JPS626759A - Production of reinforced composite metal - Google Patents
Production of reinforced composite metalInfo
- Publication number
- JPS626759A JPS626759A JP14532385A JP14532385A JPS626759A JP S626759 A JPS626759 A JP S626759A JP 14532385 A JP14532385 A JP 14532385A JP 14532385 A JP14532385 A JP 14532385A JP S626759 A JPS626759 A JP S626759A
- Authority
- JP
- Japan
- Prior art keywords
- metal
- reinforcing material
- reinforced composite
- mold
- particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
この発明は、ボロン繊維、炭化珪素繊維、アルミナ繊維
などの繊維状強化材と金属(合金を含む。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to fibrous reinforcing materials such as boron fibers, silicon carbide fibers, and alumina fibers, and metals (including alloys).
以下同じ)との複合による繊維強化複合金属の製造方法
、およびアルミナ粒子などの粒子状強化材と金属との複
合による分散強化複合金属の製造方法に関するものであ
る。The present invention relates to a method for manufacturing a fiber-reinforced composite metal by combining a metal with a particulate reinforcing material such as alumina particles, and a method for manufacturing a dispersion-reinforced composite metal by combining a particulate reinforcing material such as alumina particles with a metal.
[従来の技術〕
金属を母材としてこれに繊維状強化材または粒子状強化
材を複合した強化複合金属(繊維強化複合金属および分
散強化複合金属をいう)は、単一材料では望めないよう
な、比強度、熱膨張、弾性、耐摩耗性などの特性を有す
るため、たとえば、航空機用材料として注目され、実用
化されつつある。[Prior Art] Reinforced composite metals (referring to fiber-reinforced composite metals and dispersion-reinforced composite metals), which are made of metal as a base material and composited with fibrous or particulate reinforcement, have properties that cannot be achieved with a single material. Because it has properties such as specific strength, thermal expansion, elasticity, and abrasion resistance, it is attracting attention and being put into practical use as an aircraft material, for example.
これらの強化複合金属は、母材の金属に比べ、一般に塑
性加工が困難であるため、できるだけ最終製品に近い形
状で製造されることが望ましい。したがって、近年、こ
れらの強化複合金属に対し、複雑な形状のものでも製造
することのできる製造方法が、要望されている。These reinforced composite metals are generally more difficult to plastically work than the base metal, so it is desirable to manufacture them in a shape as close to the final product as possible. Therefore, in recent years, there has been a demand for a manufacturing method that can manufacture these reinforced composite metals even in complex shapes.
強化複合金属の中でも、特に、繊維状強化材を複合した
繊維強化複合金属(以下FRMと略す)は、変形抵抗が
高いため、塑性加工が難しい。従来のFRM製造方法を
大別すると、液相法、固相法、気相法に分類される。液
相法には、強化材を混入した金属の溶湯を鋳型に流し込
み、高圧下に凝固させる高圧凝固鋳造法、およびシート
状にした繊維状強化材を溶融金属に浸漬し、金属を付着
させた後、成形する溶融金属浸漬法などがある。Among reinforced composite metals, fiber-reinforced composite metals (hereinafter abbreviated as FRM), which are composites of fibrous reinforcing materials, have high deformation resistance and are therefore difficult to plastically work. Conventional FRM manufacturing methods can be broadly classified into liquid phase methods, solid phase methods, and gas phase methods. Liquid-phase methods include high-pressure solidification casting, in which molten metal mixed with reinforcing material is poured into a mold and solidified under high pressure, and fibrous reinforcing material in the form of a sheet is immersed in molten metal, allowing metal to adhere to it. After that, there is a molten metal immersion method that involves molding.
これらの液相法によると、一応、複雑な形状のものでも
製造することが可能である。しかし、これらの液相法で
は、繊維状強化材が高温の溶融した金属と長時間接する
ため、繊維状強化材とマトリックス金属との界面で化合
物層が形成され、理論的に予想される強度よりも低くな
るという欠点がある。さらに、繊維状強化材として、短
繊維のものを用いた場合には、繊維状強化材と金属とに
比重差があるため、繊維状強化材が均一に分散せず、片
寄ってしまうという欠点を有している。According to these liquid phase methods, it is possible to manufacture even products with complicated shapes. However, in these liquid phase methods, the fibrous reinforcement is in contact with high-temperature molten metal for a long time, so a compound layer is formed at the interface between the fibrous reinforcement and the matrix metal, resulting in a strength lower than that expected theoretically. The disadvantage is that it is also lower. Furthermore, when short fibers are used as the fibrous reinforcing material, there is a difference in specific gravity between the fibrous reinforcing material and the metal, so there is a drawback that the fibrous reinforcing material is not dispersed uniformly and is concentrated. have.
固相法としては、繊維状強化材のプレプリグシートに金
属を被覆した後、ホットプレスにより拡散圧接する方法
があるが、複雑な形状に製造することができず、また製
造工程が複雑で手間がかかるという欠点がある。As a solid phase method, there is a method in which a prepreg sheet of fibrous reinforcing material is coated with metal and then diffusion pressure bonded by hot pressing, but it cannot be manufactured into complicated shapes and the manufacturing process is complicated and time-consuming. The disadvantage is that it takes a lot of time.
気相法としては、イオンブレーティング法によるものが
ある。イオンブレーティング法によると、一応、複雑な
形状に製造することはできるが、1O−s7orr程度
の高真空を必要とするため、生産性が低く、工業的な量
産に適していない。As the gas phase method, there is a method based on ion blating method. According to the ion blating method, although it is possible to manufacture into complicated shapes, it requires a high vacuum of about 10-s7 orr, so the productivity is low and it is not suitable for industrial mass production.
[発明が解決しようとする問題点1
以上のように、従来のFRM製造方法でも、同相法や気
相法のように、一応、複雑な形状のFRMを製造するこ
とはできる。しかしながら、既に述べたように、固相法
では、強化材とマトリックス金属との界面での化合物層
の形成で強度が高くならず、また強化材が均一に分散し
ないという欠点があり、気相法では、生産性が低く、工
業的な世塵に適さないという欠点があった。[Problem to be Solved by the Invention 1] As described above, even with conventional FRM manufacturing methods, such as the in-phase method and the vapor phase method, it is possible to manufacture an FRM with a complicated shape. However, as mentioned above, the solid phase method has the disadvantage that the strength cannot be increased due to the formation of a compound layer at the interface between the reinforcing material and the matrix metal, and the reinforcing material is not uniformly dispersed. However, it had the disadvantage of low productivity and was not suitable for the industrial world.
また、粒子状強化材との複合による分散強化複合金属に
おいても、複雑な形状を有し、かつ粒子状強化材が均一
に分布した分散強化複合金属の製造方法が要望されてい
た。Furthermore, for dispersion-strengthened composite metals in combination with particulate reinforcing materials, there has been a need for a method for manufacturing dispersion-strengthened composite metals that have complex shapes and in which particulate reinforcing materials are uniformly distributed.
それゆえに、この発明の目的は、複雑な形状を有し、か
つ、上述のような欠点のない強化複合金属の製造方法を
提供することにある。Therefore, an object of the present invention is to provide a method for manufacturing a reinforced composite metal having a complex shape and without the above-mentioned drawbacks.
[問題点を解決するための手段]
この発明では、鋳型内で、強化材と金属との複合による
強化複合金属を形成させる、強化複合金属の製造方法に
おいて、該金属を半溶融状態で該鋳型内に微粒子状に噴
霧し、該強化材の存在下に固化させることにより、該強
化複合金属を形成させている。[Means for Solving the Problems] According to the present invention, in a method for manufacturing a reinforced composite metal in which a reinforced composite metal is formed by combining a reinforcing material and a metal in a mold, the metal is placed in a semi-molten state in the mold. The reinforcing composite metal is formed by spraying it into fine particles and solidifying it in the presence of the reinforcing material.
[作用]
この発明では、金属を半溶融状態で鋳型内に微粒子状に
噴霧している。したがって、該金属は鋳型に応じた形状
のままで固化する。また、微粒子状に噴霧された金属は
、鋳型内で急速に固化するので、共存する強化材が長時
間溶融した金属中で高温に晒されることがない。[Operation] In this invention, the metal is sprayed in the form of fine particles into the mold in a semi-molten state. Therefore, the metal solidifies while maintaining the shape corresponding to the mold. Furthermore, since the metal sprayed in fine particles quickly solidifies in the mold, the coexisting reinforcing material is not exposed to high temperatures in the molten metal for a long time.
[実施例] 図面は、この発明の一実施例を示す概略構成図である。[Example] The drawings are schematic configuration diagrams showing one embodiment of the present invention.
金属溝13は、るつぼ1内に保持されており、該るつぼ
1の底部には、該金属溝′/a3の流出用出口1aが下
方に突出して設けられている。The metal groove 13 is held within the crucible 1, and the bottom of the crucible 1 is provided with an outlet 1a for outflow of the metal groove'/a3, which projects downward.
該流出用出口1aのるつぼ1側の開口部1bの上〃Cは
、円錐状の先端部2aを有する溶湯流量調整棒2が設け
られており、該先端部2aは間口部1bに嵌め合わされ
るように位置している。流出用出口1aの下方には、金
属溶湯3を微粒子状に噴霧させるための噴霧用ノズル4
が、1対両側に設けられている。図示されないが、該噴
霧用ノズル4と流出用出口1aとの間には、アルゴンガ
スの流れ1oを生じさせるように、アルゴンガス貯蔵タ
ンクからの導入管が設けられている。さらに、噴霧用ノ
ズル4の下方には鋳型8が設置されている。該鋳型8の
上方には、強化材を該鋳型8内に分散して供給するため
の強化材分散用ノズル5がるつぼ1を挾んで両側に設け
られている。A molten metal flow rate adjusting rod 2 having a conical tip 2a is provided above the opening 1b of the outflow outlet 1a on the crucible 1 side, and the tip 2a is fitted into the frontage 1b. It's located like that. Below the outflow outlet 1a is a spray nozzle 4 for spraying the molten metal 3 in the form of fine particles.
are provided on both sides. Although not shown, an inlet pipe from an argon gas storage tank is provided between the spray nozzle 4 and the outflow outlet 1a so as to generate a flow 1o of argon gas. Further, a mold 8 is installed below the spray nozzle 4. Above the mold 8, reinforcing material dispersion nozzles 5 for dispersing and supplying the reinforcing material into the mold 8 are provided on both sides of the crucible 1.
以上の構成の装置により、この発明を実施するには、ま
ず、溶湯流m、調整棒2が引上げられ、流出用出口1a
の開口部1bと溶湯流量調整棒2の先端部2aとの間に
隙間が形成される。この隙間から、金属溶湯3が自重に
より流出用出口1aを通って下方に流出する。したがっ
て、溶湯流量調整棒2の引上げの程度により、この隙間
の間隔を調整して、金属溶湯3の流mを調整することが
できる。流出した金属溶湯3は、流出用出口1aと噴霧
用ノズル4の間を流れるアルゴンガスの流れ10の作用
により、1対の噴霧用ノズル4の間を急速に通過しよう
とするため、微粒子状になって噴霧される。このように
噴霧された金属溶湯3は、落下するうちに、冷却され固
化が進行し、半溶融状態の金属微粒子7となる。該金属
微粒子7は、予め内面に離型剤を塗布された鋳型8上に
降りつもり、互いに会合して塊を形成させながら、急速
に固化する。In order to carry out the present invention using the apparatus configured as described above, first, the molten metal flow m, the adjusting rod 2 are pulled up, and the outflow outlet 1a is pulled up.
A gap is formed between the opening 1b and the tip 2a of the molten metal flow rate adjusting rod 2. From this gap, the molten metal 3 flows downward through the outflow outlet 1a due to its own weight. Therefore, the flow m of the molten metal 3 can be adjusted by adjusting the interval of this gap depending on the extent to which the molten metal flow rate adjusting rod 2 is pulled up. The outflowing molten metal 3 tries to rapidly pass between the pair of spray nozzles 4 due to the action of the argon gas flow 10 flowing between the outflow outlet 1a and the spray nozzle 4, so it becomes fine particles. It becomes sprayed. The molten metal 3 sprayed in this manner is cooled and solidified as it falls, becoming semi-molten metal particles 7. The metal fine particles 7 are intended to fall onto a mold 8 whose inner surface has been coated with a mold release agent in advance, and rapidly solidify while associating with each other to form a lump.
一方、このような金属微粒子7の噴霧とともに、強化材
分散用ノズル5から強化材が鋳型8上に分散して供給さ
れる。鋳型0上に供給された強化材は、金属微粒子7と
均一に分散混合した状態である。該金属微粒子7が、急
速に会合固化するため、強化材は、この均一な分散状態
のまま金属中に配置される。On the other hand, along with the spraying of such fine metal particles 7, the reinforcing material is distributed and supplied onto the mold 8 from the reinforcing material dispersing nozzle 5. The reinforcing material supplied onto the mold 0 is in a state where it is uniformly dispersed and mixed with the metal fine particles 7. Since the metal fine particles 7 rapidly aggregate and solidify, the reinforcing material is placed in the metal in this uniformly dispersed state.
したがって、この実施例の方法により、強化材の均一に
分散された強化複合金属9を製造することができる。ま
た、金属微粒子7は、急速に会合固化するため、強化材
が置時間溶融した金属中で高温に晒されることがないの
で、強化材と金属マトリックスの界面での化合物層形成
による強度低下を生じることもない。さらに、従来の気
相法のように高真空を必要としないので、′a雑な形状
を有する強化複合金属を工業的に量産することができる
。Therefore, by the method of this embodiment, a reinforced composite metal 9 in which the reinforcing material is uniformly dispersed can be manufactured. In addition, since the metal fine particles 7 rapidly aggregate and solidify, the reinforcing material is not exposed to high temperatures in the molten metal for a long time, resulting in a decrease in strength due to the formation of a compound layer at the interface between the reinforcing material and the metal matrix. Not at all. Furthermore, unlike the conventional gas phase method, a high vacuum is not required, so reinforced composite metals having rough shapes can be industrially mass-produced.
図面の装置を用いて、鋳型に離型剤を塗布し、強化材と
して平均直径2μm1長さinmに切断した炭化珪素繊
維、金属溶湯としてアルミニウムを用い、5気圧のアル
ゴンガスで噴霧してFRMを製造した。得られたFRM
の繊維体積率は約30%であり、強化材は金属マトリッ
クス中に均一に分布していた。得られたFRMがら引張
試験用試料を切取り、室温と400℃とで引張試験を実
施した結果、室温で52旬/mm2.400’Cで48
kg/mm2の高い引張強さを示した。したがって、こ
の発明の製造方法により得られたFRMが高い強度を有
することが確認された。Using the equipment shown in the drawing, a mold release agent was applied to the mold, silicon carbide fibers cut into pieces with an average diameter of 2 μm and a length of 1 inch were used as the reinforcing material, aluminum was used as the molten metal, and FRM was made by spraying with argon gas at 5 atm. Manufactured. Obtained FRM
The fiber volume fraction of was about 30%, and the reinforcement was uniformly distributed in the metal matrix. A tensile test sample was cut from the obtained FRM, and a tensile test was conducted at room temperature and 400°C. As a result, it was 52 cm/mm at room temperature and 48 cm at 400'C.
It exhibited a high tensile strength of kg/mm2. Therefore, it was confirmed that the FRM obtained by the manufacturing method of the present invention has high strength.
この発明の製造方法には、強化材として、この実施例に
用いた炭化珪素の繊維状強化材のほかに、ボロン、アル
ミナなどの繊維状強化材を用いることができる。繊維状
強化材としては、長繊維のものも、yB織繊維ものも用
いることができ、短繊維のものは、ウィスカまたは長繊
維を切断したものが用いられる。また強化材として、ア
ルミナ粒子などの粒子状強化材も用いることができる。In addition to the silicon carbide fibrous reinforcing material used in this example, fibrous reinforcing materials such as boron and alumina can be used as the reinforcing material in the manufacturing method of the present invention. As the fibrous reinforcing material, either long fibers or YB woven fibers can be used, and as short fibers, whiskers or cut long fibers are used. Particulate reinforcing materials such as alumina particles can also be used as reinforcing materials.
これらの粒子状強化材は、繊維状強化材と併用して用い
ることも可能である。These particulate reinforcing materials can also be used in combination with fibrous reinforcing materials.
mN状強化材として、長繊維のもの、特に長繊維のプレ
ブリグシートを用いる場合には、この実施例のように鋳
型の上方から供給することは不可能であるので、予め鋳
型内にこのプレブリグシートを設置した後、金属を鋳型
内に噴霧して製造する。このようにして得られたプレブ
リグシー1への強化複合金属では、強化材の均一な分散
は必要なく、この発明の効果は、主に、強化材と金属マ
]〜リックス界面での化合物層形成を生じないことによ
る、強度低下の防止として発揮される。ざらに、このよ
うな場合に、金属微粒子の噴霧とともに、他の強化材を
鋳型内に供給するという態様も可能である。When using a long fiber material, especially a long fiber prebrig sheet, as the mN-shaped reinforcing material, it is impossible to feed it from above the mold as in this example, so the prebrig sheet is placed in the mold in advance. After the brig sheet is installed, metal is sprayed into the mold for manufacturing. In the reinforced composite metal of Prebrig Sea 1 obtained in this way, uniform dispersion of the reinforcing material is not required, and the effect of this invention is mainly due to the formation of a compound layer at the interface between the reinforcing material and the metal matrix. It is used to prevent strength reduction due to non-uniformity. Generally speaking, in such a case, it is also possible to supply another reinforcing material into the mold together with the spraying of the metal fine particles.
この発明の製造方法に用いられる金属としては、特に限
定されないが、アルミニウム、マグネシウム、ニッケル
およびその合金等が得られた強化複合金属の特性上から
好ましい。The metal used in the manufacturing method of the present invention is not particularly limited, but aluminum, magnesium, nickel, alloys thereof, and the like are preferred from the viewpoint of the properties of the obtained reinforced composite metal.
[発明の効果コ
この発明では、金属を半溶融状態で鋳型内に微粒子状に
噴霧しているため、該金属は鋳型に応じた形状のままで
固化する。したがって、複雑な形状を有する強化複合金
属を製造することができる。[Effects of the Invention] In this invention, since the metal is sprayed into the mold in the form of fine particles in a semi-molten state, the metal solidifies while retaining the shape corresponding to the mold. Therefore, reinforced composite metals having complex shapes can be manufactured.
また、微粒子状に噴霧された金属は、鋳型内で急速に固
化するので、強化材が長時間溶融した金属中で高温に晒
されることはない。したがって、強化材と金属マトリッ
クスの界面での化合物層形成による強度低下を生じない
。さらには、高真空などの製造条件を必要としないため
、工業的に量産可能な製造方法である。Additionally, since the metal sprayed in fine particles solidifies rapidly within the mold, the reinforcing material is not exposed to high temperatures in the molten metal for long periods of time. Therefore, there is no decrease in strength due to the formation of a compound layer at the interface between the reinforcing material and the metal matrix. Furthermore, since it does not require manufacturing conditions such as high vacuum, it is a manufacturing method that can be industrially mass-produced.
図は、この発明の一実施例を示す概略構成図である。
図において、3は金属溶湯、4は噴霧用ノズル、6は強
化材、7は半溶融状態の金属微粒子、8は鋳型、9は強
化複合金属を示す。The figure is a schematic configuration diagram showing an embodiment of the present invention. In the figure, 3 is a molten metal, 4 is a spray nozzle, 6 is a reinforcing material, 7 is a semi-molten metal fine particle, 8 is a mold, and 9 is a reinforced composite metal.
Claims (7)
金属を形成させる、強化複合金属の製造方法において、 前記金属を半溶融状態で前記鋳型内に微粒子状に噴霧し
、前記強化材の存在下に、固化させることにより、前記
強化複合金属を形成させることを特徴とする、強化複合
金属の製造方法。(1) In a method for manufacturing a reinforced composite metal, in which a reinforced composite metal is formed by combining a reinforcing material and a metal in a mold, the metal is sprayed in the form of fine particles into the mold in a semi-molten state, and the reinforcing material is A method for producing a reinforced composite metal, characterized in that the reinforced composite metal is formed by solidifying in the presence of.
徴とする、特許請求の範囲第1項記載の強化複合金属の
製造方法。(2) The method for manufacturing a reinforced composite metal according to claim 1, characterized in that a fibrous reinforcing material is used as the reinforcing material.
徴とする、特許請求の範囲第1項記載の強化複合金属の
製造方法。(3) The method for manufacturing a reinforced composite metal according to claim 1, characterized in that a particulate reinforcing material is used as the reinforcing material.
とを特徴とする、特許請求の範囲第2項記載の強化複合
金属の製造方法。(4) The method for manufacturing a reinforced composite metal according to claim 2, characterized in that short fibers are used as the fibrous reinforcing material.
とを特徴とする、特許請求の範囲第2項記載の強化複合
金属の製造方法。(5) The method for manufacturing a reinforced composite metal according to claim 2, characterized in that long fibers are used as the fibrous reinforcing material.
化材が、前記鋳型内に分散して供給されることを特徴と
する、特許請求の範囲第1〜5項のいずれか1項に記載
の強化複合金属の製造方法。(6) According to any one of claims 1 to 5, wherein the reinforcing material is distributed and supplied into the mold together with the spraying of the metal in a semi-molten state. A method for manufacturing the reinforced composite metal described.
に、前記金属が半溶融状態で前記鋳型内に噴霧されるこ
とを特徴とする、特許請求の範囲第1、2または5項記
載の強化複合金属の製造方法。(7) Claim 1, 2 or 5, characterized in that the reinforcing material is placed in the mold in advance, and then the metal is sprayed in a semi-molten state into the mold. A method for producing reinforced composite metals.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60145323A JPH0636976B2 (en) | 1985-07-01 | 1985-07-01 | Method for producing reinforced composite metal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60145323A JPH0636976B2 (en) | 1985-07-01 | 1985-07-01 | Method for producing reinforced composite metal |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS626759A true JPS626759A (en) | 1987-01-13 |
JPH0636976B2 JPH0636976B2 (en) | 1994-05-18 |
Family
ID=15382500
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60145323A Expired - Lifetime JPH0636976B2 (en) | 1985-07-01 | 1985-07-01 | Method for producing reinforced composite metal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0636976B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005023424A (en) * | 2003-07-03 | 2005-01-27 | General Electric Co <Ge> | Process for producing material reinforced with nanoparticle and article formed thereby |
KR100931995B1 (en) | 2007-06-29 | 2009-12-15 | 한성석 | Gas spraying device for metal laminate production |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5429985A (en) * | 1977-08-10 | 1979-03-06 | Fujitsu Ltd | Semiconductor nonvolatile memory device |
-
1985
- 1985-07-01 JP JP60145323A patent/JPH0636976B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5429985A (en) * | 1977-08-10 | 1979-03-06 | Fujitsu Ltd | Semiconductor nonvolatile memory device |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005023424A (en) * | 2003-07-03 | 2005-01-27 | General Electric Co <Ge> | Process for producing material reinforced with nanoparticle and article formed thereby |
JP4521714B2 (en) * | 2003-07-03 | 2010-08-11 | ゼネラル・エレクトリック・カンパニイ | Method for producing materials reinforced with nanoparticles |
KR100931995B1 (en) | 2007-06-29 | 2009-12-15 | 한성석 | Gas spraying device for metal laminate production |
Also Published As
Publication number | Publication date |
---|---|
JPH0636976B2 (en) | 1994-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4043940B2 (en) | Rapid cohesive processing system for making molds, dies, and related tools | |
US6074194A (en) | Spray forming system for producing molds, dies and related tooling | |
US5381847A (en) | Vertical casting process | |
JP4521714B2 (en) | Method for producing materials reinforced with nanoparticles | |
US4420441A (en) | Method of making a two-phase or multi-phase metallic material | |
JPH05500391A (en) | Lightweight foam metal and its production | |
US4674554A (en) | Metal product fabrication | |
Hynes et al. | Production of aluminium metal matrix composites by liquid processing methods | |
US4928745A (en) | Metal matrix composite manufacture | |
CN104878342A (en) | Method and device for preparing tungsten powder reinforced aluminum matrix composite | |
JPH0819445B2 (en) | Atomizing nozzle with boron nitride surface | |
El Baradie | Manufacturing aspects of metal matrix composites | |
JPS626759A (en) | Production of reinforced composite metal | |
US5390722A (en) | Spray cast copper composites | |
Zhu | A literature survey on fabrication methods of cast reinforced metal composites | |
JPH04266475A (en) | Production of composite material | |
Lee et al. | A new technology for the production of aluminum matrix composites by the plasma synthesis method | |
CN100422368C (en) | In situ formed TiC reinforced Al-Fe-V-Si series heat resistant aluminium alloy material and its preparation method | |
Poddar | Review of recent studies in magnesium matrix composites fabricated by stir casting | |
JPH05105918A (en) | Method and device for producing finely dispersed composite powder | |
Voronin et al. | Methods for producing foamed aluminum | |
McHugh et al. | Recent INEL spray-forming developments | |
JPS613854A (en) | Manufacture of fiber reinforced composite metallic material | |
Gadow et al. | Thermally sprayed prepregs for advanced metal matrix composites | |
MATRLX | Idaho Falls, ID 83415-u) 50 |