JPS6267241A - Control device of gas turbine - Google Patents

Control device of gas turbine

Info

Publication number
JPS6267241A
JPS6267241A JP20781385A JP20781385A JPS6267241A JP S6267241 A JPS6267241 A JP S6267241A JP 20781385 A JP20781385 A JP 20781385A JP 20781385 A JP20781385 A JP 20781385A JP S6267241 A JPS6267241 A JP S6267241A
Authority
JP
Japan
Prior art keywords
fuel
nox
exhaust gas
flow rate
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20781385A
Other languages
Japanese (ja)
Other versions
JPH0610426B2 (en
Inventor
Hitoshi Karasawa
唐澤 仁志
Kazue Nagata
永田 一衛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60207813A priority Critical patent/JPH0610426B2/en
Publication of JPS6267241A publication Critical patent/JPS6267241A/en
Publication of JPH0610426B2 publication Critical patent/JPH0610426B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the density of exhaust gas, by furnishing plural fuel feeding systems and feeding the premixed fuels in turn to a combustion tube, while controlling the premixing ratio of fuels to get an adequate exhaust gas density value. CONSTITUTION:At the passage to feed the first system fuel f1 to a burner 2, a flow adjusting valve 9 is furnished, while at the passage to feed the second system fuel f2 to the burner 2, a flow adjusting valve 9a is furnished. At the exhaust of the turbine 12, an exhaust temperature sensor 17 and an exhaust gas NOx sensor 18 are furnished, and, the temperature signal and the NOx quantity signal are fed as a feedback to a controller 16. The opening of the valve 9a is adjusted to control the premixing ratio in order to keep the NOx quantity at an adequate value. Therefore, the exhaust gas density of NOx and the like can be reduced.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はガスタービンの制御装噛に係り、特にガスター
ビンからの公害排出物NOxの1IIlr!1I11制
御を可能としたガスタービンの制御l装四に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a control device for a gas turbine, and more particularly to control equipment for controlling NOx pollution emissions from a gas turbine. This invention relates to a gas turbine control system that enables 1I11 control.

〔発明の技術的背景およびその問題点〕第5図は、基本
的なガスタービン装置の構成図であって、空気圧縮ii
によって圧縮された大気は高圧空気となって燃焼器2に
流入Jる。−上記燃焼器2は円筒状の燃焼筒3を有し、
その燃焼筒3   ゛の外周部に環状領域4を形成する
ように外筒5が同心的に配設され、上記燃焼筒3の一端
部に燃料ノズル6が設けられている。そこで、上記燃焼
器2に流入した高圧空気は、」−記燃焼筒3と外筒5に
より形成された環状領域4を通り、燃焼筒3を強制対流
冷却しながら、その燃焼筒3の外周壁に形成された空気
穴7および前記燃料ノズル6の外周部に設番ノられIこ
スワラ8等により燃焼筒3内に流入りる。一方、燃料は
、ガスタービン負荷にλ1応して燃料18調整弁9によ
って流量が制御され、燃v1ノズル6により燃焼筒3内
の逆流領域1o近傍に噴出せしめられ、点火装置11に
より着火され、前記スワラ8および空気穴7がら流入し
た高1F空気どともに燃焼し、定容定圧燃焼が継続して
へ編ガスが発生される。しかして、この?3編ガスはガ
スタービン12に導びがれて動力を発生し、この動力は
空気月縮機1の駆動動力として一部を消費し、残りの動
力は例えば発電機の如き被駆動1113の駆動動力とし
て消費される。
[Technical background of the invention and its problems] FIG. 5 is a block diagram of a basic gas turbine device, in which air compression II
The compressed air becomes high-pressure air and flows into the combustor 2. - the combustor 2 has a cylindrical combustion tube 3;
An outer cylinder 5 is disposed concentrically to form an annular region 4 on the outer periphery of the combustion cylinder 3, and a fuel nozzle 6 is provided at one end of the combustion cylinder 3. Therefore, the high-pressure air that has flowed into the combustor 2 passes through the annular region 4 formed by the combustion tube 3 and the outer tube 5, and cools the combustion tube 3 by forced convection while cooling the outer peripheral wall of the combustion tube 3. The air flows into the combustion tube 3 through an air hole 7 formed in the air hole 7 and a swirler 8 formed on the outer periphery of the fuel nozzle 6 . On the other hand, the flow rate of the fuel is controlled by the fuel 18 regulating valve 9 in accordance with the gas turbine load λ1, the fuel is injected into the vicinity of the backflow region 1o in the combustion cylinder 3 by the fuel v1 nozzle 6, and is ignited by the ignition device 11. The swirler 8 and the high 1F air flowing in through the air holes 7 are combusted together, constant volume and constant pressure combustion continues, and fringe gas is generated. But this? The third gas is guided to the gas turbine 12 to generate power, and a part of this power is consumed as driving power for the air compressor 1, and the remaining power is used to drive a driven 1113 such as a generator. Consumed as power.

ところが、上記燃焼器2においては、燃料ノズル6が1
11IIIJ、たは複数個の場合においても、燃焼にJ
、っcli−する高温ガスのため、いわゆるサーマルN
OXと称するNOxが大巾に発生する。
However, in the combustor 2, the fuel nozzle 6 is
11IIIJ, or even in the case of multiple J
, the so-called thermal N
A large amount of NOx, called OX, is generated.

このNOxを減少させるためには、水或は蒸気を噴01
りる方法が広く使用されている。すなわち、水を燃焼器
に1713川Mることにより燃焼温度を下げ、サーマル
NOXの発生を防11するもので・、通常燃料流量に対
して、水の噴射&+のカーブを設()、炉料流量の増加
に伴なっ(水噴04晶を増加さぜ、適正な排ガスNOx
となるようにしている。
In order to reduce this NOx, it is necessary to inject water or steam.
method is widely used. In other words, by injecting water into the combustor, the combustion temperature is lowered and the generation of thermal NOX is prevented.A water injection &+ curve is set for the normal fuel flow rate (), and the furnace fuel flow rate is With the increase in water jet 04 crystal, appropriate exhaust gas NOx
I am trying to make it so that

さらに、空気流量ど燃料a1とから排ガスN Ox予測
量を111制御装門内で演口し、上記水噴射1f)制r
JIlに制御を行ない、水噴OA部を適iF耕ガスN 
Ox W+になるように最適に制御!Ilする7J法ら
ある。、1、Iご、特公昭57−27971号公報に2
載されているように、直接排ガスN Ox蛸を検出し、
イのNOx値が定められjζ適止(1ガスN Ox I
I標艙となるように水噴射量を調節する方法し提案され
ている。
Furthermore, the predicted amount of exhaust gas NOx is calculated from the air flow rate and fuel a1 in the 111 control system, and the water injection 1f) control r
Control the water jet OA section to adjust the iF plowing gas N.
Optimal control to achieve Ox W+! There are 7J laws that apply. , 1, I, Special Publication No. 57-27971, 2
As shown, directly detects exhaust gas NOx,
The NOx value of a is determined and appropriate (1 gas NOx I
A method has been proposed for adjusting the amount of water jetted so as to achieve the I standard.

しかしながら、これらのN Ox (It減ン大はいず
れも水或は蒸気を使用Jるもので、効・拳′1はり「、
1、しくなく、また燃焼振動も発り1しやすい。さらに
−1ンバインドリイクル等では廃熱回収ボイ)」、り蒸
気噴射用蒸気を得る方法が通例である/xめ、起動時に
おいては、廃熱回収ボイラより1分な蒸気噴射用蒸気が
得られないときなどは、蒸気条f1が確立されるまで燃
Fl流量を小−ルドして長reIrEJ廃熱回収ボイラ
のつA−ミンクを継続し、蒸気確立を1)ってガスター
ビンの負荷を上昇さμる等、運用1のa−1限と6なっ
−(いる。
However, all of these NOx reductions use water or steam, and their effectiveness is limited.
1. It doesn't look good, and combustion vibrations are likely to occur. Furthermore, in the case of a waste heat recovery boiler, etc., it is customary to obtain steam for injection using a waste heat recovery boiler. If steam cannot be obtained, the flow rate of fuel Fl is kept small until the steam condition f1 is established, and A-mink of the long reIrEJ waste heat recovery boiler is continued. As μ increases, the a-1 limit of operation 1 and 6 become (there are.

ところで、局所的な火炎温度の低減を実現する方法どし
ては、予混合法が効果的であることが知られている。す
なわれ、第6図は燃空比に対するN OXの変化を丞1
図であり、予混合なしの場合にお(〕るNOx発1F吊
が曲線Aのようになるのに対し、例えば燃Fl希薄条件
で予混合すると、その予混合91合に応じてNOX発生
昂は曲線Bのようになり、局所的火炎温度の低下が可能
となり、NOx低減が可能となる。
By the way, it is known that a premixing method is effective as a method for realizing a local reduction in flame temperature. In other words, Figure 6 shows the change in NOx with respect to the fuel-air ratio.
This figure shows that when there is no premixing, the NOx generation at 1F is as shown in curve A, whereas when premixing is performed under lean conditions, for example, NOx generation increases according to the premixing. becomes like curve B, which makes it possible to lower the local flame temperature and reduce NOx.

第7図は、]記予混合法を利用した燃焼器の基本的な構
成を示撲概略図(・あ−)て、燃焼筒3の外側部には予
混合室14が形成されており、第2の燃料流18調整弁
9aによっ−(流量調整された燃料がト記r混合室14
に供給され、イこで燃焼筒3内に流入する前に高11空
気と予混合され、予混合¥14に設けられた複数個の穴
15を通って燃焼!!13内に流入する。そしτ、上記
燃焼筒3内に43いて、前記燃料ノズル6から噴射され
た燃料の燃焼によって発生した高温ガスによって着火さ
れ、低い燃焼温度で燃焼しNOxの発1Fが抑制される
FIG. 7 is a schematic diagram illustrating the basic configuration of a combustor using the premixing method, in which a premixing chamber 14 is formed on the outside of the combustion tube 3. The second fuel flow 18 regulating valve 9a allows the fuel whose flow rate is adjusted to be transferred to the mixing chamber 14.
It is premixed with high air before flowing into the combustion cylinder 3, and burns through the plurality of holes 15 provided in the premixing cylinder 14! ! 13. Then, τ is present in the combustion tube 3 and is ignited by the high temperature gas generated by combustion of the fuel injected from the fuel nozzle 6, and is combusted at a low combustion temperature, suppressing the generation of NOx 1F.

このような装置におけるNOX、COWのガスタービン
負荷に対応する排ガス昂は、第8図に示すようになり、
定格負荷付近のガスタービン負荷運転においては、NO
x規f、II値aおよびCO規i、11値すをそれぞれ
十分クリアすることができる。しかしながら、この図か
らも判るように、部分負荷運転時においては、NOX、
COはともに規制値a、bを大巾にオーバーする。
The exhaust gas levels corresponding to the NOX and COW gas turbine loads in such a device are as shown in Figure 8.
During gas turbine load operation near the rated load, NO
It is possible to sufficiently clear x criterion f, II value a, and CO criterion i, 11 value. However, as can be seen from this figure, during partial load operation, NOx,
Both CO levels greatly exceed regulation values a and b.

(発明の目的〕 本発明はこのような点に鑑み、複数系統の燃料系統を設
け、予混合気の供給を複数段にわたって段階的に行なう
とともに、予混合割合を適正な排ガスNOx値となるよ
うに制taすることにより、NOxの低減を効果的に行
ない、上述の如き問題点がないガスタービンの制御装置
を得ることを目的とする。
(Objective of the Invention) In view of these points, the present invention provides a plurality of fuel systems, supplies premixture in stages over multiple stages, and adjusts the premixing ratio to achieve an appropriate exhaust gas NOx value. It is an object of the present invention to provide a gas turbine control device which effectively reduces NOx by controlling the amount of NOx and which does not have the above-mentioned problems.

(発明の概要) 本発明は、それぞれ燃焼器への燃料流量を制御可能な複
数の燃料系統と、燃料ノズルから燃料を噴出させる燃料
系統以外の燃料系統の燃料をそれぞれ高圧空気と予混合
させ、(の予混合された燃料を燃焼筒内に供給する複数
の混合室と、タービン負荷に応じて、複数系統の燃料流
量の総和を制御し、甲−燃料系統から順次複数燃料系統
への切換えを行なって、予混合された燃料の供給を段階
的に行なわせるとともに、NOx等の排ガス値が適I[
埴どなるように上記予混合の割合を制御する燃焼1.I
I御器とを有することを特徴とする。
(Summary of the Invention) The present invention includes a plurality of fuel systems, each of which can control the fuel flow rate to a combustor, and a fuel system other than the fuel system that injects fuel from a fuel nozzle, premixing each fuel with high-pressure air, Controls the sum of the fuel flow rates of multiple systems according to the multiple mixing chambers that supply premixed fuel into the combustion cylinder and the turbine load, and sequentially switches from the fuel system A to the multiple fuel systems. The premixed fuel is supplied in stages, and the exhaust gas values such as NOx are adjusted to an appropriate level.
Combustion 1. Controlling the ratio of the above premixing so as to produce clay. I
It is characterized by having the following features:

〔発明の実施例〕[Embodiments of the invention]

以下、2系統の燃料を使用した場合、すなわち第7図に
示した予混合燃焼器を使用したシステムの例につき、本
発明の一実施例を説明する。
An embodiment of the present invention will be described below using an example of a system using two systems of fuel, that is, a system using a premix combustor shown in FIG. 7.

第7図においで、燃焼筒3の一端に設けられた燃料ノズ
ル6には、第1系統の燃料f1が燃料流m調整弁9を介
して供給されるとともに、その燃料の一部が空気圧縮機
1から送給された高圧空気の一部とともにスワラ8を経
て上記燃焼筒3内に供給され、当該部で燃焼が行なわれ
る。
In FIG. 7, the fuel f1 of the first system is supplied to the fuel nozzle 6 provided at one end of the combustion tube 3 via the fuel flow m regulating valve 9, and a part of the fuel is compressed by air. It is supplied into the combustion tube 3 through the swirler 8 along with a portion of the high-pressure air fed from the machine 1, and combustion is performed there.

ところで、上記燃焼筒3の外周部には、独立した予混合
室14が設けられ、予混合室14に、第2系統の燃料で
2が1!iFl流吊講整弁9aを介して供給され、そこ
で空気圧縮111から吐出された高圧空気の一部とそれ
ぞれ予混合した後、予混合室14に設けられた穴15よ
り燃焼筒3内に噴入され、当該部で燃焼される。
By the way, an independent premixing chamber 14 is provided on the outer periphery of the combustion tube 3, and the premixing chamber 14 is filled with the fuel of the second system. After being premixed with a portion of the high-pressure air discharged from the air compressor 111, the air is injected into the combustion cylinder 3 through the hole 15 provided in the premixing chamber 14. and burned in the relevant section.

ところで、燃料流量調整弁9,9aは、第2図に示すよ
うに、燃焼mi制御器16からの出力信号によってそれ
ぞれ作動制御されるようにしてあり、上記燃焼制御器1
6には、fAvJ増減信号りが入力されるとともに、タ
ービン12の排気部に設番ノられた排気温度センサー1
7からの排気温度信号、排ガスNOxセンサー18から
N0xffi信号、およびガスタービン速度センリー1
9からのna信号がフィードバックされ、さらに各燃料
流(iltJ!l整弁9,9aにそれぞれ設けられた弁
開度検出器20.21からの弁開度信号がフィードバッ
クされる。
Incidentally, as shown in FIG. 2, the fuel flow rate regulating valves 9 and 9a are operated and controlled by output signals from the combustion mi controller 16, respectively.
The fAvJ increase/decrease signal is input to 6, and the exhaust temperature sensor 1 installed at the exhaust part of the turbine 12 is inputted to 6.
Exhaust temperature signal from exhaust gas NOx sensor 18, NOxffi signal from exhaust gas NOx sensor 18, and gas turbine speed sensor 1
The na signal from 9 is fed back, and furthermore, the valve opening signals from the valve opening detectors 20 and 21 provided in each fuel flow (iltJ!l regulating valve 9, 9a) are fed back.

第1図は、上記燃焼制W器16のll1llブロック図
であって、ガスタービン負荷増減信号りが燃焼制御II
器16の負荷設定器22に入力すると、その負61設定
器22が作動して負荷指令が出力され、この負荷指令は
3!度ヒンサー19より得られる速亀信号と比較器23
で比較され、その偏差信号が速tU負荷制御部24を介
して低値優先回路25に入力される。上記低値優先回路
25には、排気温度Lンサー17からの排気温度信号を
入力する排気温1!111I制御部26の出力と、起動
時制御部27の出力が同様に人力されており、これらの
3信号の低値により燃料要求指令信号Qが出力される。
FIG. 1 is a block diagram of the combustion control unit 16, in which the gas turbine load increase/decrease signal is controlled by the combustion control unit II.
When inputted to the load setting device 22 of the device 16, the negative 61 setting device 22 is activated and a load command is output, and this load command is 3! Speed signal obtained from degree hinter 19 and comparator 23
The difference signal is input to the low value priority circuit 25 via the speed tU load control section 24. The low value priority circuit 25 has the output of the exhaust temperature 1!111I control section 26 which inputs the exhaust temperature signal from the exhaust temperature L sensor 17, and the output of the start-up control section 27, which are also manually operated. A fuel request command signal Q is output depending on the low values of the three signals.

上記低値優先回路25は、速成負荷信号に優先してガス
タービン保護のための排気温度11111+信号を活か
したり、起動時の燃料制御を行なうためのもので、通常
は排気温度が制限内であれば、負荷指令に応じて燃料要
求指令信号Qが出力される。
The low value priority circuit 25 is used to take advantage of the exhaust temperature 11111+ signal for gas turbine protection in priority over the fast-generating load signal, and to perform fuel control at startup, and is normally used even if the exhaust temperature is within the limit. For example, a fuel request command signal Q is output in response to a load command.

ところで、上記燃料要求指令信号9は、第1の関数発生
?A28、第2の関数発生器29に入力され、上記第1
の関数発生器28では、上記燃料要求指令信号Qに対応
する第1系統の燃Flf1の流量指令信号が出力され、
この信号から減算器30でバイアス設定器31からのバ
イアス信号が減算され、その偏差信号が流量−弁すフト
変換器32で弁リフト信号となり、減算器33、パワー
アンプ34を介して燃料流m調整弁9に入力され、イの
燃料流m調整弁9の開度が制御される。また、上記燃料
流量調整弁9の開疾は弁Ili!@検出器20によって
検出され、減算器33にフィードバックされる。
By the way, the fuel demand command signal 9 is generated by the first function? A28 is input to the second function generator 29, and the first
The function generator 28 outputs a flow rate command signal of the first system fuel Flf1 corresponding to the fuel demand command signal Q,
The bias signal from the bias setting device 31 is subtracted from this signal by a subtracter 30, and the deviation signal becomes a valve lift signal by a flow rate-valve lift converter 32, and the fuel flow m The fuel flow m is inputted to the regulating valve 9, and the opening degree of the fuel flow m regulating valve 9 is controlled. Moreover, the opening speed of the fuel flow rate regulating valve 9 is the valve Ili! @Detected by the detector 20 and fed back to the subtracter 33.

一方、第2の関数発生器29では、タービン負荷が低負
荷域における所定値になったとき、燃料要求指令信号0
に応じて第2系統の燃料f2の流量指令信号が出力され
、これが加尊器35において前記バイアス設定器31か
らのバイアス信号が加算され、その出力信号が流…−弁
リフト変換器36で弁リフト信号となり、減梼各37、
パワーアンプ38を介して燃料流m調整弁9aに入力れ
、その燃料流m調整弁9aの開度がf、II litさ
れる。そして、その燃料流部調整弁9aの開庭は弁開検
出器21によって検出され、減n器37にフィードバッ
クされる。
On the other hand, in the second function generator 29, when the turbine load reaches a predetermined value in the low load range, the fuel request command signal 0
A flow rate command signal for the fuel f2 in the second system is output in response to this, and the bias signal from the bias setting device 31 is added to this signal in the converter 35, and the output signal is converted to the flow rate command signal in the valve lift converter 36. It became a lift signal, and 37 each of the towers were reduced.
It is input to the fuel flow m regulating valve 9a via the power amplifier 38, and the opening degree of the fuel flow m regulating valve 9a is set to f, II lit. The opening of the fuel flow regulating valve 9a is detected by the valve opening detector 21 and fed back to the n reducer 37.

ここで、関数発生器28.29は、あらかじめN OX
 II出量を適正値内に押えるように設定されたカー1
で、燃料流量指令信号qに対する予混合を1′Jなう第
2の燃料流部調整弁9aの分担量を決めるものであり、
またバイアス設定器31は第2の燃料流量調節弁の開き
始め時の燃料制御を円滑にbなうようにするためのもの
である。
Here, the function generators 28 and 29 are configured in advance to
Car 1 set to keep II output within the appropriate value
This determines the share of the second fuel flow regulating valve 9a that performs 1'J of premixing with respect to the fuel flow rate command signal q.
Further, the bias setting device 31 is used to smoothly control the fuel when the second fuel flow rate control valve starts to open.

一方、NOXセン+j−18で得られたNOx値は、減
v5器39でNOX設定値と比較され、例えば比例積分
器等のIII御器41でNOX量偏差を解消するための
制御指令が演Qされ、加篩器30゜35にバイアス信号
として加えられる。しかして、このバイアス信号は燃料
流部0にもとずいて決められた関数カーブ28.29に
対してN OX i)による修正をhなう働きを右し、
例えば気象条件(湿庭、大気温麿等)で、NOX発生発
生子想より変った場合に予混合割合を変化させ、N0x
lを適正値に制御[lすることができる。
On the other hand, the NOx value obtained by the NOx sensor +j-18 is compared with the NOx set value by the reducer 39, and a control command for eliminating the NOx amount deviation is calculated by a III controller 41 such as a proportional integrator. Q is applied as a bias signal to the filter 30 and 35. Therefore, this bias signal acts to modify the function curve 28.29 determined based on the fuel flow part 0 by NOx i),
For example, if the weather conditions (wet garden, atmospheric temperature, etc.) change from the expected NOx generation, the premixing ratio can be changed, and NOx
It is possible to control l to an appropriate value.

第3図(a)、(b)はイれぞれ1記制御の様子を示す
図であって、第3図(a)の線a、【)はそれぞれあら
かじめ設定された閏数発/1器28゜29によって住す
る燃料流部調整弁9.98にJ、って得られる燃料流量
の負Aに対りるカーブである。そこで、今例えばNOx
昂が第3図<8)のdのように1臂したとすると、NO
x’)定植とNOx吊との偏差が生じ、制御器41にJ
、り修■バイアス信号が出力され、燃料流部調整弁9 
aによる燃料流量が第3図(b)のfのように増加せし
められ、一方燃料流品調整弁9による燃料流h1は加粋
器30を介してeのように減少せしめられ、合計燃Fl
ffiqは一定に保持される。したが−)で、前記予混
合割合が増加し、N0xffiがNOX設定値に近づく
ように減少方向に制御され、最終的にはNOX昂はNO
X設定値に制御される。
FIGS. 3(a) and 3(b) are diagrams showing the state of the first control, respectively, and the lines a and [) in FIG. 3(a) respectively indicate the preset leap number shots/1. This is a curve for the negative A of the fuel flow rate obtained by the fuel flow control valve 9.98 J, which is accommodated by the valves 28 and 29. So, for example, NOx
If Kō has one arm as shown in d in Figure 3<8), NO
x') A deviation occurs between planting and NOx hanging, and the controller 41
, the repair bias signal is output, and the fuel flow adjustment valve 9
The fuel flow rate caused by a is increased as indicated by f in FIG.
ffiq is held constant. However, at -), the premixing ratio increases and NOxffi is controlled in a decreasing direction so that it approaches the NOX set value, and finally the NOx concentration decreases to NOx.
Controlled by the X setting value.

ところで、NOx排出吊よりもC0IJl出品のhを積
極的に制御したい場合には、NOxの場合と同様にCO
センサーを設け、NOx制御部をCO制御部とみたてて
制御すればよい。すなわち、N Ox低減とCO増加は
逆の関係にあるため、COを制御したい場合はNOxの
低減率をゆるくしてやればCOの増加は抑えられる。ま
た、NOxに加λCOも制御したい場合は、NOx制御
部とCOII、IJ御部を設()、両制御部の出力の最
小値を低値優先器で選択してバイアス信号として加える
制御回路とすればよい。
By the way, if you want to control h of C0IJl more actively than NOx emission, you can control CO
It is sufficient to provide a sensor and control the NOx control section as if it were a CO control section. That is, since the reduction in NOx and the increase in CO are in an inverse relationship, if it is desired to control CO, the increase in CO can be suppressed by slowing down the NOx reduction rate. In addition, if you want to control λCO in addition to NOx, you can install a NOx control section, a COII, and an IJ control section (), and a control circuit that selects the minimum value of the output of both control sections with a low value priority device and adds it as a bias signal. do it.

Jなわち、第4図に示すように、CO設定値44とCO
センサー45からのCO量信号との偏差信号によって制
御器46でその偏差を解消するための制御指令が演篩さ
れ、その制御指令信号が低Mi優先器47に入力される
。一方、上記低値優先器47にはtIII御器41から
の制御指令信号も入力されており、そこで両制御指令信
号の低値、すなわちNOxとCOのどちらかの制御目標
に到達したljl timl出力が選択され、掛n器4
8で燃料流量指令信号qから燃料流部調整弁9への流量
指令信号が作成される。一方この信号と燃料流量指令信
号Qより減粋器49で、予混合する燃料流量指令信号が
作成され、第2の燃料流部調整弁9aの開度が制御され
る。
In other words, as shown in FIG. 4, the CO set value 44 and CO
Based on the deviation signal from the CO amount signal from the sensor 45, a control command for eliminating the deviation is processed by the controller 46, and the control command signal is input to the low Mi priority device 47. On the other hand, the control command signal from the tIII controller 41 is also input to the low value priority device 47, and the low value of both control command signals, that is, the ljl timl output that has reached the control target of either NOx or CO. is selected and multiplier 4
At step 8, a flow rate command signal to be sent to the fuel flow control valve 9 is created from the fuel flow rate command signal q. On the other hand, based on this signal and the fuel flow rate command signal Q, a fuel flow rate command signal for premixing is created in the attenuator 49, and the opening degree of the second fuel flow regulating valve 9a is controlled.

なお、上記実施例において2系統の燃料制御について説
明したが、NOx排出ω等どの兼合いで、3系統等にし
てもよい。また、排ガスll&は空気流量、燃料流囲等
によって油筒して得られる排ガス予想値としてもよい。
Although two systems of fuel control have been described in the above embodiment, three systems or the like may be used depending on the NOx emission ω, etc. Further, the exhaust gas ll& may be an expected exhaust gas value obtained from an oil cylinder based on air flow rate, fuel flow environment, etc.

(発明の効宋) 以上説明したように、本発明においては複数の燃料系統
を設は燃焼筒内に予混合した燃料を順次段階的に供給す
るようにするとともに、予混合割合をw1@シて排ガス
濃度を制m ′1Jるようにしたので、全負荷域におい
て排ガス濃度が規制給以上になることを確実に防止する
ことができ、高効率bガスタービンの運転を行なうこと
ができる。しかも、水や蒸気を噴射するものでないから
、効率低下を招くこともない。
(Effects of the Invention) As explained above, in the present invention, a plurality of fuel systems are provided to sequentially supply premixed fuel into the combustion cylinder in stages, and the premix ratio is adjusted to Since the exhaust gas concentration is controlled by m'1J, it is possible to reliably prevent the exhaust gas concentration from exceeding the regulated supply in the entire load range, and it is possible to operate the high-efficiency B gas turbine. Moreover, since it does not inject water or steam, there is no reduction in efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の!制御装盾における燃焼制御器の7 
Dツク図、第2図は本発明のf、II御装置の概略系統
図、第3図(a)(b)はイれぞれ本発明のfl−IJ
J説明図、第4図は本発明の他の実施例の制御ブ【−1
ツク図、第5図は基本的なガスタービン装置の構成図、
第6図は燃空比に対するNOxの変化線図、第7図は予
混合方式の低NOXタービンの構成図、第8図は第7図
のガスタービンの排ガス特性線図である。 1・・・空気f[縮機、2・・・燃焼器、6・・・燃料
ノズル、9.9a・・・燃Fl流量調整弁、14・・・
予混合室、16・・・燃焼制W器、18・・・排ガスN
Ox上ン勺−128・・・第1の関数発生器、29・・
・第2の関数発生器、31・・・バイアス設定器。 出願人代狸人  佐  藤  −雄 第2図 0萄 (%)− (b) 第3目 第5図 煤空比
Figure 1 shows the features of the present invention! Combustion controller in control shield 7
Figure 2 is a schematic system diagram of the f and II control devices of the present invention, and Figures 3 (a) and (b) are the fl-IJ of the present invention, respectively.
J explanatory diagram, FIG. 4 is a control block [-1] of another embodiment of the present invention.
Figure 5 is a configuration diagram of the basic gas turbine equipment.
FIG. 6 is a NOx change diagram with respect to fuel-air ratio, FIG. 7 is a configuration diagram of a premixing type low NOX turbine, and FIG. 8 is an exhaust gas characteristic diagram of the gas turbine shown in FIG. 7. 1...Air f [compressor, 2...Combustor, 6...Fuel nozzle, 9.9a...Fuel Fl flow rate adjustment valve, 14...
Premixing chamber, 16... Combustion suppressor, 18... Exhaust gas N
Ox top-128...first function generator, 29...
- Second function generator, 31...bias setting device. Applicant Raccoon Person Sato - Male Figure 2 0 (%) - (b) Figure 3 Soot Sky Ratio

Claims (1)

【特許請求の範囲】 1、それぞれ燃焼器への燃料流量を制御可能な複数の燃
料系統と、燃料ノズルから燃料を噴出させる燃料系統以
外の燃料系統の燃料をそれぞれ高圧空気と予混合させ、
その予混合された燃料を燃焼筒内に供給する複数の混合
室と、タービン負荷に応じて、複数系統の燃料流量の総
和を制御し、単一燃料系統から順次複数燃料系統への切
換えを行なつて、予混合された燃料の供給を段階的に行
なわせるとともに、排ガス濃度が適正値となるように上
記予混合の割合を制御する燃焼制御器とを有することを
特徴とするガスタービン制御装置。 2、排ガス濃度は排ガスセンサーによつて検出されるこ
とを特徴とする、特許請求の範囲第1項記載のガスター
ビン制御装置。 3、排ガス濃度は空気流量、燃料流量等によって演算し
て得られる排ガス予想値であることを特徴とする特許請
求の範囲第1項記載のガスタービン制御装置。
[Scope of Claims] 1. A plurality of fuel systems each capable of controlling the fuel flow rate to the combustor, and a fuel system other than the fuel system that injects fuel from a fuel nozzle are premixed with high-pressure air,
Multiple mixing chambers supply the premixed fuel into the combustion cylinder, and the total fuel flow rate of multiple systems is controlled according to the turbine load, and a single fuel system is sequentially switched to multiple fuel systems. A gas turbine control device comprising a combustion controller that supplies the premixed fuel in stages and controls the ratio of the premixing so that the exhaust gas concentration becomes an appropriate value. . 2. The gas turbine control device according to claim 1, wherein the exhaust gas concentration is detected by an exhaust gas sensor. 3. The gas turbine control device according to claim 1, wherein the exhaust gas concentration is an expected exhaust gas value obtained by calculating based on air flow rate, fuel flow rate, etc.
JP60207813A 1985-09-20 1985-09-20 Gas turbine control device Expired - Lifetime JPH0610426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60207813A JPH0610426B2 (en) 1985-09-20 1985-09-20 Gas turbine control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60207813A JPH0610426B2 (en) 1985-09-20 1985-09-20 Gas turbine control device

Publications (2)

Publication Number Publication Date
JPS6267241A true JPS6267241A (en) 1987-03-26
JPH0610426B2 JPH0610426B2 (en) 1994-02-09

Family

ID=16545926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60207813A Expired - Lifetime JPH0610426B2 (en) 1985-09-20 1985-09-20 Gas turbine control device

Country Status (1)

Country Link
JP (1) JPH0610426B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006059749A1 (en) * 2004-12-03 2006-06-08 Ebara Corporation Gas turbine apparatus
CN107100743A (en) * 2017-04-28 2017-08-29 申能股份有限公司 A kind of combustion engine automatic combustion regulating system and adjusting method
US10006635B2 (en) 2013-09-27 2018-06-26 Rolls-Royce Plc Apparatus and a method of controlling the supply of fuel to a combustion chamber

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6091141A (en) * 1983-10-26 1985-05-22 Hitachi Ltd Low nox gas turbine burner

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6091141A (en) * 1983-10-26 1985-05-22 Hitachi Ltd Low nox gas turbine burner

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006059749A1 (en) * 2004-12-03 2006-06-08 Ebara Corporation Gas turbine apparatus
US7596939B2 (en) 2004-12-03 2009-10-06 Ebara Corporation Gas turbine apparatus
US10006635B2 (en) 2013-09-27 2018-06-26 Rolls-Royce Plc Apparatus and a method of controlling the supply of fuel to a combustion chamber
CN107100743A (en) * 2017-04-28 2017-08-29 申能股份有限公司 A kind of combustion engine automatic combustion regulating system and adjusting method
CN107100743B (en) * 2017-04-28 2019-03-22 申能股份有限公司 A kind of combustion engine automatic combustion regulating system and adjusting method

Also Published As

Publication number Publication date
JPH0610426B2 (en) 1994-02-09

Similar Documents

Publication Publication Date Title
US4955191A (en) Combustor for gas turbine
US6092362A (en) Gas-turbine combustor with load-responsive premix burners
US7513100B2 (en) Systems for low emission gas turbine energy generation
US10151487B2 (en) Sequential combustion arrangement with dilution gas
JP4339519B2 (en) Gas turbine operating method and gas turbine
JP3178055B2 (en) Control device for gas turbine combustor and gas turbine
JPH0461169B2 (en)
JPS6267241A (en) Control device of gas turbine
JPH0411729B2 (en)
JPS61135942A (en) Gas turbine controlling device
JPH0115775B2 (en)
JPS62255538A (en) Gas turbine control device
JP4463220B2 (en) Exhaust reburning burner device
JPH0361090B2 (en)
GB2419180A (en) A combustion device including upstream secondary fuel delivery
JP2783638B2 (en) Gas turbine combustion equipment
JPH0579818B2 (en)
JPH07260139A (en) Burning vibration preventing apparatus
JPH07119492A (en) Combustion device for gas turbine and control method therefor
JP4182414B2 (en) Combustion control method for steam injection gas turbine
JPH0116925Y2 (en)
JP3703615B2 (en) Gas turbine equipment
JP2675105B2 (en) Burner automatic control device
JPH05203151A (en) Controller for gas turbine combustion device
JPH05280739A (en) Gas turbine fuel supplying facility