JPS6267Y2 - - Google Patents

Info

Publication number
JPS6267Y2
JPS6267Y2 JP10074479U JP10074479U JPS6267Y2 JP S6267 Y2 JPS6267 Y2 JP S6267Y2 JP 10074479 U JP10074479 U JP 10074479U JP 10074479 U JP10074479 U JP 10074479U JP S6267 Y2 JPS6267 Y2 JP S6267Y2
Authority
JP
Japan
Prior art keywords
levitation
amount
magnetic head
slider
floating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10074479U
Other languages
Japanese (ja)
Other versions
JPS5621827U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP10074479U priority Critical patent/JPS6267Y2/ja
Publication of JPS5621827U publication Critical patent/JPS5621827U/ja
Application granted granted Critical
Publication of JPS6267Y2 publication Critical patent/JPS6267Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Adjustment Of The Magnetic Head Position Track Following On Tapes (AREA)

Description

【考案の詳細な説明】 本考案は、磁気デイスク装置等に使用される微
少浮揚量の浮揚型磁気ヘツドであつて、その微少
浮揚量の動的な変動を電気的信号として取り出す
ための構造を付加した浮揚量測定用磁気ヘツドの
改良に関するものである。
[Detailed description of the invention] The present invention is a floating magnetic head with a minute levitation amount used in magnetic disk devices, etc., and has a structure for extracting dynamic fluctuations in the minute levitation amount as an electrical signal. This invention relates to improvements to the magnetic head for measuring the amount of levitation.

まず従来の浮揚量測定用の磁気ヘツドについて
図面を参照して説明する。第1図は従来の浮揚量
測定用磁気ヘツドの斜視図であり、第2図はその
浮揚状態を磁気デイスクとともに示す断面図であ
る。図において101は非導電性材料からなるス
ライダで、102a,b,cがスライダ浮揚面で
あり、103は4個の金属膜で、この表面が電極
面104を形成している。更にこの電極面104
及びスライダ浮揚面102a,b,cの上にはガ
ラスあるいは石英などの硬い非導電性の材質の保
護膜105が被せてある。保護膜の厚さはミクロ
ンオーダで、保護膜表面106は鏡面研磨されて
いる。また各電極面104は導電性薄膜107を
介してスライダ背面の4本のリード線(図示せ
ず)にそれぞれ独立に導通結合されている。
First, a conventional magnetic head for measuring the amount of levitation will be explained with reference to the drawings. FIG. 1 is a perspective view of a conventional magnetic head for measuring the amount of levitation, and FIG. 2 is a sectional view showing the levitation state together with a magnetic disk. In the figure, 101 is a slider made of a non-conductive material, 102a, b, and c are slider floating surfaces, and 103 is four metal films, the surfaces of which form an electrode surface 104. Furthermore, this electrode surface 104
A protective film 105 made of a hard non-conductive material such as glass or quartz is placed over the slider floating surfaces 102a, b, and c. The thickness of the protective film is on the order of microns, and the surface 106 of the protective film is mirror polished. Further, each electrode surface 104 is independently electrically connected to four lead wires (not shown) on the back surface of the slider via a conductive thin film 107.

この磁気ヘツドを用いて浮揚量の測定を行なう
場合は、第2図に示すようにスライダ101を磁
気デイスク表面111に浮揚させ、スライダの電
極面104と磁気デイスク内の導電体112の表
面113との間の静電容量を測定すればよい。す
なわち、4個の電極面104の静電容量をそれぞ
れ独立に測定すれば、各電極面104と磁気デイ
スク導電体表面113との間隙δが独立に求ま
り、従つて各電極部分における浮揚量h(保護膜
表面106と磁気デイスク表面111の間隙)が
独立に求まり、磁気ヘツドの浮揚量分布が求ま
る。
When measuring the amount of levitation using this magnetic head, the slider 101 is levitated above the magnetic disk surface 111 as shown in FIG. All you have to do is measure the capacitance between. That is, if the capacitances of the four electrode surfaces 104 are measured independently, the gap δ between each electrode surface 104 and the magnetic disk conductor surface 113 can be determined independently, and therefore the levitation amount h( The gap between the protective film surface 106 and the magnetic disk surface 111 is determined independently, and the floating amount distribution of the magnetic head is determined.

ところでこの場合、各電極面104における浮
揚量hと静電容量cとの関係は、保護膜105の
厚さ、磁気デイスク表面111と導電体表面11
3の距離、あるいはまたリード線の浮遊容量など
の影響を強く受けるため、各磁気ヘツドの各電極
及び各磁気デイスク毎に、hとcの関係を較正す
る必要がある。
Incidentally, in this case, the relationship between the levitation amount h and the capacitance c on each electrode surface 104 is determined by the thickness of the protective film 105, the magnetic disk surface 111, and the conductor surface 11.
Since the relationship between h and c is strongly influenced by the distance of 3 and the stray capacitance of the lead wire, it is necessary to calibrate the relationship between h and c for each electrode of each magnetic head and each magnetic disk.

較正に際してはhの測定が必要となるが、現在
の磁気ヘツドの浮揚量は1μm以下であるので、
その正確な測定は干渉色によらなければならな
い。次にその較正方法を図に従つて説明する。
During calibration, it is necessary to measure h, but since the levitation amount of current magnetic heads is less than 1 μm,
Its accurate measurement must be based on interference colors. Next, the calibration method will be explained with reference to the drawings.

第3図は浮揚量測定用磁気ヘツドの較正方法を
示す断面図で、磁気デイスクの替わりにガラス円
板121を周速度Uで回転させて、浮揚量測定用
磁気ヘツドを浮揚させている。この状態でガラス
円板を介して磁気ヘツド浮揚面を観察すれば、ガ
ラス円板表面122で保護膜表面106との間の
光の干渉により、動的な変動成分が平均化された
浮揚量に相当する干渉縞が生じる。このとき保護
膜表面106とスライダ浮揚面102a,102
bとの間でも光の干渉が起り干渉縞が生じるた
め、2種の干渉縞が混じり合つて観察されること
になり、干渉色による浮揚量の測定ができないこ
とになる。
FIG. 3 is a sectional view showing a method of calibrating the magnetic head for measuring the amount of levitation, in which a glass disk 121 is rotated at a circumferential speed U instead of the magnetic disk to levitate the magnetic head for measuring the amount of levitation. If the magnetic head levitation surface is observed through the glass disk in this state, dynamic fluctuation components will be reduced to an averaged levitation amount due to the interference of light between the glass disk surface 122 and the protective film surface 106. Corresponding interference fringes result. At this time, the protective film surface 106 and the slider floating surfaces 102a, 102
Since light interference also occurs with the light beam b and interference fringes are generated, two types of interference fringes are observed as a mixture, making it impossible to measure the amount of levitation using interference colors.

従つて、従来の浮揚量測定の磁気ヘツドの静電
容量cと浮揚量hの較正は浮揚量が周速Uに依在
することを利用して、次のようになつていた。す
なわちまず初めに電極も保護膜もない通常の磁気
ヘツドを浮揚量測定用磁気ヘツドと同一寸法に製
作し、この磁気ヘツドの浮揚量をガラス円板との
干渉色を利用して測定し、浮揚量hと周速Uの関
係を求める。次に浮揚量測定用の磁気ヘツドと磁
気デイスクを用いてデイスク周速Uと静電容量c
の関係を求める。この後浮揚量測定用磁気ヘツド
が通常の磁気ヘツドと同じ浮揚特性をもつと仮定
して周速Uをパラメータとして浮揚量hと静電容
量cの関係を求めていた。
Therefore, in the conventional levitation measurement, the electrostatic capacitance c of the magnetic head and the levitation amount h are calibrated as follows, taking advantage of the fact that the levitation amount depends on the circumferential speed U. That is, first, a normal magnetic head without electrodes or a protective film is manufactured to have the same dimensions as a magnetic head for measuring the amount of levitation, and the amount of levitation of this magnetic head is measured using the interference color with a glass disk to determine the levitation. Find the relationship between the amount h and the circumferential speed U. Next, using a magnetic head and a magnetic disk for measuring the amount of levitation, we measured the disk circumferential speed U and the electrostatic capacitance c.
Find the relationship between Thereafter, assuming that the magnetic head for measuring the levitation amount has the same levitation characteristics as a normal magnetic head, the relationship between the levitation amount h and the electrostatic capacitance c was determined using the circumferential speed U as a parameter.

このように従来の浮揚量測定用の磁気ヘツドで
は、浮揚量hと静電容量cの関係を別の磁気ヘツ
ドを用いて間接的に測定しなければならなかつ
た。このため浮揚量hと静電容量cの較正が不正
確となる欠点を有していた。
As described above, in the conventional magnetic head for measuring the amount of levitation, the relationship between the amount of levitation h and the capacitance c had to be measured indirectly using another magnetic head. For this reason, there was a drawback that the calibration of the levitation amount h and the capacitance c was inaccurate.

本考案は、このような欠点を除去するため、一
部のスライダの浮揚面から保護膜を除去し、その
部分を用いて浮揚量測定用磁気ヘツドの浮揚量を
干渉色を利用して直接測定できるようにしたもの
で、以下図面に従つて詳細に説明する。
In order to eliminate these drawbacks, the present invention removes the protective film from the floating surface of some sliders and uses that part to directly measure the flying height of the magnetic head for measuring flying height using interference colors. This will be explained in detail below with reference to the drawings.

第4図は本考案の一実施例を示す斜視図であ
り、第5図はその断面図である。図において20
1は非導電性材料からなるスライダで202a,
b,cがそれぞれ独立したスライダ浮揚面であ
り、特に202cは微少幅の独立した浮揚面で、
幅狭のために浮揚力は殆んど発生しない。203
は4個の薄い金属膜で、この表面が電極面204
を形成している。更に電極面204及びスライダ
浮揚面202a,bの上にはガラスあるいは石英
などの硬い非導電性の材質の保護膜205がスパ
ツタなどの手法により被せてあり、保護膜表面2
06は鏡面研磨されている。但し、スライダ浮揚
面202cの表面は保護膜のない構造である。
FIG. 4 is a perspective view showing an embodiment of the present invention, and FIG. 5 is a sectional view thereof. 20 in the figure
1 is a slider 202a made of a non-conductive material;
b and c are independent floating surfaces of the slider, and in particular 202c is an independent floating surface with a minute width,
Due to its narrow width, almost no buoyancy force is generated. 203
are four thin metal films, and this surface is the electrode surface 204.
is formed. Furthermore, a protective film 205 made of a hard, non-conductive material such as glass or quartz is placed over the electrode surface 204 and the slider floating surfaces 202a and 202b by a method such as sputtering.
06 is mirror polished. However, the surface of the slider floating surface 202c has a structure without a protective film.

更にこの実施例においては、導電性材料の薄膜
207をスライダ側面208からスライダ背面2
09にかけて引き回し、この薄膜の一端が電極を
形成している金属膜203に他の一端がスライダ
背面209でリード線210に導通結合される構
造を有している。
Furthermore, in this embodiment, a thin film 207 of conductive material is applied from the slider side surface 208 to the slider back surface 208.
09, one end of this thin film is connected to a metal film 203 forming an electrode, and the other end is electrically connected to a lead wire 210 at a slider back surface 209.

これを用いて浮揚特性の測定を行なうには、従
来の場合と同様にスライダ201を磁気デイスク
表面(図示せず)上に浮揚させ、スライダの電極
面204と磁気デイスク中の導電体の表面(図示
せず)との間の静電容量を測定すればよい。この
場合4個の電極の静電容量をそれぞれ測定すれ
ば、あらかじめ較正してある静電容量と浮揚量の
関係を用いて各電極面の部分の保護膜表面と磁気
デイスク表面との間隙すなわち浮揚量がその動的
な変動成分も含めそれぞれ独立に求まる。
To measure the levitation characteristics using this, the slider 201 is levitated above the magnetic disk surface (not shown) as in the conventional case, and the electrode surface 204 of the slider and the surface of the conductor in the magnetic disk ( (not shown) may be measured. In this case, by measuring the capacitance of each of the four electrodes, the gap between the protective film surface and the magnetic disk surface on each electrode surface, that is, the levitation amount, can be calculated using the pre-calibrated relationship between capacitance and levitation amount. The quantities, including their dynamic fluctuation components, are determined independently.

次に、浮揚量と静電容量の較正を行なう場合に
は、第5図の実施例をガラス円板に浮揚させ、ガ
ラス円板を通して観察すれば、スライダ浮揚面2
02c上には干渉色あるいは干渉縞が観察され
る。この場合スライダ浮揚面202c上には保護
膜がないので従来のように他の干渉色との混色が
なく、静的な浮揚量に相当する情報が得られる。
そこでこのガラス円板を用いて浮揚量測定用磁気
ヘツドの浮揚量hとガラス円板のヘツド装着トラ
ツクでの周速Uとの関係を求めることができ、次
に磁気デイスクを用いて周速Uと浮揚量測定用磁
気ヘツドの静電容量cの時間平均の関係を求めれ
ば、周速Uをパラメータにして浮揚量hと静電容
量cの較正を行うことができる。
Next, when calibrating the levitation amount and capacitance, if the embodiment of FIG. 5 is levitated on a glass disk and observed through the glass disk, the slider levitation surface 2
Interference colors or interference fringes are observed on 02c. In this case, since there is no protective film on the slider floating surface 202c, there is no color mixing with other interference colors as in the conventional case, and information corresponding to the static floating amount can be obtained.
Therefore, using this glass disk, it is possible to determine the relationship between the levitation amount h of the magnetic head for levitation amount measurement and the circumferential speed U at the head mounting track of the glass disk. By finding the time-average relationship between the levitation amount h and the capacitance c of the magnetic head for measuring the levitation amount, the levitation amount h and the capacitance c can be calibrated using the circumferential speed U as a parameter.

ここでスライダ浮揚面202cは保護膜の表面
より低くなつているので、浮揚圧力の発生は殆ん
どないが、元来、通常の磁気ヘツドにおいても2
02cに相当するスライダ浮揚面はその幅が極め
て細いため発生圧力はきわめて少なく、他の浮揚
面で発生する浮揚圧力に比べて無視される値であ
るため、浮揚面202c上に保護膜がなくても浮
揚特性への影響はない。
Here, since the slider floating surface 202c is lower than the surface of the protective film, almost no floating pressure is generated.
Since the width of the slider floating surface corresponding to 02c is extremely narrow, the pressure generated is extremely small and is ignored compared to the floating pressure generated on other floating surfaces, so there is no protective film on the floating surface 202c. There is no effect on the buoyancy characteristics.

なお、本実施例における浮揚力を殆んど発生し
ない独立した浮揚面202cはスライダ中央に、
スライダの前後にまたがつたテーパードフラツト
スライダとして描かれているが、その形状は浮揚
力を殆んど発生しない形状であればどのような形
状でも良いし、その位置も任意である。例えばス
ライダ後方の局部に複数の微小幅の浮揚面が存在
する磁気ヘツドに対しても、これらの複数の微小
幅の浮揚面にのみ保護膜を形成せず、他の浮揚面
に全て保護膜を形成することで本考案を適用する
ことができ、同様の効果を得ることができること
は明白である。
In this embodiment, an independent levitation surface 202c that hardly generates levitation force is located at the center of the slider.
Although it is depicted as a tapered flat slider spanning the front and rear of the slider, its shape may be any shape as long as it generates almost no buoyancy force, and its position may be arbitrary. For example, for a magnetic head that has a plurality of floating surfaces with a small width at the rear of the slider, a protective film is not formed only on these multiple floating surfaces with a small width, but on all other floating surfaces. It is clear that the present invention can be applied by forming the same, and that similar effects can be obtained.

以上説明したように、本考案によれば同一磁気
ヘツドで浮揚量hと静電容量Cの較正を行なうこ
とができ従来なされていた2種の磁気ヘツドを用
いて較正を行なう場合に比べ、はるかに正確な較
正ができる。
As explained above, according to the present invention, the levitation amount h and the capacitance C can be calibrated using the same magnetic head, which is far superior to the conventional method of calibrating using two types of magnetic heads. Accurate calibration is possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の浮揚量測定用磁気ヘツドを示す
斜視図、第2図は磁気デイスクとともに示す第1
図の磁気ヘツドの断面図、第3図はガラス円板と
ともに示す第1図の磁気ヘツドの断面図、第4図
は本考案の一実施例を示す斜視図、第5図はその
横方向の断面図である。 図において、201はスライダ、202a,
b,cはスライダ浮揚面、203は金属膜、20
4は電極面、205は保護膜、207は導電性薄
膜、210はリード線を表わす。
Fig. 1 is a perspective view showing a conventional magnetic head for measuring levitation, and Fig. 2 is a perspective view showing a magnetic head with a magnetic disk.
3 is a sectional view of the magnetic head shown in FIG. 1 together with a glass disk, FIG. 4 is a perspective view showing an embodiment of the present invention, and FIG. FIG. In the figure, 201 is a slider, 202a,
b, c are slider floating surfaces, 203 is a metal film, 20
4 represents an electrode surface, 205 a protective film, 207 a conductive thin film, and 210 a lead wire.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] スライダの浮揚面の一部に電極面を有し、浮揚
面及び電極面が鏡面研磨された表面をもつた硬質
な電気的不良導体材料からなる保護膜で被覆され
た磁気ヘツドにおいて、微少幅の独立した浮揚面
が上記保護膜の無い状態で形成されている構造を
備えたことを特徴とする浮揚型磁気ヘツド。
A magnetic head has an electrode surface on a part of the floating surface of the slider, and the floating surface and the electrode surface are covered with a protective film made of a hard electrically conductive material with a mirror-polished surface. A floating magnetic head characterized in that it has a structure in which an independent floating surface is formed without the above-mentioned protective film.
JP10074479U 1979-07-20 1979-07-20 Expired JPS6267Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10074479U JPS6267Y2 (en) 1979-07-20 1979-07-20

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10074479U JPS6267Y2 (en) 1979-07-20 1979-07-20

Publications (2)

Publication Number Publication Date
JPS5621827U JPS5621827U (en) 1981-02-26
JPS6267Y2 true JPS6267Y2 (en) 1987-01-06

Family

ID=29333457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10074479U Expired JPS6267Y2 (en) 1979-07-20 1979-07-20

Country Status (1)

Country Link
JP (1) JPS6267Y2 (en)

Also Published As

Publication number Publication date
JPS5621827U (en) 1981-02-26

Similar Documents

Publication Publication Date Title
JP2517467B2 (en) Capacitive pressure sensor
JPH04291101A (en) Magnetic sensor and position detecting device
US5734106A (en) Integrated electronic sensor for characterizing physical quantities and process for producing such a sensor
JPH0434713A (en) Magneto-resistance effect type thin film head
US4853633A (en) Magnetic head electromagnetic conversion efficiency measuring method and element therefor
US4399700A (en) Force transducer flexure with conductors on surfaces in the neutral bending plane
US4400979A (en) Force transducer flexure with conductors on surfaces in the neutral bending plane
JPS6267Y2 (en)
JPS6266Y2 (en)
JPH08304010A (en) Depth sensor
GB2102579A (en) Force transducer flexure reed bearing electrical connections
JPH10269530A (en) Manufacturing method of magneto-resistance effect type head
JPH097121A (en) Magnetoresistance type magnetic head and its production and wafer
JP2687711B2 (en) Magnetoresistive head
JPH0564747B2 (en)
Sonnenfeld Fly-height, pitch, and crown measurements of hard-disk sliders by capacitance stripe
JPS6161193B2 (en)
JP2867384B2 (en) Photoresist layer pattern measurement method
JP2000076630A (en) Manufacture of magnetoresistive type magnetic head and thin film magnetic head
JP3509336B2 (en) Integrated sensor
JPS6313249B2 (en)
JPH01267813A (en) Magnetic head
JP2510574B2 (en) Thin film magnetic head
JPS60191418A (en) Manufacture of magnetic head
JPH04344402A (en) Method for measuring thickness of multilayer substrate