JPS626736A - Production of metallic ingot having uniform quality with decreased segregation - Google Patents

Production of metallic ingot having uniform quality with decreased segregation

Info

Publication number
JPS626736A
JPS626736A JP14394185A JP14394185A JPS626736A JP S626736 A JPS626736 A JP S626736A JP 14394185 A JP14394185 A JP 14394185A JP 14394185 A JP14394185 A JP 14394185A JP S626736 A JPS626736 A JP S626736A
Authority
JP
Japan
Prior art keywords
molten steel
steel
molten
slag
solidification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14394185A
Other languages
Japanese (ja)
Inventor
Katsuo Kinoshita
勝雄 木下
Yutaka Shinjo
新庄 豊
Kyoji Nakanishi
中西 恭二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP14394185A priority Critical patent/JPS626736A/en
Publication of JPS626736A publication Critical patent/JPS626736A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To make the quality of a steel ingot uniform and to prevent the defect thereof by removing part of the sensible heat and latent heat of solidification retrained by a molten steel and settling and depositing the molten steel in a semimolten state to the bottom of a casting mold. CONSTITUTION:Slag which is melted by heating in another place is preliminarily packed into the casting mold 4 installed on a molding board 5 and the molten steel 1b subjected to refining in a ladle 8 is poured through a tundish 7 or through a nozzle 3 directly inserted into the slag 2. Since the molten steel 1b is poured through the inside of the slag bath in this stage, the molten steel 1b directly contacts with the slag bath and the sensible heat and latent heat of solidification thereof are partly lost. Therefore the molten steel 1b settles in the slag bath and deposits in the form of a plate on the molding board 5. The molten steel is poured in the form of granular drops by the provision of an induction coil 12 to the outside circumference of the nozzle 3, etc. The quality over the entire part of the steel ingot is made uniform and the defect such as segregation and porosity is prevented by the above-mentioned method.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、溶融金属の造塊方法において均質で偏析の少
ない金属塊を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing a homogeneous metal lump with little segregation in a molten metal ingot forming method.

〔従来の技術〕[Conventional technology]

従来、厚鋼板の製造は、連続鋳造スラブを用いて行なわ
れているが、連続鋳造スラブでは中心偏析による製品鋼
板での耐HIC特性の低下、低温靭性の劣化等の問題が
生じるとともに、極厚鋼板の製造に対しては連鋳スラブ
では必要とする圧下比が確保できないためわざわざ造塊
、分塊工程を採用する方法がとられている。
Conventionally, thick steel plates have been produced using continuous casting slabs, but continuous casting slabs have problems such as a decrease in HIC resistance and low-temperature toughness in the product steel plate due to center segregation, and For the manufacture of steel plates, continuous casting slabs are unable to secure the required reduction ratio, so a method of using ingot making and blooming processes has been adopted.

しかるに、極厚鋼板用扁平鋼塊の製造においては、逆■
偏析やマクロ偏析、ザク等の鋳造欠陥が必然的に発生し
、製品鋼板の機械的性質の劣化や擬似模様の出現等品質
的に好ましくない結果を招くことがあった。
However, in the production of flat steel ingots for extra-thick steel plates, the reverse ■
Casting defects such as segregation, macro-segregation, and cracks inevitably occur, which can lead to unfavorable quality results such as deterioration of the mechanical properties of product steel sheets and the appearance of false patterns.

そのため、鋼塊での逆■偏析を抜本的に軽減することを
目的として一方向性凝固法による扁平鋼塊の製造が各方
面で行なわれるようになった。この原理は溶質濃化溶鋼
の浮上方向と凝固界面の進行方向を同一にすることによ
り濃化溶鋼が凝固前面にストリーグ状に捕捉されるのを
防止するところにある。
Therefore, with the aim of drastically reducing the reverse black segregation in steel ingots, the production of flat steel ingots by the unidirectional solidification method has been carried out in various fields. The principle of this is to prevent the concentrated molten steel from being captured in a streak shape on the solidification front by making the floating direction of the solute-enriched molten steel the same as the advancing direction of the solidification interface.

しかし、一方向性凝固法の弱点は従来3次元的に凝固す
るのを1次元凝固としたために、相対的に抜熱速度が小
さくなり、その結果、デンドライトが粗大となり樹間の
成分偏析による擬似模様が鋼板表面に出現し易いことで
ある。更に、一方向性凝固鋼塊をもってしても鋼塊中に
逆V偏析が出現することがあり、単に凝固進行方向と重
力の方向とを平行にするだけでは、溶質濃化溶鋼の凝固
前面への捕捉は完全には防止できないと言う点も問題で
あった。
However, the weak point of the unidirectional solidification method is that the conventional three-dimensional solidification is changed to one-dimensional solidification, so the heat removal rate is relatively low, resulting in coarse dendrites and pseudo-solidification due to component segregation between trees. Patterns tend to appear on the surface of the steel plate. Furthermore, even if you have a unidirectionally solidified steel ingot, inverted V segregation may appear in the steel ingot, and simply making the direction of solidification parallel to the direction of gravity will cause the solute-enriched molten steel to reach the solidification front. Another problem was that it was not possible to completely prevent the capture of

一方、高合金鋼やTi合金の製造に対してはESR(エ
レクトロスラグ再溶解)法やVAR(真空ア4−り再溶
解)法などの再溶解法が用いられるが、これらの方法は
製品の優れた品質において問題は少ないが、極厚鋼板の
ような大単重品の製造においては製造設備が高価になる
とともに再溶解に伴なうランニングコストが高いことに
よって、充当する対象製品は高価なものに限定せざるを
得ず、また製造能力の容量からして対象量も制限される
On the other hand, remelting methods such as ESR (electro slag remelting) and VAR (vacuum arbor remelting) are used to manufacture high alloy steels and Ti alloys, but these methods There are few problems with excellent quality, but when manufacturing large unit weight products such as extra-thick steel plates, the manufacturing equipment is expensive and the running costs associated with remelting are high, so the applicable products are expensive. It has no choice but to be limited to certain products, and the quantity to be covered is also limited by the capacity of manufacturing capacity.

さらに高合金パイプ素材やロールの製造に対し、CIP
法(Cold Iso、5tatic Press)や
0sprey法(例えば、英国特許1353517、同
15172 a 3)などが適用されており、これらの
方法も原理的にはスケールアップして大単重極厚鋼板の
製造に適用ii)、能と考えられる。しかし、CIP法
については1程的なコストアップ、0sprey法に対
しては実機的スケールアップに際しての難点があって、
極厚鋼板の製造にまでは適用が困難である。
Furthermore, for the production of high alloy pipe materials and rolls, CIP
methods (Cold Iso, 5tatic Press) and 0 spray methods (for example, British Patent No. 1353517, British Patent No. 15172A3) are applied, and these methods can also be scaled up in principle to produce large single-weight extra-thick steel plates. ii), is considered to be effective. However, the CIP method has a slight cost increase, and the 0-spray method has difficulties in scaling up the actual equipment.
It is difficult to apply this method to the production of extra-thick steel plates.

この種の極厚鋼板素材鋼塊は、過熱度ならびに凝固潜熱
を有する溶鋼の状態で鋳型に供給され長持間に亘る冷却
過程を経て凝固が進行するため、凝固の本質である溶質
分配や凝固収縮、重力の作用によるところの熱対流や溶
質濃化溶鋼に対する浮揚力や降下刃などの相互作用によ
って、ミクロ偏析や逆V偏析あるいは、マクロ偏析や、
ザクならびにポロシティ−などの欠陥が発生するもので
ある。したがってこれらの鋳造欠陥を根本的に取除くた
めには、鋳型内での長時間にわたる固液共存層の存在な
いしは、固液共存層に隣接する液層の介在を排除するこ
とである。しかるに大単重極厚鋼板素材としての、鋼塊
は通常20〜100を程度の単重を有するものであって
、その溶鋼が有する過熱度による顕然もさることながら
凝固潜熱は著しく膨大なものであり、これらの含熱量を
溶鋼から取去るためには、通常の方法をもってしてはい
きおい長時間を要せざるを得なくなる。これらの溶鋼含
熱量を大部分溶鋼から取除いた後に鋳型内へ供給するこ
とができれば上述の理由から鋳造欠陥i本質的に除去す
ることが可能であるが通常の方法では、長時間を有する
ため鋳造作業が援引いて生産工程を乱すのみならず、取
鍋ないしはタンディシュなどで含熱量を失った半溶融鋼
をノズルを介して鋳型内に供給することは現実的に不可
能であり、さらには取鍋ないしはタンディシュ内で均質
な半溶融状態の鋼を製造することすら不可能である。既
にレオキャスティングなる技術が存在し低融点金属の小
型鋳塊の製造を実施するのは可能であることが知られて
いるが、鋼のような高融点でありしかも大単重鋼塊であ
ることによってこの方法は適用できない。
This type of extra-thick steel plate raw material steel ingot is supplied to the mold in the state of molten steel with superheat and latent heat of solidification, and solidification progresses through a cooling process over a long period of time. , micro-segregation, inverted-V segregation, macro-segregation,
Defects such as cracks and porosity occur. Therefore, in order to fundamentally eliminate these casting defects, it is necessary to eliminate the presence of a solid-liquid coexistence layer for a long time in the mold or the presence of a liquid layer adjacent to the solid-liquid coexistence layer. However, the steel ingot, which is a material for large unit weight and extremely thick steel plate, usually has a unit weight of about 20 to 100, and the latent heat of solidification is extremely large, not only due to the degree of superheating of the molten steel. Therefore, in order to remove these heat contents from molten steel, it is necessary to take a long time using normal methods. If most of the heat content of the molten steel can be removed from the molten steel and then fed into the mold, it is possible to essentially eliminate casting defects for the reasons mentioned above. Not only does the casting work disturb the production process, it is actually impossible to feed semi-molten steel that has lost its heat content in the ladle or tundish into the mold through the nozzle, and furthermore, it is impossible to feed semi-molten steel into the mold through the nozzle. It is not even possible to produce homogeneous semi-molten steel in a pot or tundish. It is known that a technology called rheocasting already exists and that it is possible to manufacture small ingots of low melting point metals, but it is difficult to manufacture small ingots of low melting point metals. Therefore, this method cannot be applied.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は以上の状況下において厚鋼板、殊に極厚鋼板の
素材鋼塊とし好適な、逆V偏析やザク等の鋳造欠陥が全
く無く、凝固組織として鋼塊全域にわたり均質かつ緻密
にして偏析もほとんど無い金属鋳塊の製造方法を提供せ
んとするものである。
Under the above circumstances, the present invention is suitable for use as a material steel ingot for thick steel plates, especially extra-thick steel plates, and has no casting defects such as inverted V segregation or dents, and has a solidified structure that is homogeneous and dense throughout the entire steel ingot. It is an object of the present invention to provide a method for producing metal ingots, which is almost impossible to produce.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は溶鋼を鋳型に供給するに際し、溶鋼の保有して
いる、過熱度による顕然および凝固潜熱の一部を除去す
ることにより、半溶融状態の溶鋼を鋳型底部に沈降堆積
せしめ、鋼塊底部からの指向性凝固を容易ならしめ均質
かつ緻密にするとともにミクロおよびマクロ偏析の無鋼
塊の製造することを技術手段とする。
In the present invention, when molten steel is supplied to a mold, by removing part of the overt and latent heat of solidification due to the degree of superheating possessed by the molten steel, the molten steel in a semi-molten state is allowed to settle and accumulate at the bottom of the mold. The technical means is to facilitate directional solidification from the bottom, make it homogeneous and dense, and produce steel ingots free of micro and macro segregation.

〔作用〕 以下に本発明の構成を作用と共に詳細に説明する。[Effect] The configuration of the present invention will be explained in detail below along with its operation.

第1図は本発明の実施態様を示す構成図で、定i!15
上に設置された鋳型4内に、鋳型内あるいは他の場所で
加熱手段を用いて溶融したスラグ2(BaCQ2.Na
C1、等あるいは酸化物系のスラグ)を充填しておき、
取w48に入、れた精錬した溶鋼1bをタンディシュア
を経由するかあるいは直接鋳型内スラグ2中に挿入した
ノズル3を通じて給湯し、スラグ浴中を通じて注入する
。注入した溶鋼1はスラグ浴と直接接触することにより
スラグ浴との間で熱交換を行い溶鋼加熱度による顕熱お
よび凝固i熱の一部を失いつつスラグ浴中を沈降し定盤
上に板状をなして堆積する。然るに板状をなして堆積し
た半溶融状態の溶鋼は完全凝固に至るまでの含熱量が著
しく小さいため鋼塊底部−2のわずかの抜熱により急速
に凝固するため非常に微細かつ緻密な組織を呈する。
FIG. 1 is a block diagram showing an embodiment of the present invention. 15
A slag 2 (BaCQ2.Na
C1, etc. or oxide-based slag).
The refined molten steel 1b placed in the draw w48 is supplied through a tundishure or directly through a nozzle 3 inserted into the slag 2 in the mold, and is injected into the slag bath. The injected molten steel 1 exchanges heat with the slag bath by coming into direct contact with the slag bath, and loses some of the sensible heat and solidification heat due to the degree of heating of the molten steel, and settles in the slag bath to form a plate on a surface plate. It is deposited in the form of However, semi-molten molten steel deposited in a plate shape has an extremely small heat content until it completely solidifies, so it solidifies rapidly with a small amount of heat removed from the bottom of the steel ingot, resulting in a very fine and dense structure. present.

ここで重要なのはスラグ中に供給された溶鋼と溶融スラ
グとの熱交換のコントロールであり、それは溶融スラグ
の物性およびスラグ温度、スラグ中に供給された溶鋼流
滴の寸法等に支配される。
What is important here is the control of heat exchange between the molten steel supplied into the slag and the molten slag, which is governed by the physical properties of the molten slag, the slag temperature, the dimensions of the molten steel droplets supplied into the slag, etc.

溶鋼のスラグ中への注入は通常の注湯法によれば連続流
体状に供給されるためCatの比表面積が小さくなって
、溶融スラグ中での熱交換が不十分となり、鋳型底部で
゛ト溶融状態の鋼の液相率が大きくなり、凝固、1′i
織の微細均質化が達成できない。
According to the usual pouring method, molten steel is injected into the slag in the form of a continuous fluid, so the specific surface area of Cat becomes small, and heat exchange in the molten slag becomes insufficient, resulting in melting at the bottom of the mold. The liquid phase ratio of the steel in the molten state increases and solidifies, 1'i
Fine homogenization of the weave cannot be achieved.

そのためlj型内に給湯するに際しノズル内を通過する
溶鋼にノズル外周から誘導コイル12を通じ高周波電磁
力を付与せしめ、溶鋼流にピンチ力を与え溶鋼を分断し
溶融スラグへの給湯を分散し粒滴状にして行うか、ある
いは強力な超音波などにより分散させた粒滴状の給湯を
行う必要がある。
Therefore, when supplying hot water into the lj type, a high frequency electromagnetic force is applied to the molten steel passing through the nozzle from the outer periphery of the nozzle through the induction coil 12, applying a pinch force to the molten steel flow, dividing the molten steel, dispersing the supplied hot water into the molten slag, and forming droplets. It is necessary to supply hot water in the form of droplets or dispersed by powerful ultrasonic waves.

また、溶融スラグは給湯が進むにつれ溶鋼の含熱量を受
けて昇温し、溶鋼からの抜熱能が低下してくる。そこで
鋳型内の溶融スラグに熱電対13を設置して温度計14
でスラグ温度を検出し、これを所定の管理範囲に制御す
る。その方法としてはスラグボット11に保持した所定
温度の溶融スラグ2aをスライディングゲートlOおよ
びノズル9を通して、所定量鋳型内に追加補充して行う
Moreover, as the hot water supply progresses, the temperature of the molten slag increases due to the heat content of the molten steel, and its ability to extract heat from the molten steel decreases. Therefore, a thermocouple 13 was installed in the molten slag in the mold, and a thermometer 14 was installed.
Detects the slag temperature and controls it within a predetermined control range. The method is to add a predetermined amount of molten slag 2a held in the slug bot 11 at a predetermined temperature through the sliding gate IO and the nozzle 9 into the mold.

なお溶湯の鋳造が進行し、溶鋼体積が増加するに従い、
溶融スラグレベルが上昇し鋳型上端に達すれば溶融スラ
グは鋳型からオーへ−フローするが、この分は回収し次
回の使用に適用することにより何ら問題は生じない。
As the casting of molten metal progresses and the volume of molten steel increases,
When the molten slag level rises and reaches the upper end of the mold, the molten slag will flow from the mold into the mold, but this amount can be recovered and applied to the next use without causing any problems.

以上のようにしてM造凝固した鋼塊の凝固組織は鋼塊底
部に対し溶鋼粒滴が 平に拡った板状の層状組織となり
、各層状組織の内部は微細な粒状晶からなっていてミク
ロ偏析も極めて軽微なものである。さらに層状組織の間
隙に微細なポロシティがわずかに散見されることもある
が、体積密度から算出される空隙率は0.2%以下と小
さく、鋼塊の分塊又は直接圧延に先立つ鋼塊加熱により
内部酸化することなく、圧下比2の圧延により完全に圧
着するので問題はない。
The solidification structure of the steel ingot that has been solidified by M-forming as described above is a plate-like layered structure in which molten steel grain droplets are spread out flat against the bottom of the steel ingot, and the inside of each layered structure is composed of fine granular crystals. Microsegregation is also extremely slight. Furthermore, fine porosity is sometimes found in the gaps in the layered structure, but the porosity calculated from the volume density is as small as 0.2% or less, and the steel ingot is heated prior to blooming or direct rolling. There is no problem because it is completely crimped by rolling at a reduction ratio of 2 without internal oxidation.

また、本発明によれば上注鋳造法であるにも拘らず溶鋼
粒滴に対し完全な無酸化鋳造を行うことが可能である。
Further, according to the present invention, it is possible to perform complete oxidation-free casting of molten steel grain droplets despite the overcasting method.

〔実施例〕〔Example〕

C= 0.18重量%、5i=0.28fft量%、 
M n= 1.52重量%、P=0.019重量%、S
=0、007重μ%、A文= 0.040上置%の溶鋼
を50kg大気溶解した。
C=0.18% by weight, 5i=0.28fft amount%,
M n = 1.52% by weight, P = 0.019% by weight, S
50 kg of molten steel with weight = 0,007 μ% and A text = 0.040 weight% was melted in the atmosphere.

次いで、内容積3.5文の砂型鋳型3個を850℃の炉
中で予熱し、g型AにはB a Cl 2を22、pI
型BにはBaCfL2を1旦それぞれ添加溶融し、鋳型
Cは比較のため溶融フラックスを添加せず予熱、のみ行
った。タンディツシュノズルの先端に5mmφのメツシ
ュ孔を有する耐火物フィルターを取付けて十分子熱し、
1650℃の溶鋼温度の溶鋼をタンディツシュを経由し
て各鋳型に15kgづつ鋳造した。
Then, three sand molds with an internal volume of 3.5 cm were preheated in a furnace at 850°C, and g-type A was heated with 22 pI of B a Cl 2 .
For mold B, BaCfL2 was added once and melted, and for mold C, for comparison, only preheating was performed without adding molten flux. Attach a refractory filter with a mesh hole of 5 mm diameter to the tip of the tanditshu nozzle and heat thoroughly.
15 kg of molten steel at a molten steel temperature of 1650° C. was cast into each mold via a tundish.

各鋼塊は切断して凝固組織を調べるとともに、xtlI
aマイクロアナライザによりミクロ偏析を調べた。
Each steel ingot was cut to examine the solidification structure, and xtlI
a Micro-segregation was investigated using a micro-analyzer.

Am塊は全域にわたり微細な粒状晶からなり、B鋼塊は
底部より2/3高さまではA鋼塊と同じ微細な粒状晶で
それより上部は鋼塊表層部に10mmの柱状晶とその内
部に分岐柱状晶が認められた。一方、C鋼塊は鋼塊全周
にわたり15mm程度の柱状晶とその内部は分岐柱状晶
であった。
The Am ingot consists of fine granular crystals over the entire area, and the B steel ingot has the same fine granular crystals as the A steel ingot up to 2/3 height from the bottom, and above that, there are 10 mm columnar crystals on the surface layer of the steel ingot and the inside thereof. Branched columnar crystals were observed. On the other hand, the C steel ingot had columnar crystals of about 15 mm around the entire circumference of the steel ingot and branched columnar crystals inside.

III塊、C鋼塊のそれぞれについてのミクロ偏析調査
からA鋼塊では溶鋼成分に対し最大1.4のPのミクロ
偏析がC鋼塊では同じ<8.7のPのミクロ偏析が認め
られた。
A micro-segregation investigation of each of the III and C steel ingots revealed that the A steel ingot had a maximum P microsegregation of 1.4 with respect to the molten steel composition, and the C steel ingot had a P microsegregation of <8.7. .

〔発明の効果〕〔Effect of the invention〕

本発明により、厚鋼板、特に極厚鋼板の素材鋼塊として
、鋼塊全域に亘る均質で偏析のない緻密な鋳塊を製造−
することができ、逆V偏析やマクロ偏析、ザク等の欠陥
のない鋼塊を得ることができた。
According to the present invention, a dense ingot that is homogeneous and free from segregation throughout the entire steel ingot can be produced as a material steel ingot for thick steel plates, especially extra-thick steel plates.
It was possible to obtain a steel ingot free of defects such as inverted V segregation, macro segregation, and pitting.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の構成を示す実施態様図である。 fa、lb・・・溶鋼、2,2a・・・溶融スラグ、3
.3a・・・ノズル、4・・・鋳型、5・・・定盤、6
゜6a・・・スライディングゲート、7・・・タンディ
ツシュ、8・・・取鍋、9・・・ノズル、lO・・・ス
ライディングゲート、it・・・スラグボット、12・
・・誘導コイル、13・・・熱電対、14・・・温度計
。 15・・・断熱スリーブ
FIG. 1 is an embodiment diagram showing the configuration of the present invention. fa, lb... Molten steel, 2, 2a... Molten slag, 3
.. 3a... Nozzle, 4... Mold, 5... Surface plate, 6
゜6a...Sliding gate, 7...Tandish, 8...Ladle, 9...Nozzle, lO...Sliding gate, it...Slugbot, 12.
...Induction coil, 13...Thermocouple, 14...Thermometer. 15...Insulation sleeve

Claims (1)

【特許請求の範囲】[Claims] 1 溶融金属の造塊方法において、注入すべき溶融金属
より低融点の溶融スラグをあらかじめ溶融金属を注入す
べき鋳型内に充填しておき、該金属を該溶融スラグ層中
を通じて該鋳型内に供給し、該金属の有する過熱度なら
びに凝固潜熱の一部を熱交換により溶融スラグに放出せ
しめた後、該鋳型底部に半溶融状態で沈降堆積せしめ、
鋳型底部からの一方向性凝固を容易にして金属塊とする
ことを特徴とする均質で偏析の少ない金属塊の製造方法
1 In a method for forming molten metal ingots, a mold into which the molten metal is to be injected is filled in advance with molten slag having a lower melting point than the molten metal to be injected, and the metal is supplied into the mold through the molten slag layer. After releasing a part of the superheat and latent heat of solidification of the metal into the molten slag by heat exchange, the metal is deposited in a semi-molten state at the bottom of the mold,
A method for producing a homogeneous metal ingot with little segregation, characterized by facilitating unidirectional solidification from the bottom of a mold to form a metal ingot.
JP14394185A 1985-07-02 1985-07-02 Production of metallic ingot having uniform quality with decreased segregation Pending JPS626736A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14394185A JPS626736A (en) 1985-07-02 1985-07-02 Production of metallic ingot having uniform quality with decreased segregation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14394185A JPS626736A (en) 1985-07-02 1985-07-02 Production of metallic ingot having uniform quality with decreased segregation

Publications (1)

Publication Number Publication Date
JPS626736A true JPS626736A (en) 1987-01-13

Family

ID=15350622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14394185A Pending JPS626736A (en) 1985-07-02 1985-07-02 Production of metallic ingot having uniform quality with decreased segregation

Country Status (1)

Country Link
JP (1) JPS626736A (en)

Similar Documents

Publication Publication Date Title
CN106735003B (en) A kind of non-vacuum melting horizontal casting production technology of high-strength highly-conductive Cu-Cr-Zr alloy bar materials
CN110814305B (en) Cu-Fe composite material double-melt mixed casting equipment and process
US3206301A (en) Process for the continuous treatment of steel
US3414043A (en) Method for the continuous transferring of liquid metals or alloys into solid state with desired cross section without using a mould
JPS62501548A (en) Continuous casting method
JPS626736A (en) Production of metallic ingot having uniform quality with decreased segregation
JPH08257722A (en) Casting method by die casting
US2747245A (en) Process for continuous casting of metal billets
Thomas Continuous casting (metallurgy)
JPS5633164A (en) Manufacture of steel ingot by remelting
JP3096176B2 (en) Solid-liquid coexistence zone die casting method of white cast iron
US4111254A (en) Metal casting method
GB2092038A (en) Production of plated ingots
CN104141065A (en) Precision casting technique for copper-alloy casting
AU634297B2 (en) Process and device for the continuous casting of thin metal products between two rolls
Dutta et al. Continuous casting (concast)
JPS5581061A (en) Production of composite material for abrasion resistance through casting
Kumar et al. Continuous Casting of Steel and Simulation for Cost Reduction
CN1017504B (en) Die casting method for producing killed steel ingots with top-sealing
JPS63183760A (en) Method for continuously casting multiple kinds of steel slab
Mills et al. Fluxes for Ingot Casting
Marsh A New Horizontal Continuous Casting Process for Steel
Pehlke Steel continuous casting
JPS6354473B2 (en)
JPH04100671A (en) Thermal insulation method for molten metal