JPH05256166A - Gas turbine control method - Google Patents

Gas turbine control method

Info

Publication number
JPH05256166A
JPH05256166A JP5497392A JP5497392A JPH05256166A JP H05256166 A JPH05256166 A JP H05256166A JP 5497392 A JP5497392 A JP 5497392A JP 5497392 A JP5497392 A JP 5497392A JP H05256166 A JPH05256166 A JP H05256166A
Authority
JP
Japan
Prior art keywords
command signal
fuel flow
flow rate
air
inlet guide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5497392A
Other languages
Japanese (ja)
Other versions
JP3537835B2 (en
Inventor
Fumiyuki Hirose
文之 広瀬
Isao Sato
勲 佐藤
Akira Shimura
明 志村
Minoru Takaba
稔 鷹羽
Masae Takahashi
正衛 高橋
Koji Takahashi
浩二 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP05497392A priority Critical patent/JP3537835B2/en
Publication of JPH05256166A publication Critical patent/JPH05256166A/en
Application granted granted Critical
Publication of JP3537835B2 publication Critical patent/JP3537835B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the unstable combustion of a burner generated by the slippage of an air-feel ratio at the decreasing time of fuel flow by outputting the opening degree closing command signal of an inlet guide vane only at the decreasing time of fuel flow so as to control the air flow of an air compressor in the throttled direction. CONSTITUTION:A fuel flow command signal 9 outputted from a control device 10 is passed through a primary delay element 30 so as to be made into a fuel flow command signal 31 including primary delay, and this fuel flow command signal 31 is added as the minus value together with the fuel flow command signal 9 by an adder 32. As a result, the fuel flow is discriminated whether to have a decreasing, constant or increasing tendency according to whether the added value is the negative, zero or positive value. When the fuel flow command signal 9 has a decreasing tendency, the opening degree closing command signal 33 of an inlet guide vane 7 corresponding to this decreasing tendency is interposed as the differential value of a proportional plus integrator- differentiator 27 and set as an inlet guide vane opening command signal 28 to operate an inlet guide vane drive unit 29. This enables the high-speed follow-up of the inlet guide vane 7 to the decrease of fuel flow.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はガスタービンの制御方法
に係り、特にガスタービンの予混合燃焼部における燃空
比の制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling a gas turbine, and more particularly to a method for controlling a fuel-air ratio in a premixed combustion section of a gas turbine.

【0002】[0002]

【従来の技術】ガスタービンの制御方法に関する従来技
術の例を、図を用いて説明する。図3は従来例のガスタ
ービンの制御方法の説明図であり、1は空気、2は空気
圧縮機、3a、3bは燃料、4は燃焼器、5は燃焼ガ
ス、6はタービン部、7は入口案内翼、8は負荷指令信
号、9は燃料流量指令信号、10は制御装置、11は燃
料流量制御弁、12は排気ガス、13は1段目燃焼部、
14は2段目燃焼部、15は2段目燃焼部への空気、1
6は燃料ノズル、17は混合器、18は空気流量制御機
構、19は圧縮空気、20は1段目燃焼部への空気、2
1は冷却用空気、22は圧縮空気の温度又は圧力の信
号、23は関数発生器、24は排気ガス温度設定値信
号、25は比較器、26は制御値信号、27は比例−積
分−微分器、28は入口案内翼開度指令信号、29は入
口案内翼駆動装置を示している。
2. Description of the Related Art An example of a conventional technique relating to a gas turbine control method will be described with reference to the drawings. FIG. 3 is an explanatory diagram of a conventional gas turbine control method, in which 1 is air, 2 is an air compressor, 3a and 3b are fuels, 4 is a combustor, 5 is combustion gas, 6 is a turbine section, and 7 is Inlet guide vanes, 8 load command signal, 9 fuel flow command signal, 10 control device, 11 fuel flow control valve, 12 exhaust gas, 13 first stage combustion section,
14 is the second-stage combustion section, 15 is air to the second-stage combustion section, 1
6 is a fuel nozzle, 17 is a mixer, 18 is an air flow rate control mechanism, 19 is compressed air, 20 is air to the first stage combustion section, 2
1 is cooling air, 22 is a temperature or pressure signal of compressed air, 23 is a function generator, 24 is an exhaust gas temperature set value signal, 25 is a comparator, 26 is a control value signal, 27 is proportional-integral-derivative Reference numeral 28 denotes an inlet guide vane opening command signal, and 29 denotes an inlet guide vane drive device.

【0003】ガスタービンは、外気から取り入れた空気
1を圧縮する空気圧縮機2、空気1に混合した燃料3
a、3bを燃焼させる燃焼器4、及びこのときに発生す
る燃焼ガス5により、回されて仕事をするタービン部6
とから構成される。
The gas turbine includes an air compressor 2 for compressing air 1 taken from the outside air, and a fuel 3 mixed with the air 1.
a turbine section 6 that is rotated and works by a combustor 4 that combusts a and 3b and a combustion gas 5 that is generated at this time.
Composed of and.

【0004】燃料3a、3bの流量は、要求の負荷指令
信号8により制御装置10から燃料流量指令信号9が発
せられ、燃料流量制御弁11が制御されて、必要量が燃
焼器4内に流入される。
Regarding the flow rates of the fuels 3a and 3b, the required flow rate command signal 8 causes the control apparatus 10 to issue the fuel flow rate command signal 9 to control the fuel flow rate control valve 11 so that the required amount flows into the combustor 4. To be done.

【0005】燃焼器4には、低NOx化を図った予混合
燃焼方式の低NOx燃焼器が採用されており、燃焼器4
は1段目燃焼部13と2段目燃焼部14とから構成さ
れ、1段目燃焼部へは燃料3aが、2段目燃焼部へは燃
料3bが、それぞれ供給される。
As the combustor 4, a premixed combustion type low NOx combustor designed to reduce NOx is adopted.
Is composed of a first-stage combustion section 13 and a second-stage combustion section 14, and fuel 3a is supplied to the first-stage combustion section and fuel 3b is supplied to the second-stage combustion section.

【0006】2段目燃焼部14は、2段目燃焼部への空
気15と燃料ノズル16からの燃料3bが混合器17に
おいて混合される予混合方式となっている。
The second-stage combustion section 14 is of a premixing type in which the air 15 to the second-stage combustion section and the fuel 3b from the fuel nozzle 16 are mixed in the mixer 17.

【0007】空気圧縮機2へ流入する空気1は、空気圧
縮機2の入口に設けられた入口案内翼7を通って吸い込
まれ、空気圧縮機2への空気流量は入口案内翼7により
制御される。
The air 1 flowing into the air compressor 2 is sucked through an inlet guide vane 7 provided at the inlet of the air compressor 2, and the air flow rate to the air compressor 2 is controlled by the inlet guide vane 7. It

【0008】すなわち、入口案内翼7は翼開度が可変で
あり、必要に応じ翼開度を変え、空気圧縮機2に流入す
る空気1の流量が制御される。
That is, the blade opening of the inlet guide vane 7 is variable, the blade opening is changed as necessary, and the flow rate of the air 1 flowing into the air compressor 2 is controlled.

【0009】空気1は空気圧縮機2で昇圧され、圧縮空
気19となって燃焼器4へ導かれ、ここで燃料3と混合
されて燃焼し、このとき発生する燃焼ガス5が、タービ
ン部6へ流入する。
The air 1 is pressurized by the air compressor 2, becomes compressed air 19 and is guided to the combustor 4, where it is mixed with the fuel 3 and burned, and the combustion gas 5 generated at this time is generated by the turbine section 6. Flow into.

【0010】圧縮空気19は、1段目燃焼部への空気2
0と2段目燃焼部への空気15、及び冷却用空気21に
分かれて供給される。
The compressed air 19 is the air 2 to the first stage combustion section.
The air 15 and the cooling air 21 are separately supplied to the 0th and second stage combustion sections.

【0011】2段目燃焼部への空気15の流量は、燃料
3bの流量に応じて、空気流量制御機構18及び入口案
内翼7により所定の燃空比になるように制御される。
The flow rate of the air 15 to the second stage combustion section is controlled by the air flow rate control mechanism 18 and the inlet guide vanes 7 so as to have a predetermined fuel-air ratio according to the flow rate of the fuel 3b.

【0012】すなわち、2段目燃焼部への空気15の流
量は、燃料流量指令信号9により空気流量制御機構18
が稼動して制御されるが、これは局所的であり、空気圧
縮機2への空気流量は、燃焼器4の出口の燃焼ガス5が
所定の温度となるように制御される。
That is, the flow rate of the air 15 to the second stage combustion section is controlled by the air flow rate control mechanism 18 by the fuel flow rate command signal 9.
Is operated and controlled locally, and the air flow rate to the air compressor 2 is controlled so that the combustion gas 5 at the outlet of the combustor 4 has a predetermined temperature.

【0013】上記において、燃料3a、3bの流量変化
により、燃焼器4内の燃焼ガス5の温度が変化するが、
タービン部6の部品の耐熱温度の制約からタービン部6
の上限界温度が設定されており、タービン部6が上限界
温度に達した場合、入口案内翼7が動作して空気圧縮機
2の入口における空気1の流量を制御し、タービン部6
が上限界温度以下になるように制御される。
In the above, the temperature of the combustion gas 5 in the combustor 4 changes due to the change in the flow rate of the fuel 3a, 3b.
Due to the restriction of heat resistant temperature of the components of the turbine unit 6, the turbine unit 6
When the turbine section 6 reaches the upper limit temperature, the inlet guide vanes 7 operate to control the flow rate of the air 1 at the inlet of the air compressor 2, and the turbine section 6
Is controlled to be below the upper limit temperature.

【0014】特に、ガスタービンと蒸気タービンを組合
わせた複合サイクル発電プラントの場合は、排気ガス1
2の温度を、より高く保持することがプラントの高効率
化につながることから、極力、入口案内翼7を絞って燃
空比(燃料流量/空気流量)を高め、タービン部6の温
度を上限界温度にできるだけ近づけるよう考慮されてい
る。具体的には、燃焼ガス5の温度の代りに、燃焼ガス
5の温度と密接な関係のある排気ガス12の温度を計測
し、制御している。
Particularly in the case of a combined cycle power plant combining a gas turbine and a steam turbine, exhaust gas 1
Since maintaining the temperature of 2 higher will lead to higher efficiency of the plant, the inlet air guide blades 7 will be throttled as much as possible to increase the fuel-air ratio (fuel flow rate / air flow rate) and the temperature of the turbine section 6 will be increased. Consideration is given to approaching the limit temperature as close as possible. Specifically, instead of the temperature of the combustion gas 5, the temperature of the exhaust gas 12 having a close relationship with the temperature of the combustion gas 5 is measured and controlled.

【0015】負荷指令信号8が発せられると、非常に短
時間で燃料流量制御弁11が適切な開度に制御され、2
段目燃焼部への空気15の流量制御は、空気流量制御機
構18により燃料流量制御弁11の場合と同様に迅速に
行われる。
When the load command signal 8 is issued, the fuel flow control valve 11 is controlled to an appropriate opening in a very short time, and 2
The flow rate of the air 15 to the stage combustion section is quickly controlled by the air flow rate control mechanism 18 as in the case of the fuel flow rate control valve 11.

【0016】一方、入口案内翼7の開度は、排気ガス1
2の温度を計測し、この温度を基に制御される。すなわ
ち、燃料3a,3bの流量の変化が、燃焼ガス5の温度
の変化、次いで排気ガス12の温度の変化となり、排気
ガス12の温度が計測されて、初めて、2段目燃焼部へ
の空気15、及び1段目燃焼部への空気20の各流量が
制御される。
On the other hand, the opening degree of the inlet guide vanes 7 is such that the exhaust gas 1
The temperature of 2 is measured and controlled based on this temperature. That is, a change in the flow rate of the fuel 3a, 3b causes a change in the temperature of the combustion gas 5 and then a change in the temperature of the exhaust gas 12, and the temperature of the exhaust gas 12 is measured. 15, and each flow rate of the air 20 to the first stage combustion section is controlled.

【0017】具体的には、圧縮空気の温度又は圧力の信
号22により、予め排気ガス12の温度の上限界値を設
定しておき、これを関数発生器23として組み込み、排
気ガス温度設定値信号24が発せられる。
Specifically, the upper limit value of the temperature of the exhaust gas 12 is set in advance by the signal 22 of the temperature or pressure of the compressed air, and this is incorporated as a function generator 23 to output the exhaust gas temperature set value signal. 24 is emitted.

【0018】この設定値と実際の排気ガス12の温度と
の偏差を比較器25で比較し、偏差値を制御値26とし
て出力し、比例−積分−微分器27を介して入口案内翼
開度指令信号28となって、入口案内翼駆動装置29を
作動させている。
The deviation between this set value and the actual temperature of the exhaust gas 12 is compared by the comparator 25, the deviation value is output as the control value 26, and the inlet guide vane opening is output via the proportional-integral-differentiator 27. In response to the command signal 28, the inlet guide vane drive device 29 is operated.

【0019】なお、本発明に関連する技術は、例えば、
特開昭58−38328号公報に開示されている。
The technique related to the present invention is, for example,
It is disclosed in Japanese Patent Laid-Open No. 58-38328.

【0020】[0020]

【発明が解決しようとする課題】上記のように、従来技
術では、燃料流量変化に遅れて空気流量を変化させるこ
とになり、燃空比が一時的にずれる。このため、特に負
荷が減少状態にある負荷変動時においては、燃空比が低
くなる傾向にあり、予混合燃焼方式を採用している低N
Ox燃焼器では、燃焼が不安定になる。
As described above, in the conventional technique, the air flow rate is changed after the change of the fuel flow rate, and the fuel-air ratio temporarily shifts. For this reason, the fuel-air ratio tends to be low, especially when the load fluctuates when the load is in a reduced state.
Combustion becomes unstable in the Ox combustor.

【0021】本発明の目的は、低NOx燃焼器を有する
ガスタービンにおいて、負荷が減少する負荷変動時の燃
空比が小さくなる場合、不安定になりやすい燃焼器の燃
焼を、安定燃焼を確保できるように改善することであ
る。
An object of the present invention is to secure stable combustion in a gas turbine having a low NOx combustor, which tends to become unstable when the fuel-air ratio becomes small when the load changes and the load changes. It is to improve so that it can be done.

【0022】[0022]

【課題を解決するための手段】上記目的は、次のように
して達成することができる。
The above object can be achieved as follows.

【0023】(1)燃焼器に流入する燃料及び空気の各
流量を制御し、入口案内翼開度指令信号を受けて空気圧
縮機への空気流量を制御するガスタービンの制御方法に
おいて、燃料の流量が減少する時に限り入口案内翼開度
閉指令信号を発生させ、空気圧縮機への空気流量を絞る
方向に制御すること。
(1) In the method of controlling a gas turbine, which controls each flow rate of fuel and air flowing into the combustor and receives the inlet guide vane opening command signal to control the air flow rate to the air compressor, Only when the flow rate decreases, generate the inlet guide vane opening close command signal to control the air flow rate to the air compressor.

【0024】(2)(1)において、燃料の流量の減少
を、一時遅れ器と加算器との組み合わせたものを用いて
検出すること。
(2) In (1), the decrease in the flow rate of fuel is detected by using a combination of a temporary delay unit and an adder.

【0025】[0025]

【作用】燃料流量指令信号を一時遅れの回路を通して取
り込み、更に燃料流量指令信号を直接に取り込み、両者
の信号の差から、燃料流量指令信号が燃料の流量が減少
状態にある場合、この状態を一時遅れ器と加算器との組
み合わせたものを用いて検出できるようにしてある。
[Function] The fuel flow rate command signal is taken in through a circuit with a temporary delay, and further the fuel flow rate command signal is directly taken in. If the fuel flow rate command signal indicates that the fuel flow rate is in a decreasing state due to the difference between the two signals, this state is set. The detection is made by using a combination of a temporary delay unit and an adder.

【0026】したがって、上記の両者の信号の差の大き
さに応じて、空気圧縮機の入口案内翼の開度を閉方向へ
先行制御でき、燃空比の一時的な低下による燃焼の不安
定を防止することができる。
Therefore, the opening degree of the inlet guide vanes of the air compressor can be controlled in the closing direction in advance according to the magnitude of the difference between the two signals, and combustion is unstable due to a temporary decrease in the fuel-air ratio. Can be prevented.

【0027】[0027]

【実施例】本発明の一実施例を、図1及び図2を用いて
説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS.

【0028】図1は、本発明のガスタービンの制御方法
の説明図、図2はガスタービンの制御に関する本発明と
従来例との比較図であり、30は一時遅れ器、31は一
時遅れを含んだ燃料流量指令信号、32は加算器、33
は入口案内翼の開度閉指令信号を示しており、そのほか
は前出の符号である。
FIG. 1 is an explanatory diagram of a gas turbine control method of the present invention, and FIG. 2 is a comparative diagram of the present invention and a conventional example relating to gas turbine control. Reference numeral 30 is a temporary delay device, and 31 is a temporary delay device. Included fuel flow rate command signal, 32 is adder, 33
Indicates a command signal to close the opening of the inlet guide vane, and the other symbols are the same as those mentioned above.

【0029】制御装置10から発せられる燃料流量指令
信号9を一時遅れ器30を通して一時遅れを含んだ燃料
流量指令信号31とし、これをマイナス値として制御装
置10からの燃料指令信号9のプラス値とを加算器32
を用いて加算している。
The fuel flow rate command signal 9 issued from the control unit 10 is made into a fuel flow rate command signal 31 including a temporary delay through a temporary delay unit 30, and this is set as a negative value to be a plus value of the fuel command signal 9 from the control unit 10. Adder 32
Is added using.

【0030】上記の加算値が負の値であれば、燃料流量
が減少の傾向にあり、零の場合は燃料流量が一定、正の
値の場合は燃料流量が増加傾向にあるものとみなしてい
る。燃料流量指令信号9が燃料流量の減少を示している
ときは、この減少の量に見合うように予め開度が設定さ
れた入口案内翼の開度閉指令信号33を、排気ガス12
の温度の設定値からの偏差から発せられる制御値信号2
6が出力される以前に、先行して、比例−積分−微分器
27の微分値として介入させ、入口案内翼開度指令信号
28となって入口案内翼駆動装置29を作動させてい
る。
If the added value is a negative value, the fuel flow rate tends to decrease, if it is zero, the fuel flow rate is constant, and if it is a positive value, the fuel flow rate tends to increase. There is. When the fuel flow rate command signal 9 indicates a decrease in the fuel flow rate, the opening degree close command signal 33 for the inlet guide vanes, the opening degree of which is set in advance to correspond to the amount of decrease, is transmitted to the exhaust gas 12
Control value signal 2 generated from the deviation from the set temperature of the
Before 6 is output, it intervenes as a differential value of the proportional-integral-differentiator 27, and becomes the inlet guide vane opening command signal 28 to operate the inlet guide vane drive device 29.

【0031】この場合、入口案内翼の開度閉指令信号3
3が、比例−積分−微分器27の微分値として入力され
るため、入口案内翼7の制御速度が速くなり、結果とし
て燃料流量の減少に対する入口案内翼7の開度の追従が
速くなる。
In this case, the command signal 3 for closing the opening of the inlet guide vanes
Since 3 is input as the differential value of the proportional-integral-differentiator 27, the control speed of the inlet guide vane 7 becomes faster, and as a result, the opening degree of the inlet guide vane 7 follows the decrease of the fuel flow rate faster.

【0032】すなわち、空気流量が燃料流量に対応して
減少し、燃空比のずれを防止することができる。
That is, the air flow rate decreases corresponding to the fuel flow rate, and the deviation of the fuel-air ratio can be prevented.

【0033】次に、ガスタービンの制御に関する本発明
と従来例との比較を、図2を用いて説明する。
Next, a comparison between the present invention and the conventional example relating to the control of the gas turbine will be described with reference to FIG.

【0034】図2に示すように、負荷指令に基づく燃料
流量指令信号が時間の経過とともに変化した場合、燃料
流量指令信号が燃料流量の減少を示しているときは、入
口案内翼の開度は、本発明では、実線で示すようにほぼ
燃料流量指令信号と同期して変化し、空気流量を減少さ
せることができる。
As shown in FIG. 2, when the fuel flow rate command signal based on the load command changes over time and the fuel flow rate command signal indicates a decrease in the fuel flow rate, the opening of the inlet guide vane is In the present invention, as indicated by the solid line, the air flow rate changes substantially in synchronization with the fuel flow rate command signal, and the air flow rate can be reduced.

【0035】したがって、燃空比の減少を抑えることが
でき、燃焼不安定域への突入を防止することができる。
Therefore, it is possible to suppress the decrease in the fuel-air ratio and prevent the entry into the unstable combustion region.

【0036】なお、燃料流量指令信号が燃料流量の増加
を示してある場合は、入口案内翼の追従は従来と同一で
あるが、燃空比としては増加傾向となり燃焼安定側であ
り運転への支障はない。
When the fuel flow rate command signal indicates an increase in the fuel flow rate, the follow-up of the inlet guide vanes is the same as in the conventional case, but the fuel-air ratio tends to increase and combustion is on the stable side, and operation is continued. There is no problem.

【0037】一方、従来例では、図中の破線で示した状
態となり、燃料流量指令信号が燃料流量の減少を示して
ある場合は、入口案内翼の開度制御の追従が遅れるた
め、燃料流量の減少に対する空気流量の減少が遅く、燃
空比が一時的に燃焼不安定域に突入する傾向にある。
On the other hand, in the conventional example, when the state shown by the broken line in the figure is reached and the fuel flow rate command signal indicates a decrease in the fuel flow rate, the follow-up of the opening control of the inlet guide vanes is delayed, so the fuel flow rate is delayed. The decrease of the air flow rate with respect to the decrease of the air-fuel ratio is slow, and the fuel-air ratio tends to temporarily enter the combustion unstable region.

【0038】[0038]

【発明の効果】本発明によれば、低NOx燃焼器を有す
るガスタービンにおいて、燃料流量が減少するとき、燃
空比のずれにより発生する燃焼器の燃焼不安定を防止す
ることができ、安定した運転を継続することができる。
According to the present invention, in a gas turbine having a low NOx combustor, when the fuel flow rate decreases, it is possible to prevent combustion instability of the combustor caused by the difference in the fuel-air ratio, and to stabilize the combustion. The continued operation can be continued.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例のガスタービンの制御方法の
説明図である。
FIG. 1 is an explanatory diagram of a gas turbine control method according to an embodiment of the present invention.

【図2】ガスタービンの制御に関する本発明と従来例と
の比較図である。
FIG. 2 is a comparison diagram of the present invention and a conventional example regarding control of a gas turbine.

【図3】従来例のガスタービンの制御方法の説明図であ
る。
FIG. 3 is an explanatory diagram of a conventional gas turbine control method.

【符号の説明】[Explanation of symbols]

1…空気、2…空気圧縮機、3a、3b…燃料、6…タ
ービン部、9…燃料流量指令信号、30…一時遅れ器、
32…加算器。
1 ... Air, 2 ... Air compressor, 3a, 3b ... Fuel, 6 ... Turbine part, 9 ... Fuel flow rate command signal, 30 ... Temporary delay device,
32 ... Adder.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鷹羽 稔 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 (72)発明者 高橋 正衛 茨城県日立市大みか町五丁目2番1号 株 式会社日立製作所大みか工場内 (72)発明者 高橋 浩二 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Minoru Takaba, Inventor Minoru 1-1 1-1, Sachimachi, Hitachi City, Ibaraki Hitachi Ltd. Hitachi factory (72) Masae Takahashi 5-2, Omika-cho, Hitachi City, Ibaraki Prefecture No. 1 Incorporated company Hitachi, Ltd. Omika factory (72) Inventor Koji Takahashi 3-1-1, Saiwaicho, Hitachi-shi, Ibaraki Hitachi Ltd. Hitachi factory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 燃焼器に流入する燃料及び空気の各流量
を制御し、入口案内翼開度指令信号を受けて空気圧縮機
への空気流量を制御するガスタービンの制御方法におい
て、前記燃料の流量が減少する時に限り入口案内翼開度
閉指令信号を発生させ、前記空気圧縮機への空気流量を
絞る方向に制御することを特徴とするガスタービンの制
御方法。
1. A method for controlling a gas turbine, wherein each flow rate of fuel and air flowing into a combustor is controlled, and an air flow rate to an air compressor is controlled by receiving an inlet guide vane opening command signal. A method of controlling a gas turbine, wherein an inlet guide vane opening close command signal is generated only when the flow rate is reduced, and the air flow rate to the air compressor is controlled in a direction to reduce the flow rate.
【請求項2】 前記燃料の流量の減少を、一時遅れ器と
加算器との組み合わせたものを用いて検出する請求項1
記載のガスタービンの制御方法。
2. The decrease in the flow rate of the fuel is detected by using a combination of a temporary delay unit and an adder.
A method for controlling a described gas turbine.
JP05497392A 1992-03-13 1992-03-13 Gas turbine control method Expired - Lifetime JP3537835B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05497392A JP3537835B2 (en) 1992-03-13 1992-03-13 Gas turbine control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05497392A JP3537835B2 (en) 1992-03-13 1992-03-13 Gas turbine control method

Publications (2)

Publication Number Publication Date
JPH05256166A true JPH05256166A (en) 1993-10-05
JP3537835B2 JP3537835B2 (en) 2004-06-14

Family

ID=12985602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05497392A Expired - Lifetime JP3537835B2 (en) 1992-03-13 1992-03-13 Gas turbine control method

Country Status (1)

Country Link
JP (1) JP3537835B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5758485A (en) * 1995-08-28 1998-06-02 Asea Brown Boveri Ag Method of operating gas turbine power plant with intercooler
JP2010025069A (en) * 2008-07-24 2010-02-04 Hitachi Ltd Control device of two-shaft type gas turbine system
JP2010285955A (en) * 2009-06-12 2010-12-24 Mitsubishi Heavy Ind Ltd Control device of gas turbine, and power generation system
WO2012105053A1 (en) * 2011-02-04 2012-08-09 株式会社日立製作所 Control device for gas turbine power generation plant
JP2014517207A (en) * 2011-06-13 2014-07-17 ユーロタービン アクティエボラーグ Power plant and power plant operating method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5838328A (en) * 1981-08-28 1983-03-05 Hitachi Ltd Control device for inlet guide vane
JPS6045734A (en) * 1983-06-20 1985-03-12 ゼネラル・エレクトリツク・カンパニイ Method and device for controlling gas turbine engine
JPS6143223A (en) * 1984-08-03 1986-03-01 Hitachi Ltd Gas turbine with measure to counter environment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5838328A (en) * 1981-08-28 1983-03-05 Hitachi Ltd Control device for inlet guide vane
JPS6045734A (en) * 1983-06-20 1985-03-12 ゼネラル・エレクトリツク・カンパニイ Method and device for controlling gas turbine engine
JPS6143223A (en) * 1984-08-03 1986-03-01 Hitachi Ltd Gas turbine with measure to counter environment

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5758485A (en) * 1995-08-28 1998-06-02 Asea Brown Boveri Ag Method of operating gas turbine power plant with intercooler
JP2010025069A (en) * 2008-07-24 2010-02-04 Hitachi Ltd Control device of two-shaft type gas turbine system
JP2010285955A (en) * 2009-06-12 2010-12-24 Mitsubishi Heavy Ind Ltd Control device of gas turbine, and power generation system
WO2012105053A1 (en) * 2011-02-04 2012-08-09 株式会社日立製作所 Control device for gas turbine power generation plant
CN103348115A (en) * 2011-02-04 2013-10-09 株式会社日立制作所 Control device for gas turbine power generation plant
JPWO2012105053A1 (en) * 2011-02-04 2014-07-03 株式会社日立製作所 Control device for gas turbine power plant
US8826671B2 (en) 2011-02-04 2014-09-09 Hitachi, Ltd. Control system for a gas turbine power plant
JP5640227B2 (en) * 2011-02-04 2014-12-17 三菱日立パワーシステムズ株式会社 Control device for gas turbine power plant
JP2014517207A (en) * 2011-06-13 2014-07-17 ユーロタービン アクティエボラーグ Power plant and power plant operating method
US9581051B2 (en) 2011-06-13 2017-02-28 Euroturbine Ab Power generation plant and method of operating a power generation plant

Also Published As

Publication number Publication date
JP3537835B2 (en) 2004-06-14

Similar Documents

Publication Publication Date Title
EP1300566B1 (en) Fuel ratio control method in a gas turbine combustor
JP3499026B2 (en) Gas turbine fuel supply device
JPH05256166A (en) Gas turbine control method
JPH0544537B2 (en)
JP2954754B2 (en) Operation control device for gas turbine system and pressurized fluidized bed boiler power plant
JPH06241062A (en) Gas turbine power generating facility and its operating method
JPH0461169B2 (en)
JP2667609B2 (en) Gas turbine control device
JPH05149544A (en) Controller for gas turbine
JPH0996227A (en) Pressure controller of gasification plant
JP3491967B2 (en) Gas turbine exhaust gas temperature control device
JP2001012257A (en) Fuel vapor supply device for gas turbine burner
JP3472424B2 (en) Gas turbine and method of operating gas turbine
JPH07189743A (en) Gas turbine combustor control method
JP2003148173A (en) Device for controlling rotation of gas turbine
JPS63150432A (en) Gas turbine
EP4261401A1 (en) Operation of a gas turbine to lower load and mel
JPH05187267A (en) Gas turbine control device for combined cycle
JPS63163716A (en) Catalyst burner
JP3477885B2 (en) Primary air draft controller for coal-fired boiler
JP2004124851A (en) Gas turbine plant and fuel supplying method for gas turbine
JPH04131619A (en) Gas turbine combustion device
JPS6329116A (en) Method and device for operating gas turbine plant
JPH09324657A (en) Gas turbine equipment
JPS6365228A (en) Draft control method of primary air supply line

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Effective date: 20040318

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20090326

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20090326

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20100326

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20110326

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 7

EXPY Cancellation because of completion of term