時
間が制御できることがわかる。
Next, it is determined by a circuit obtained by adding the first capacitor C□ to the aforementioned closed circuit, that is, the optical element D, the coil L, and the first capacitor C□. In this case, the terminal voltage of the optical element is the time constant τ determined by the first resistor R and the first capacitor C, =C□・R
It rises from zero point a in Figure 6 to VF (point a) by means of construction. The amount of light incident on optical element a is less than V7 <
In the state of Vt, the terminal voltage of the optical element rises to vF and it is in a cut-off state, but the amount of incident light is sufficient and V
In the state F, ZV, the optical element becomes conductive when the terminal voltage of the optical element rises from zero to V, and the operating point moves to point a9 in FIG. From this, it can be seen that as the value of V decreases depending on the amount of incident light, the optical element becomes conductive, and furthermore, the time from the cut-off state to the conductive state can be controlled.

次に、光素子りが導通状態となると第一コンデンサC0
の電荷はコイルLを通して光素子りに流れ放電される。
Next, when the optical element becomes conductive, the first capacitor C0
The charge flows through the coil L to the optical element and is discharged.

さらに光素子りとコイルL、第一コンデンサC□は直列
共振回路20を形成しているため、第一コンデンサC工
の電荷がなくなった次の瞬間に光素子りからコイルL及
び第一コンデンサC□の方向に電流が流れる。この逆向
きの電流値を示す。
Furthermore, since the optical element, the coil L, and the first capacitor C form a series resonant circuit 20, the moment the first capacitor C loses its charge, the optical element, the coil L, and the first capacitor C Current flows in the direction of □. This shows the current value in the opposite direction.

次に、第7図(A)に示すような光パルス信号が光素子
りに入射した場合を考える。第7図(A)は光素子りへ
の入射光量の時間的変化を示した図であり、第7図(B
)は光素子りの端子電圧の時間的変化を示した図である
。第7図(A)において横軸に時間及び縦軸に光量を取
って示し、第71iU(Blにおいて横軸に時間及び縦
軸に光素子りの端子電圧を取って示しである。また、P
 は光素子りのターン電圧vt力″−V、 = V、に
なる条件を満す光量値である。光量値がP よりも小さ
い場合は光素子りの端子電圧は前述のように時定数τ□
=R□・C0で上昇する。
Next, consider the case where an optical pulse signal as shown in FIG. 7(A) is incident on the optical element. FIG. 7(A) is a diagram showing the temporal change in the amount of light incident on the optical element, and FIG.
) is a diagram showing temporal changes in terminal voltage of an optical element. In FIG. 7(A), time is plotted on the horizontal axis and light intensity is plotted on the vertical axis.
is the light intensity value that satisfies the condition that the turn voltage Vt of the optical element is - V, = V. If the light intensity value is smaller than P, the terminal voltage of the optical element is the time constant τ as described above. □
=R□・C0 increases.

光量値がP。に達すると、光素子りが導通状態となり、
第一コンデンサC□の放電により再び遮断状態となる。
The light amount value is P. When it reaches , the optical element becomes conductive, and
Due to the discharge of the first capacitor C□, the circuit is cut off again.

ここで光素子りの端子電圧に注目すると、第7図(薊及
び(B)からも明らかなように、例えば、端子電圧は例
えばVl、 V2で示すように、入射の光量値P。に達
するまでの時間間隔上〇、t2により制御されることが
わかる。すなわち、入射光の間隔が増すと(tl−+t
2)、光素子りの端子電圧のがわかる。さらに、時定数
τ□=C□・R工に比べて入射光の間隔及びその変化量
を十分に小さくとることによって、この端子電圧の積分
量を入射光のDに入力したPFM変調光信号を、この光
素子りで電圧信号に変換し、これを第一コンデンサC□
の両端子間から取り出して積分回路z2で積分し、出力
端子16からPFM復調信号として出力させている。
If we pay attention to the terminal voltage of the optical element, as is clear from FIG. It can be seen that the time interval up to
2) The terminal voltage of the optical element can be determined. Furthermore, by making the interval between the incident lights and the amount of change thereof sufficiently small compared to the time constant τ□=C□・R, the PFM modulated optical signal that inputs the integral amount of this terminal voltage to the D of the incident light can be , this optical element converts it into a voltage signal, which is then sent to the first capacitor C□
The signal is extracted from between both terminals of , is integrated by an integrating circuit z2, and is output as a PFM demodulated signal from an output terminal 16.

第1図に示す第二抵抗R2及び第二コンデンサC2は光
素子りの端子電圧を積分する積分回路22を構成してい
る。回路条件は第二抵抗R2と第二コンデンサC2によ
る時定数τ2=C2・R2がt□<<1.2でR□<<
R2の柔性を満たすようにする。
The second resistor R2 and second capacitor C2 shown in FIG. 1 constitute an integrating circuit 22 that integrates the terminal voltage of the optical element. The circuit conditions are that the time constant τ2=C2・R2 due to the second resistor R2 and the second capacitor C2 is t□<<1.2, and R□<<
The flexibility of R2 should be satisfied.

また、第1図の回路では第二コンデンサC2と第二抵抗
R2とに友って構成される積分回路22は第一コンデン
サC0に接続されているが、光素子りのアノードに接続
しても前述と同様な動作を行う。
In addition, in the circuit shown in FIG. 1, the integrating circuit 22, which is composed of the second capacitor C2 and the second resistor R2, is connected to the first capacitor C0, but it may also be connected to the anode of the optical element. Perform the same operation as above.

この発明は上述した実施例にのみ限定されるものではな
い。例えば、光信号変換素子はS字型負性抵抗特性を有
しかつ入射光量に応じて特性が変化する素子であれば、
上述した構造以外の構造のものを使用出来る。さらに、
直列共振回路、コンデンサ充電回路及び積分回路も受動
素子のみで構成出来れば他の構造であってもよい。
The invention is not limited to the embodiments described above. For example, if the optical signal conversion element is an element that has S-shaped negative resistance characteristics and whose characteristics change depending on the amount of incident light,
Structures other than those described above can be used. moreover,
The series resonant circuit, the capacitor charging circuit, and the integrating circuit may also have other structures as long as they can be constructed only from passive elements.

(発明の効果) 上述した説明から明らかなように、この本発明によれば
、光信号変換素子と複数の受動素子を組合せることによ
り光PFM信号復調回路を構成したものであり、次に示
す効果が期待できる。
(Effects of the Invention) As is clear from the above description, according to the present invention, an optical PFM signal demodulation circuit is constructed by combining an optical signal conversion element and a plurality of passive elements, and the following You can expect good results.

■ 光信号変換素子と複数の受動素子とを組合せるだけ
で、受光、増幅、パルス整形、低域F波の機能を持つ光
PFM信号復調回路を構成できるので、従来と同程度の
PFM復調特性を有すると共に、従来よりも回路構成が
非常に簡単となり、従って小型化出来る。さらに、使用
部品数が著しく低減するため、製造価格、装置の信頼性
において従来の場合よりも優位となる。
■ By simply combining an optical signal conversion element and multiple passive elements, an optical PFM signal demodulation circuit with light reception, amplification, pulse shaping, and low-frequency F wave functions can be configured, so PFM demodulation characteristics are comparable to conventional ones. In addition, the circuit configuration is much simpler than the conventional one, and therefore, the size can be reduced. Furthermore, since the number of parts used is significantly reduced, the manufacturing cost and reliability of the device are superior to the conventional case.

■ この発明の回路は能動素子を用いずに受動素子のみ
で構成出来るので、使用電力が少なくて済み、小形の電
源、又は小形の電池で十分となり、従って設置場所の制
限が排除される。
(2) Since the circuit of the present invention can be configured only with passive elements without using active elements, it consumes less power, and a small power supply or a small battery is sufficient, thus eliminating restrictions on installation location.

■ さらに、光信号変換素子以外の回路部品が受動素子
であるため、光−電気集積回路(OEIO)化に好適な
回路構成となる。
(2) Furthermore, since the circuit components other than the optical signal conversion element are passive elements, the circuit configuration is suitable for opto-electrical integrated circuit (OEIO).

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の光PFM復調回路の一実施例を示す
回路図、 第2図は従来の光PFM復調回路を説明するためのブロ
ック線図、 第3図はこの発明に使用する光信号変換素子の構造の一
実施例を示す断面図、 第を図は光信号変換素子の電圧−電流特性を示す曲線図
、 第5図は光信号変換素子のターン電圧と入射光量の関係
を説明するための特性曲線図、第6図はこの発明の光信
号変換素子の動作点を説明するための電圧−電流特性及
び負荷線を示す曲線図、 第7図(加及び(B)は入射光量と光信号変換素子の端
子電圧のそれぞれの時間的変化を示す曲線図である。 11・・・光ファイバ    −6・・・出力端子20
・・・直列共振回路 21・・・コンデンサ充電回路 22・・・積分回路 D・・・光信号変換素子  L・・・コイルC・・・第
一コンデンサ  R工・・・第一抵抗E。・・・電源 
     R2・・・第二抵抗C2・・・第二コンデン
サ 特許出願人  工業技術院長 等々力 達この、418
月の光PFHAS号イ亀調■1シ)第1図 従来の見PFM棉号復調団路 第2図 先建−!棗砿専子0精遭の一分1 第3図 5享型−性像抗竹惺 第4図 (A) (B) 第7図 人s ft−量(1t w ’)ス’///nm第5図 ノ17:ルー〈lシ=し1り一:ト1右りと、負4iI
*宇し第6図
Fig. 1 is a circuit diagram showing an embodiment of the optical PFM demodulation circuit of the present invention, Fig. 2 is a block diagram for explaining a conventional optical PFM demodulation circuit, and Fig. 3 is an optical signal used in the present invention. A cross-sectional view showing an example of the structure of a conversion element, Fig. 5 is a curve diagram showing voltage-current characteristics of the optical signal conversion element, and Fig. 5 explains the relationship between the turn voltage of the optical signal conversion element and the amount of incident light. Figure 6 is a curve diagram showing the voltage-current characteristics and load line for explaining the operating point of the optical signal conversion element of the present invention, Figure 7 (Additional and (B) shows the incident light intensity and It is a curve diagram showing each temporal change of the terminal voltage of the optical signal conversion element. 11... Optical fiber -6... Output terminal 20
...Series resonant circuit 21...Capacitor charging circuit 22...Integrator circuit D...Optical signal conversion element L...Coil C...First capacitor R...First resistor E. ···power supply
R2...Second resistor C2...Second capacitor Patent applicant Tatsuko Todoroki, Director of the Agency of Industrial Science and Technology, 418
Moonlight PFHAS No. I turtle tone ■ 1 shi) Figure 1 Conventional view PFM Cotton No. Demodundan Road Figure 2 Sian-! Natsume Senshi 0 Seikai Ichibu 1 Fig. 3 5 Kyo-type - Sex image resistance Fig. 4 (A) (B) Fig. 7 Person s ft - amount (1t w ') S' /// nm FIG.
*Ushi Figure 6

Claims (3)

【特許請求の範囲】[Claims] (1)光信号の入射光量により変化するS字型負性抵抗
特性を有する光信号変換素子を含む直列共振回路と、コ
ンデンサ充電回路と、前記直列共振回路に生じた電圧信
号から出力信号を取り出すための積分回路とを具え、こ
れら直列共振回路、コンデンサ充電回路及び積分回路を
受動素子のみで構成したことを特徴とする光PFM復調
回路。
(1) Extract an output signal from a series resonant circuit including an optical signal conversion element having an S-shaped negative resistance characteristic that changes depending on the amount of incident light signal, a capacitor charging circuit, and a voltage signal generated in the series resonant circuit. 1. An optical PFM demodulation circuit characterized in that the series resonant circuit, the capacitor charging circuit, and the integrating circuit are constructed only from passive elements.
(2)直列共振回路は光信号変換素子と、コイルと第一
コンデンサとを直列に接続して構成し、コンデンサ充電
回路は前記第一コンデンサ の両端子間に接続した第一抵抗及び電源の直列回路を以
つて構成し、 前記積分回路は前記コイル及び第一コンデ ンサの接続点と、該第一コンデンサ及び前記電源の接続
点との間に第二抵抗及び第二コンデンサを順次に接続し
て構成し、該第二抵抗及び第二コンデンサとの接続点か
ら出力信号を取り出すことを特徴とする特許請求の範囲
第1項記載の光PFM信号復調回路。
(2) The series resonant circuit is configured by connecting an optical signal conversion element, a coil, and a first capacitor in series, and the capacitor charging circuit is configured by connecting a first resistor connected between both terminals of the first capacitor and a power source in series. The integrating circuit is configured by sequentially connecting a second resistor and a second capacitor between a connection point between the coil and the first capacitor and a connection point between the first capacitor and the power source. 2. The optical PFM signal demodulation circuit according to claim 1, wherein the output signal is extracted from a connection point between the second resistor and the second capacitor.
(3)直列共振回路は光信号変換素子と、コイルと第一
コンデンサとを直列に接続して構成し、コンデンサ充電
回路は前記第一コンデンサ の両端子間に接続した第一抵抗及び電源の直列回路を以
つて構成し、 前記積分回路は前記光信号変換素子及び前 記コイルの接続点と、該第一コンデンサ及び前記電源の
接続点との間に第二抵抗及び第二コンデンサを順次に接
続して構成し、該第二抵抗及び第二コンデンサとの接続
点から出力信号を取り出すことを特徴とする特許請求の
範囲第1項記載の光PFM信号復調回路。
(3) The series resonant circuit is configured by connecting an optical signal conversion element, a coil, and a first capacitor in series, and the capacitor charging circuit is configured by connecting a first resistor connected between both terminals of the first capacitor and a power source in series. The integrating circuit has a second resistor and a second capacitor connected in sequence between a connection point between the optical signal conversion element and the coil, and a connection point between the first capacitor and the power source. 2. The optical PFM signal demodulation circuit according to claim 1, wherein the optical PFM signal demodulation circuit is configured such that the output signal is extracted from a connection point with the second resistor and the second capacitor.
JP60206676A 1985-09-20 1985-09-20 Optical pfm signal demodulation circuit Granted JPS6268334A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60206676A JPS6268334A (en) 1985-09-20 1985-09-20 Optical pfm signal demodulation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60206676A JPS6268334A (en) 1985-09-20 1985-09-20 Optical pfm signal demodulation circuit

Publications (2)

Publication Number Publication Date
JPS6268334A true JPS6268334A (en) 1987-03-28
JPH0315387B2 JPH0315387B2 (en) 1991-02-28

Family

ID=16527270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60206676A Granted JPS6268334A (en) 1985-09-20 1985-09-20 Optical pfm signal demodulation circuit

Country Status (1)

Country Link
JP (1) JPS6268334A (en)

Also Published As

Publication number Publication date
JPH0315387B2 (en) 1991-02-28

Similar Documents

Publication Publication Date Title
US6349106B1 (en) Method for converting an optical wavelength using a monolithic wavelength converter assembly
US6580739B1 (en) Integrated opto-electronic wavelength converter assembly
US4749949A (en) Self biasing diode microwave frequency multiplier
CN205621733U (en) Broad -spectrum imaging detection chip
JPS6268334A (en) Optical pfm signal demodulation circuit
JPH0654852B2 (en) Optical receiver circuit
JP2860028B2 (en) Ultraviolet detector and method of manufacturing the same
US4642453A (en) Apparatus for increasing the dynamic range in an integrating optoelectric receiver
JPS5852893A (en) Laser function device
JPH06500667A (en) Photon induced variable capacitance effect element
JPS62128230A (en) Optical transmitter-receiver
JPH05299688A (en) Semiconductor photocoupling element
JPH05251936A (en) Frequency converter
US6198101B1 (en) Integral charge well for a QWIP FPA
JP3439622B2 (en) Light receiving circuit
JP2734680B2 (en) Light detection method
JPS6295036A (en) Optical signal receiver
JPS6295035A (en) Optical signal receiver
JPS6338258A (en) Image sensor
JPS60260178A (en) Optical integrated circuit device
JPH04282872A (en) Photoelectric conversion circuit
RU2032993C1 (en) Photodetector of ir range
JPS5941556Y2 (en) Light receiving circuit
JPH077335A (en) Optical reception circuit
JPH04326024A (en) Photoelectric conversion device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term