JPS6267240A - Fuel converting method for burner - Google Patents
Fuel converting method for burnerInfo
- Publication number
- JPS6267240A JPS6267240A JP20652085A JP20652085A JPS6267240A JP S6267240 A JPS6267240 A JP S6267240A JP 20652085 A JP20652085 A JP 20652085A JP 20652085 A JP20652085 A JP 20652085A JP S6267240 A JPS6267240 A JP S6267240A
- Authority
- JP
- Japan
- Prior art keywords
- group
- fuel
- burner
- stage
- stage burner
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は、ガスタービンの燃焼器に係り、特に、低N
Ox燃焼器に採用される二段または多段燃焼法の各段の
燃料切換法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a combustor for a gas turbine, and in particular to a combustor for a gas turbine.
The present invention relates to a fuel switching method for each stage of a two-stage or multi-stage combustion method employed in an Ox combustor.
低NOx燃焼器では、排気N Ox濃度を低下させるた
め、燃料を二段又は多段に分散して燃焼させる。従って
、バーナ数は複数個となる。ここでは、従来技術として
二段燃焼法につき説明する。In a low NOx combustor, fuel is dispersed and combusted in two or multiple stages in order to reduce the exhaust NOx concentration. Therefore, the number of burners is plural. Here, a two-stage combustion method will be explained as a conventional technique.
この方法では、初段バーナと二段バーナが存在し、起動
時の回転数上昇および低負荷は、初段バーナのみで運転
する。更K、負荷上昇させるとき、初段バ〜すよシ火を
移し二段バーナにも着火させる。In this method, there is a first-stage burner and a second-stage burner, and only the first-stage burner operates when the rotation speed increases and the load is low at startup. Furthermore, when increasing the load, the first stage burner is moved and the second stage burner is also ignited.
これを燃料切換と言う。This is called fuel switching.
この場合、ガスタービンの負荷変動を避けるため初段バ
ーナの燃料流量を絞シ、その分だけ、二段バーナに燃料
を供給し、燃料の総和を一定に保つ。In this case, in order to avoid load fluctuations in the gas turbine, the fuel flow rate of the first-stage burner is throttled, and that amount of fuel is supplied to the second-stage burner to keep the total amount of fuel constant.
従って、二段バーナへ火を移さなければならぬ。Therefore, the fire must be transferred to the second stage burner.
その時、初段バーナの火種を小さくしなければならぬと
言う互いに矛盾した要求が存在する。At that time, there is a mutually contradictory requirement that the spark of the first stage burner must be made small.
低NOx燃焼器では、他の性能がどんなに優れていても
、初段バーナよシニ段バーナへの燃料切換が確実に行な
われない場合、その特長を発揮する機会がない。従って
、燃料切換は、10(l確実性を要求される。A low NOx combustor, no matter how good its other performances are, will not have a chance to take advantage of its features unless the fuel is reliably switched from the first stage burner to the second stage burner. Therefore, fuel switching requires 10(l reliability).
本発明は、上述の一見互いに矛盾した要求を満足させる
ものである。The present invention satisfies the above-mentioned seemingly contradictory requirements.
本発明の目的は、初段バーナよシニ段バーナへ火を移す
とき、ガスタービン負荷変動をなくシ。An object of the present invention is to eliminate gas turbine load fluctuations when transferring fire from the first stage burner to the second stage burner.
かつ、100係確実な燃料の切換方法を提供することに
ある。Another object of the present invention is to provide a 100% reliable fuel switching method.
〔発明の概要]
本発明の要点は、多缶燃焼器において、例えば、燃焼器
の合計を十缶とした場合、それをニゲループにわけ、最
初に一方のグループの燃料切換を行ない、若干時間を遅
らせて他方のグループの燃料切換を行なうことにある。[Summary of the Invention] The main point of the present invention is that in a multi-can combustor, for example, if the total number of combustors is ten, it is divided into Nigel loops, the fuel of one group is switched first, and it takes some time. The purpose is to delay the fuel switching for the other group.
第1図において、100は、ガス焚ガスタービンの全燃
料流量を示す。80は、初段バーナ7の全燃料流量を示
す。90は二段バーナ8の全燃料流量を示す。80は、
流量21と31にわかれ、前者をAグループ、後者をB
グループと呼ぶ。9゜は、流量22と32にわかれ、前
者をAグループ(五缶)、後者をBグループ(五缶)と
呼ぶ。In FIG. 1, 100 indicates the total fuel flow rate of the gas-fired gas turbine. 80 indicates the total fuel flow rate of the first stage burner 7. 90 indicates the total fuel flow rate of the two-stage burner 8. 80 is
Divided into flow rates 21 and 31, the former is group A and the latter is group B.
It's called a group. 9° is divided into flow rates 22 and 32, the former being called the A group (5 cans) and the latter the B group (5 cans).
これらのライン21,22,31.32には、それぞれ
、圧力調節弁41,42,51.52があり、流量調節
弁61,62,71.72の前圧を調節する。流調弁6
1,62,71.72は、ガスタービンの負荷に応じて
、燃料流量を洲節する。These lines 21, 22, 31.32 have pressure regulating valves 41, 42, 51.52, respectively, which regulate the pressure in front of the flow regulating valves 61, 62, 71.72. flow control valve 6
1, 62, 71, and 72 adjust the fuel flow rate according to the load of the gas turbine.
11〜20は、ガスタービン燃焼器(it十缶)を示し
、代表例として初段バーナ・\の燃料供給配管を111
.二段バーナへの燃料#、量配管を112で示す。11 to 20 indicate gas turbine combustors (IT 10 cans), and as a representative example, 111 indicates the fuel supply piping of the first stage burner.
.. The fuel # and amount piping to the two-stage burner is shown at 112.
第2図は、本発明の本質となる初段バーナから二段バー
ナへの火移り(燃料切換)スケジュールを示す。FIG. 2 shows the fire transfer (fuel switching) schedule from the first-stage burner to the second-stage burner, which is the essence of the present invention.
このように、燃料流量80は21と31の和であり、モ
ード1において、Aグループ初段バーナ燃料流121を
一定に保ち、Bグループ初段バーナ燃料流量31を徐々
に減少させ、その分だけAグループ二段バーナ燃料流量
22を増加させる。In this way, the fuel flow rate 80 is the sum of 21 and 31, and in mode 1, the A group first stage burner fuel flow 121 is kept constant, the B group first stage burner fuel flow rate 31 is gradually decreased, and the A group Increase the second burner fuel flow rate 22.
22の上昇過程の5でAグループの火移り(燃料切換)
が確実に行なわれる。A group's fire changed at 5 of the ascending process of 22 (fuel switching)
will be carried out reliably.
モード2で、Aグループ初段バーナ燃料流蓋21を徐々
に減少させ、その分だけBグループの初段バーナ燃料流
3131を徐々に増加復帰させるこの量大グループ二段
バーナ燃料流量22Vi一定に保つ。一度22へ大杉シ
が完了していると、21を減少しても、火は消えない。In mode 2, the A group first stage burner fuel flow cover 21 is gradually decreased, and the B group first stage burner fuel flow 3131 is gradually increased and returned by that amount, and the large group second stage burner fuel flow rate 22Vi is kept constant. Once Osugi-shi has been completed to 22, the fire will not be extinguished even if the number is reduced to 21.
モード3において、Bグループ初段バーナ燃料fi13
1を一定に保ちAグループ初段バーナ燃料流量21を更
に減少させ、その分だけBグループ2段バーナ燃料流量
32を徐々に増加する。32の上昇過程の6にて、Bグ
ループの火移り(燃料切換)が確実に行なわれる。In mode 3, B group first stage burner fuel fi13
1 is kept constant, the A group first stage burner fuel flow rate 21 is further decreased, and the B group second stage burner fuel flow rate 32 is gradually increased by that amount. At step 6 of the ascending process of step 32, the fire transfer (fuel switching) of group B is reliably performed.
モード4で、Bグループ初段バーナ燃料流量31を徐々
に減少させ、同時に、二段バーナ燃料流量22.32を
徐々に増加させ、初段および二段バーナの燃料流量を所
定の値にする。以上の四モードで、燃料の切換は完了す
る。In mode 4, the B group first-stage burner fuel flow rate 31 is gradually decreased, and at the same time, the second-stage burner fuel flow rate 22.32 is gradually increased to bring the fuel flow rates of the first-stage and second-stage burners to predetermined values. Fuel switching is completed in the above four modes.
本発明によれば、低NOx燃焼器の燃料切換時ガスター
ビンの負荷変動をなくシ、かつ、loO係確実に初段バ
ーナから二段バーナへ火移りを行なわせることができる
。According to the present invention, it is possible to eliminate load fluctuations in the gas turbine during fuel switching in a low NOx combustor, and to reliably transfer fire from the first-stage burner to the second-stage burner in terms of loO.
第1図は本発明の一実施例の系統図、第2図は本発明の
初段バーナから二段バーナへの火移り(燃料切換)スケ
ジュールを示す図である。
21・・・Aグループの初段ノく−ナ流量、22・・・
Aグループの二段バーナの流量、31.32・・・それ
ぞれBグループの流量、80・・・21と31の初段ノ
(−すの流量の和、90・・・22と32の二段)(−
すの流量の和を示す。FIG. 1 is a system diagram of an embodiment of the present invention, and FIG. 2 is a diagram showing a fire transfer (fuel switching) schedule from the first-stage burner to the second-stage burner of the present invention. 21...First stage flow rate of group A, 22...
The flow rate of the two-stage burner of the A group, 31.32...The flow rate of the B group, respectively, 80...The sum of the flow rates of the first stage of 21 and 31, 90...The second stage of 22 and 32. (−
shows the sum of the flow rates.
Claims (1)
段間火移りを行ない、引続き他のグループが、時系列的
に段間火移りを行なうことを特徴とする燃焼器の燃料切
換法。[Claims] 1. In a combustor using a multi-stage combustion method, the combustor is divided into a plurality of groups, one group's inter-stage flame transfer is performed, and the other groups are then chronologically transferred between the stages. A combustor fuel switching method characterized by performing a fuel transfer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20652085A JPS6267240A (en) | 1985-09-20 | 1985-09-20 | Fuel converting method for burner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20652085A JPS6267240A (en) | 1985-09-20 | 1985-09-20 | Fuel converting method for burner |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6267240A true JPS6267240A (en) | 1987-03-26 |
Family
ID=16524724
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20652085A Pending JPS6267240A (en) | 1985-09-20 | 1985-09-20 | Fuel converting method for burner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6267240A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009115081A (en) * | 2007-11-01 | 2009-05-28 | General Electric Co <Ge> | Method and system for operating gas turbine engine |
JP2015072114A (en) * | 2013-10-01 | 2015-04-16 | アルストム テクノロジー リミテッドALSTOM Technology Ltd | Gas turbine with sequential combustion arrangement |
JP2019515243A (en) * | 2016-05-12 | 2019-06-06 | シーメンス アクティエンゲゼルシャフト | Method of selective combustor control to reduce emissions |
-
1985
- 1985-09-20 JP JP20652085A patent/JPS6267240A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009115081A (en) * | 2007-11-01 | 2009-05-28 | General Electric Co <Ge> | Method and system for operating gas turbine engine |
JP2015072114A (en) * | 2013-10-01 | 2015-04-16 | アルストム テクノロジー リミテッドALSTOM Technology Ltd | Gas turbine with sequential combustion arrangement |
JP2019515243A (en) * | 2016-05-12 | 2019-06-06 | シーメンス アクティエンゲゼルシャフト | Method of selective combustor control to reduce emissions |
US11067279B2 (en) | 2016-05-12 | 2021-07-20 | Siemens Energy Global GmbH & Co. KG | Method of selective combustor control for reduced emissions |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20070105061A1 (en) | Multiple burner arrangement for operating a combustion chamber, and method for operating the multiple burner arrangement | |
US8776524B2 (en) | Fuel distribution system for a gas turbine with multistage burner arrangement | |
WO2002012795A3 (en) | Control method for pilot and premix fuel flow split for a gas turbine combustor | |
JPS6267240A (en) | Fuel converting method for burner | |
JP2518986Y2 (en) | Gas turbine combustor | |
JP3178055B2 (en) | Control device for gas turbine combustor and gas turbine | |
JPH0411729B2 (en) | ||
CN111712621B (en) | Method for operating a combustor assembly of a gas turbine | |
JPH09159103A (en) | Boiler control device | |
JP2783638B2 (en) | Gas turbine combustion equipment | |
JP3131804B2 (en) | Fuel distribution control device for gas turbine combustor | |
JPS61153304A (en) | Burner combustion for various kind coal-burning boiler | |
JPS6166019A (en) | Gas turbine combustor | |
KR100840242B1 (en) | Control method for oscillating combustion apparatus | |
JPH0336402A (en) | Automatic control of number of boilers | |
JP2001012257A (en) | Fuel vapor supply device for gas turbine burner | |
JPH02130226A (en) | Gas turbine control device | |
JP2796421B2 (en) | Gas turbine and gas turbine combustor switching method | |
JPH062572A (en) | Fuel distribution control device in combustor for gas turbine | |
JP2675105B2 (en) | Burner automatic control device | |
JPS633205B2 (en) | ||
JPH0128845B2 (en) | ||
JPH1047609A (en) | Steam temperature control method of boiler | |
JPS62272011A (en) | Fuel control for boiler | |
JPS61268917A (en) | Method of controlling the number of burners |