JPS60191418A - Manufacture of magnetic head - Google Patents

Manufacture of magnetic head

Info

Publication number
JPS60191418A
JPS60191418A JP4736184A JP4736184A JPS60191418A JP S60191418 A JPS60191418 A JP S60191418A JP 4736184 A JP4736184 A JP 4736184A JP 4736184 A JP4736184 A JP 4736184A JP S60191418 A JPS60191418 A JP S60191418A
Authority
JP
Japan
Prior art keywords
head
current
bias
magnetic
dummy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4736184A
Other languages
Japanese (ja)
Inventor
Tomio Kume
久米 富美夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP4736184A priority Critical patent/JPS60191418A/en
Publication of JPS60191418A publication Critical patent/JPS60191418A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/455Arrangements for functional testing of heads; Measuring arrangements for heads

Abstract

PURPOSE:To decide whether the film formation in the process of MR head manufacture is normal or not at the end of the process by forming a magneto-resistance element thin film with necessary width and respective layers on a nonmagnetic substrate except a shield magnetic layer in the same process with the manufacture of a magnetic head, and thus forming a dummy head. CONSTITUTION:Various current are flowed to a dummy element 13 and the value at the intersection HK* of a tangent from the flection point of a characteristic curve and an axis H and the current dependency of the current bias value delta at the peak point of a resistance rate rho of the characteristic curve generated by a shunt current on a dummy element current I1 are measured. The current bias value delta is converted into an angle theta according to a mathematical expression to obtain data, and MR elements 2 having positive and negative magnetostrictive characteristics lambda are measured respectively. Consequently, the MR element with the negative characteristics tends to increase in value HK* with the dummy element current I1, but the element with positive characteristics does not vary, so the bias theta increases normally. Consequently, a shunt bias type MR head having positive magnetostrictive characteristics lambda is manufactured on the basis of said result to realize normal bias application and excellent reproduction characteristics.

Description

【発明の詳細な説明】 (a)@明の技術分野 本発明は磁気抵抗効果型磁気ヘッドの製造方法に係り、
特に製造玉の特性のばらつきを低減する忙戸命方法に関
する。
Detailed Description of the Invention (a) Technical Field of @Ming The present invention relates to a method of manufacturing a magnetoresistive magnetic head,
In particular, the present invention relates to a method for reducing variations in characteristics of manufactured balls.

(b)@明の技術分野 従来例を図に沿って説明する。第1図は従来の磁気抵抗
効果型磁気ヘッド(以下単にMRヘッドと略称する)の
相互バイアス方式説明図であって(a)は要部断面図、
(b)は透視図兼ブロック図を示す。
(b) @Ming's technical field A conventional example will be explained according to the diagram. FIG. 1 is an explanatory diagram of the mutual bias system of a conventional magnetoresistive magnetic head (hereinafter simply referred to as MR head), in which (a) is a cross-sectional view of the main part;
(b) shows a perspective view and a block diagram.

図において1 r[、NiZn 7 エライト、MnZ
l)−cライト等よりなる磁性基板を示す。実際のMR
ヘッドにおいては基板を図示しない別の非磁性体にて形
成し、その北に前記磁性基板1を薄膜蒸着にて形成する
こともある。2および2′はN:lF6パーマロイより
なる磁気抵抗素子(以’lにMR素子と1l18称する
)。3はSing 、 AhOa等よりなる非磁性絶縁
層、4はN1.F6パーマロイ等の高透磁率部材、5は
カバープレート、6は磁気テープ等の磁気記録媒体であ
って磁性基板1および高透磁率部材4はその中間に所要
間隔をもって対向した2層のMR素子2,2とその間隔
及びその周囲を被包する非磁性絶縁−3とを前記対向方
向に挾宥するように形成され、M−R素子2,2に対し
てシールド磁性体として働き、磁気記録媒(4)6に記
録きれた磁気1/CMR素子2.lが感応する。
In the figure, 1 r[, NiZn 7 elite, MnZ
l)-C A magnetic substrate made of light or the like is shown. actual MR
In the head, the substrate may be formed of another non-magnetic material (not shown), and the magnetic substrate 1 may be formed to the north of the substrate by thin film deposition. 2 and 2' are magnetoresistive elements (hereinafter referred to as MR elements) made of N:lF6 permalloy. 3 is a nonmagnetic insulating layer made of Sing, AhOa, etc., 4 is N1. A high magnetic permeability member such as F6 permalloy, 5 a cover plate, 6 a magnetic recording medium such as a magnetic tape, and a magnetic substrate 1 and a high magnetic permeability member 4 are arranged in the middle thereof, with a two-layer MR element 2 facing each other with a required spacing. . (4) Magnetic 1/CMR element 2. l is sensitive.

また一般にMR素子2,2の動作を線形化するだめに、
MR素子2.2′に’vまバイアス磁界を印カロするか
、あるいは磁化と電流の方向を傾ける等の手段が用いら
れるが、第1図の例では第1図(b)に示すように電源
7.7を設け、それぞれのMR素子2,2を流れる電流
によって互にバイアス磁界f T:lJ叩するいわゆる
相互バイアス方式を形成し、差動増幅器8にてMR素子
2.2の出力を差動的に出力している。9ばMR素子2
.2Krt流を流すだめの引出層であってA4又はCu
の薄膜で形成する。
In addition, in general, in order to linearize the operation of the MR elements 2, 2,
Means such as applying a bias magnetic field to the MR element 2.2' or tilting the direction of magnetization and current are used, but in the example of Fig. 1, as shown in Fig. 1 (b) A power supply 7.7 is provided, and a so-called mutual bias system is formed in which the current flowing through each MR element 2, 2 mutually strikes a bias magnetic field f T:lJ, and a differential amplifier 8 outputs the MR element 2.2. Outputs differentially. 9ba MR element 2
.. A drawing layer for flowing 2Krt flow, made of A4 or Cu.
Formed with a thin film.

第2図は従来のMRヘッドにおけるシャントバイアス方
式の説明図であって、第2図(a)は要部断面図、第2
図(b)は透視図兼ブロック図を示し、図において第1
図との対応部位には同一符号を付してその重複説明を省
略する。
FIG. 2 is an explanatory diagram of the shunt bias method in a conventional MR head, in which FIG. 2(a) is a sectional view of the main part;
Figure (b) shows a perspective view and a block diagram.
Portions corresponding to those in the figures are given the same reference numerals and redundant explanation thereof will be omitted.

図において9eユチタン博膜であってMR素子2を蒸着
以前に蒸着又はスパッタリングにて形成され、屯源10
と10からMR素子2に流れる電流を所要の比率で分流
(シャント)するように形成され、このシャント4流に
てMR素子2にバイアス磁界を印、引するようにしてい
る。
In the figure, 9e is made of titanium film and is formed by vapor deposition or sputtering before the MR element 2 is vapor deposited.
and 10 to shunt the current flowing to the MR element 2 at a predetermined ratio, and a bias magnetic field is applied to or pulled from the MR element 2 by the four shunt currents.

第3図は磁気テープ用多素子MRヘッドの製造工程の説
明図であって、ta)は磁性基板1あるいは図示しない
非磁性基板りに、第1図乃至第2図に対応する高透磁率
部材4までが真空成膜技術にて形成される工程を示し、
+b)はすべての成膜が終った時点でカバープレート5
を接着する工程を示す。
FIG. 3 is an explanatory diagram of the manufacturing process of a multi-element MR head for magnetic tape, and ta) is a high magnetic permeability member corresponding to FIGS. 1 and 2 on the magnetic substrate 1 or a non-magnetic substrate (not shown). 4 shows the process formed by vacuum film forming technology,
+b) is the cover plate 5 when all film formation is completed.
This shows the process of gluing.

(Q)は切断工程であってM RヘノF単体毎に切断さ
れ、ωf磨工程を経由して((i)に示すフレーム11
に接着される。さらにフラットケープJv12とヘッド
端子間全ワイヤボンディングにより接続してMRヘッド
が完成する。
(Q) is a cutting process in which each MR heno-F is cut individually, and the frame 11 shown in (i) is cut through the ωf polishing process.
is glued to. Furthermore, the MR head is completed by connecting the flat cape Jv12 and the head terminals by all wire bonding.

ところで従来完成したMPヘソl” VCri特性のば
らつきが伴なうことが多く、この特性のばらつきを支配
している主要因としてはMR素子の磁気異方性分散にあ
ると言われているが、その磁気異方性分散が実際のMR
ヘッドの製造工程の途中において、どの程変あるかを見
極める手段がなかったために、実際のヘッドは前述のよ
うな製造工程を経由して完成品となった時欝でMRヘッ
ドの特性を試験してその製造ロットの自否全判定するし
か方法がなかった。
By the way, conventionally completed MP heso-l'' VCri characteristics are often accompanied by variations, and it is said that the main factor controlling this variation in properties is the magnetic anisotropy dispersion of the MR element. The magnetic anisotropic dispersion is the actual MR
Because there was no way to determine the degree of change during the head manufacturing process, the characteristics of the MR head were tested only after the actual head had gone through the manufacturing process described above and became a finished product. The only way to do so was to determine the authenticity of the production lot.

従って不自格が発生すると!!!!造工程に消費される
多大の工数が燕駄となるため量産化を阻害する欠保とな
っていた。
Therefore, when disqualification occurs! ! ! ! The large amount of man-hours consumed in the manufacturing process resulted in a shortage that hindered mass production.

(C)@明の目的 本開明は北記従来の欠くに鑑みMRヘッド製造工程Vc
s、−ける成膜の冗了時侭でMRヘッドの良否を判定す
る手段の提供を目的とする。
(C) @Mei's purpose The present invention is based on the MR head manufacturing process Vc in view of the deficiencies of the conventional method.
It is an object of the present invention to provide a means for determining the quality of an MR head during failure of film formation.

(d) 発明の構成 そしてこの目的は本発明によれば、磁気抵抗素子4膜と
該磁気抵抗素子の動作を線形化するバイアス導体層と1
iI記両者を被包する非磁性絶縁層を接着して磁気シー
ルドするシールド磁性層とを基板tに真空成膜技術にて
形成されてなるシャントバイアス方式の磁気抵抗効果型
磁気ヘッドの製造工程において、前記基板の熱膨張率及
び熱伝導率が同等又は類似したダミー基板となる非磁性
絶縁層に前記シールド磁性層を除く所安幅の磁気抵抗素
子薄膜及び各層を前記磁気ヘッドの製造工程と同時に同
じ工程で成膜してダミーヘッドを形成し該ダミーヘッド
の一11記磁気抵抗素子に流す電流をパラメータとして
(抵抗率/磁界の強き)特性曲線における動作部分の傾
噴と電流バイアス磁界量の変化を測定し、該測定結果が
それぞれ所望(直になることを確認し、次工程の加工を
行うことを特徴とする磁気ヘッドの製造方法によって達
成できる。
(d) Structure and object of the invention According to the present invention, four magnetoresistive elements, a bias conductor layer for linearizing the operation of the magnetoresistive element, and one
In the manufacturing process of a shunt bias type magnetoresistive magnetic head, in which a non-magnetic insulating layer enveloping both of the above and a shielding magnetic layer for magnetic shielding are formed on a substrate t by vacuum film-forming technology. , At the same time as the manufacturing process of the magnetic head, a magnetoresistive thin film and each layer other than the shield magnetic layer are applied to a non-magnetic insulating layer serving as a dummy substrate having the same or similar coefficient of thermal expansion and thermal conductivity as the substrate. A dummy head is formed by depositing a film in the same process, and the current flowing through the 111 magnetoresistive element of the dummy head is used as a parameter to calculate the tilt angle of the operating part of the characteristic curve and the current bias magnetic field amount. This can be achieved by a magnetic head manufacturing method characterized by measuring the change, confirming that the measured results are as desired, and then performing the next processing step.

相互バイアス方式の磁気抵抗効果型磁気ヘッドの場合に
は、前記非磁性基板りに前記シールド磁性層及び一方の
磁気抵抗素子薄膜を除く所映幅の磁気抵抗素子薄膜及び
各層を前記磁気ヘッドの製造工程と同時に同じ工程で成
膜してダミーヘッドを形成し、該ダミーヘッドの前記磁
気抵抗素子薄膜に流す電流をパラメータとして(抵抗率
/磁界の強さ)特性曲線における動作部の傾度の変化を
測定し、該測定結果が所望暁になることを確認し、次工
程の加工を行うようにする。
In the case of a mutual bias type magnetoresistive magnetic head, manufacturing of the magnetic head includes a magnetoresistive element thin film of a given width and each layer except for the shield magnetic layer and one magnetoresistive element thin film on the nonmagnetic substrate. A dummy head is formed by forming a film in the same process at the same time as the process, and the change in the slope of the operating part in the characteristic curve is measured using the current flowing through the magnetoresistive element thin film of the dummy head as a parameter (resistivity/magnetic field strength). Measure it, confirm that the measurement result is the desired value, and then proceed to the next process.

そしてこれらの場U、前記ダミー基板となる非磁性基板
を実際の磁気ヘッドを製造する際に使用するヘッドパタ
ーンの基板と一体形成し、成膜後前記ダミー基板を切り
離す以前に基板状態のままでト述の特性を測定するよう
にすれば一層g合よく良否判別がiJ能となる。
In these cases, the nonmagnetic substrate that will become the dummy substrate is formed integrally with the head pattern substrate used to manufacture the actual magnetic head, and after film formation, the dummy substrate is left in the substrate state before being separated. If the characteristics mentioned above are measured, it will be possible to judge whether the product is good or bad even more accurately.

(θ)発明の実施例 以F本発明の実施例を第4図以丁の図面によって詳述す
る。尚これらの図において、第1乃至第3図との対応部
位には同一符号を付してその重榎説明を省略する。
(θ) Embodiments of the Invention An embodiment of the present invention will be described in detail with reference to FIG. 4 and subsequent drawings. In these figures, parts corresponding to those in FIGS. 1 to 3 are designated by the same reference numerals, and detailed explanation thereof will be omitted.

第4図はシャントバイアス方式のダミー素子試験データ
を示す。
FIG. 4 shows dummy element test data of the shunt bias method.

非磁性体の水晶基板りに第8図の製造工程と同時に同じ
工程にて第2図(b)に示す磁気シールド層1と4とを
除いたダミー素子(素子幅W=50μIn。
A dummy element (element width W=50 μIn) was fabricated on a non-magnetic crystal substrate by removing the magnetic shield layers 1 and 4 shown in FIG. 2(b) in the same manufacturing process as that shown in FIG. 8.

MR素子醒流/f77直流=l/。、7)を形成する。MR element current/f77 DC = l/. , 7).

図示のダミー素子13は水晶基板と非磁性絶縁−3のm
l賊を省略している。このダミー素子13vC挿々の電
流を流してその(抵抗率ρ/磁界の強さH)特性曲線を
測定し、その特性曲線の変曲慨から接線を引き、図示の
如くH軸との交欝Hk″:の直と該特性曲線のシャント
電流によって発生する抵抗率ρのピークへのH軸方向の
ずれ址すなわち、電流バイアス址δの随のダミー素子成
流工1に対する電流依存性を測定した。
The illustrated dummy element 13 is composed of a crystal substrate and a non-magnetic insulator.
The ``l'' is omitted. A current of 13 VC is passed through this dummy element to measure its characteristic curve (resistivity ρ/magnetic field strength H), and a tangent line is drawn from the curve of the characteristic curve to find its intersection with the H axis as shown in the figure. The deviation of the characteristic curve in the H-axis direction to the peak of the resistivity ρ caused by the shunt current, that is, the current dependence of the current bias value δ on the corresponding dummy element flow filter 1 was measured. .

又電流バイアス量δは数式により角度θに変換してデー
タをとり、MR素子2については磁歪特性λが正のもの
と負のものについて測定した。その結果MR素子2の磁
歪特性λが負のものについてはHkfの1直がダミー素
子醒流工1の増加に対して旧昇傾向(曲線■参照)とな
るため、実質的なバイアスθが変化しにくいことが判明
した(曲線■参照)。第4図の縦軸に示す1(kO矢は
Hkfの喧の最適唾であって、ダミー素子130゛醒流
依存性を理解しやすくするため、最適1直f(、ico
薫 に対する比率H[ん乍ko”にて[k−xの変化を
示している。
Further, the current bias amount δ was converted into an angle θ using a mathematical formula to obtain data, and measurements were made for the MR element 2 with positive and negative magnetostriction characteristics λ. As a result, for the MR element 2 with a negative magnetostriction characteristic λ, the 1 shift of Hkf has an upward trend (see curve ■) with respect to the increase in the dummy element 1, so the effective bias θ changes. It turned out to be difficult to do so (see curve ■). The 1(kO) arrow shown on the vertical axis in FIG.
The ratio H to Kaoru shows the change in [k−x].

−万感歪特性λが正のものについては、ダミー素子電流
工1の増加に対してHk*の随は変化しない(曲線■参
照)ため、バイアスθが正常に増加(曲線■参照)すな
わち移動することが判明した。
- For those with a positive universal strain characteristic λ, the curve of Hk* does not change with an increase in the dummy element current 1 (see curve ■), so the bias θ increases normally (see curve ■), that is, the shift It turns out that it does.

と記の結果をもとに磁歪特性λの正負2種類の所謂シャ
ンFバイアス方式MRヘッドを製造したところ、と起結
果と同様に磁歪特性λが正のものの方がバイアスが正常
にかかり再生特性も良好であった。つまりこれらの測定
からL’(k黄の電流依存性の大きいMR累子は磁気異
方性分散も大きいものと予測できることになる。
Based on the results described above, we manufactured so-called Shan F bias type MR heads with two types of positive and negative magnetostrictive characteristics λ, and as with the results shown in , the bias was applied more normally with the positive magnetostrictive characteristics λ, and the reproduction characteristics were better. was also good. In other words, from these measurements, it can be predicted that an MR crystal with a large current dependence of L'(k yellow) will also have a large magnetic anisotropy dispersion.

次に第1図に示す相互バイアス方式のMR−Sラドの予
測方法について述べる。
Next, a method for predicting MR-S rad using the mutual bias method shown in FIG. 1 will be described.

第5図は相互バイアス方式のダミー素子試験データを示
す。
FIG. 5 shows dummy element test data of the mutual bias method.

非磁性体の水晶基板りに第3図の製造工程と同時に同じ
工程にて第1図[有])K示す磁気シーlレド11と4
及びMR素子2′とを除いたダミー素子(素子幅W−5
0μm)を形成する。図示のダミー素子14は水晶基板
と非磁性絶縁−の記載を省略している。このダミー素子
14に種々の電流分流してその(抵抗率ρ/磁界の強さ
H)特性曲線を測定し、第4図の場自と同様HK’l”
の暁のタ゛ミー素子電流丁2に対する電流依存性を測定
した。又MR素子2については磁歪特性λが正のものと
負のものについて測定した。その結果MR素子2の磁歪
特性λが負のものについてはHkfの直がダミー素子醒
流工2の増加に対してト昇傾向(曲線■参照)となり、
−万感歪特性λが正のものについては山とのほがダミー
累子電流工2の増加yc対して変化し4い(曲線■参照
)ことが判明した。E記相互バイアス方式において磁歪
特性λが正のものと負のものと2種類のMR素子を2枚
配置したMRヘッドをそれぞれ製造したところ、L記の
結果でH,−+の電流依存性のない磁歪特性λが正の・
\ラドがバイアスが正常にかかり、再生特性が良好であ
ることが判明した。
At the same time as the manufacturing process shown in Fig. 3, magnetic shields 11 and 4 shown in Fig.
and MR element 2' except for the dummy element (element width W-5
0 μm). In the illustrated dummy element 14, the description of the crystal substrate and nonmagnetic insulator is omitted. Various currents were shunted through this dummy element 14 and its (resistivity ρ/magnetic field strength H) characteristic curve was measured.
The current dependence of the timmy element on the current 2 was measured at dawn. Regarding the MR element 2, measurements were taken for those with positive and negative magnetostriction characteristics λ. As a result, when the magnetostrictive characteristic λ of the MR element 2 is negative, the value of Hkf tends to increase as the dummy element 2 increases (see curve ■).
- It was found that for those with a positive universal strain characteristic λ, the peaks and peaks do not change with respect to the increase in yc of the dummy cumulonite current 2 (see curve ①). When two MR heads with two types of MR elements, one with a positive magnetostriction characteristic λ and one with a negative magnetostriction characteristic λ, were arranged in the mutual bias method described in E, the results shown in L show that the current dependence of H, -+ was When the magnetostrictive property λ is positive,
It was found that the RAD bias was applied normally and the reproduction characteristics were good.

以上の説明においてダミー基板として実際のヘッド基板
の熱膨張率と熱云導率が類似した非磁性体の水晶基板に
て説明をしたが、実際の・\ラド基板とダミー基板とを
一陣的に形成した基板北で成膜工程を行ない、成膜完了
後ダミー基板を切離以前に試験に利用すれば、成膜誤差
を少なくし得る効果がある。実際のヘッド基板が非磁性
体の場合はそのま筐ダミー基板として利用し得る。
In the above explanation, we used a non-magnetic crystal substrate with a similar thermal expansion coefficient and thermal conductivity to the actual head substrate as a dummy substrate. If the film formation process is performed on the north side of the formed substrate and the dummy substrate is used for testing after film formation is completed and before separation, it is effective to reduce film formation errors. If the actual head substrate is made of non-magnetic material, it can be used as is as a housing dummy substrate.

(f) 発明の効果 以E詳細に説明したように本発明による磁気ヘッドの製
造方法によれば、MRヘッドの再生特性の良否をすべて
の成膜工程が完了した時戦において判別できるので、そ
れらのMRヘッドの特性のばらつきを少なくすることが
できる。
(f) Effects of the Invention As described in detail, according to the method for manufacturing a magnetic head according to the present invention, it is possible to determine whether the reproduction characteristics of the MR head are good or bad after all film-forming processes are completed. Variations in the characteristics of the MR head can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の相互バイアス方式MRヘッドの説明図で
あって、ta)は要部断面図、(b)は透視図兼ブロッ
ク図を示す。第2図は従来のシャントバイアス方式MR
ヘッドの説明図であって、(a)は要部断面図、(b)
は透視図兼ブロック図を示す。第8図は磁気テープ用多
素子MRヘッドの製造工程の説明図、第4図はシャント
バイアス方式のダミー素子試験データ、第5図は相互バ
イアス方式のダミー素子試験データを示す。 図において1は磁性基板、2と2は磁気抵抗素子、3は
非磁性絶縁層、4は高透磁率部材、5は1 カバープレート、6は磁気記録媒体、7と7′及び10
と10は電源、8は差動アンプ、9はチタン、9vi引
出層、181dシャントバイアス方式のダミー素子、1
4は相互バイアス方式のダミー素子を示す。 2 へ Ofi 第3図 第5図
FIG. 1 is an explanatory diagram of a conventional mutual bias type MR head, in which ta) is a sectional view of the main part, and FIG. 1(b) is a perspective view and block diagram. Figure 2 shows the conventional shunt bias method MR.
FIG. 2 is an explanatory diagram of the head, in which (a) is a cross-sectional view of the main part, and (b)
shows a perspective view and block diagram. FIG. 8 is an explanatory diagram of the manufacturing process of a multi-element MR head for magnetic tape, FIG. 4 shows dummy element test data of the shunt bias method, and FIG. 5 shows dummy element test data of the mutual bias method. In the figure, 1 is a magnetic substrate, 2 and 2 are magnetoresistive elements, 3 is a nonmagnetic insulating layer, 4 is a high magnetic permeability member, 5 is a cover plate, 6 is a magnetic recording medium, 7, 7', and 10
and 10 are power supplies, 8 is a differential amplifier, 9 is titanium, 9vi extraction layer, 181d shunt bias type dummy element, 1
Reference numeral 4 indicates a dummy element of mutual bias type. 2 To Ofi Figure 3 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 製造すべき磁気抵抗効果型磁気ヘッドの基板と、熱膨張
率及び熱伝導度が同等又は類似した非磁性基板とに、所
要1陥の磁気抵抗素子薄膜を製造すべきI:、記磁気ヘ
ッドの磁気抵抗素子薄膜と同時に同じ工程で或嘆してダ
ミーヘッドを形成し、該ダミーヘッドの前記磁気抵抗素
子薄膜に流す電流をパラメータとして抵抗率と磁界の強
さの関係金示す特性曲槻をめ、該曲線の動作部分の1頃
度の変化から当該磁気抵抗素子薄膜の良否を判別して磁
気ヘッドの加工を行うことを特徴とする磁気ヘッドの製
造方法。
A magnetoresistive element thin film having the required thickness of one layer is to be manufactured on a non-magnetic substrate having the same or similar coefficient of thermal expansion and thermal conductivity as the substrate of the magnetoresistive head to be manufactured. A dummy head is formed in the same process at the same time as the magnetoresistive element thin film, and the characteristic curve showing the relationship between resistivity and magnetic field strength is determined using the current flowing through the magnetoresistive element thin film of the dummy head as a parameter. . A method of manufacturing a magnetic head, characterized in that the quality of the magnetoresistive element thin film is judged from a one-degree change in the operating portion of the curve, and the magnetic head is processed.
JP4736184A 1984-03-12 1984-03-12 Manufacture of magnetic head Pending JPS60191418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4736184A JPS60191418A (en) 1984-03-12 1984-03-12 Manufacture of magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4736184A JPS60191418A (en) 1984-03-12 1984-03-12 Manufacture of magnetic head

Publications (1)

Publication Number Publication Date
JPS60191418A true JPS60191418A (en) 1985-09-28

Family

ID=12772974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4736184A Pending JPS60191418A (en) 1984-03-12 1984-03-12 Manufacture of magnetic head

Country Status (1)

Country Link
JP (1) JPS60191418A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6170149B1 (en) 1996-04-30 2001-01-09 Fujitsu Limited Magnetoresistive type magnetic head and method of manufacturing the same and apparatus for polishing the same
US6792670B2 (en) * 2000-03-21 2004-09-21 Tdk Corporation Method of manufacturing a magnetoresistive element substructure
US6822837B2 (en) * 2001-01-19 2004-11-23 Tdk Corporation Thin-film magnetic head and method of manufacturing same, and method of forming a patterned thin film for a thin-film magnetic head

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6170149B1 (en) 1996-04-30 2001-01-09 Fujitsu Limited Magnetoresistive type magnetic head and method of manufacturing the same and apparatus for polishing the same
US6792670B2 (en) * 2000-03-21 2004-09-21 Tdk Corporation Method of manufacturing a magnetoresistive element substructure
US6822837B2 (en) * 2001-01-19 2004-11-23 Tdk Corporation Thin-film magnetic head and method of manufacturing same, and method of forming a patterned thin film for a thin-film magnetic head

Similar Documents

Publication Publication Date Title
US6609948B1 (en) Method of making an electronic lapping guide (ELG) for lapping a read sensor
US6118638A (en) CPP magnetoresistive device and method for making same
US6462541B1 (en) Uniform sense condition magnetic field sensor using differential magnetoresistance
JP2001014617A (en) Lapping guide, method for forming electric lapping guide, manufacture of magnetoresistance head and electric lapping guide
JP3395590B2 (en) Polishing control sensor for magnetoresistive head and polishing control method using the sensor
JP2770823B2 (en) Thin film magnetic head and method of manufacturing the same
JPH0514323B2 (en)
US7821744B2 (en) Thin film magnetic head substrate with lapping process monitors for read and write elements with common electrode for the read and write elements
JPH11185218A (en) Production of combined thin-film magnetic head
JP2001007420A (en) Magnetic resistance effect film and magnetic read sensor using this
JPS60191418A (en) Manufacture of magnetic head
US7068475B2 (en) Magnetic head having a flux-guide regulating film regulating a magnetic domain of a flux guide
US6433971B1 (en) Thin film magnetic head adaptable to gap narrowing and substrate for forming the same
JP2000030219A (en) Thin-film magnetic head, its production and blank for the thin-film magnetic head and its production
JP4035487B2 (en) Method for manufacturing thin film magnetic head substrate
JPH10269530A (en) Manufacturing method of magneto-resistance effect type head
JP2001202605A (en) Method for manufacturing magneto-resistive element
JPS60171618A (en) Test of magnetic resistance element
JP2000030222A (en) Magnetic sensor
JPH07240010A (en) Production of magnetic head
JPH05151533A (en) Magneto-resistance effect type thin-film magnetic head
JPH11306514A (en) Magneto-resistive magnetic head
US20080168648A1 (en) Manufacturing method and testing method for magnetoresistance effect element
JP2000076630A (en) Manufacture of magnetoresistive type magnetic head and thin film magnetic head
KR0174447B1 (en) Method for fabricating a multi-layered thin film magneto-resistant head of the shunt bias type