JPS626694B2 - - Google Patents
Info
- Publication number
- JPS626694B2 JPS626694B2 JP58061025A JP6102583A JPS626694B2 JP S626694 B2 JPS626694 B2 JP S626694B2 JP 58061025 A JP58061025 A JP 58061025A JP 6102583 A JP6102583 A JP 6102583A JP S626694 B2 JPS626694 B2 JP S626694B2
- Authority
- JP
- Japan
- Prior art keywords
- rare earth
- earth metal
- metal alkoxide
- alkali metal
- carboxylic acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- -1 rare earth metal carboxylate Chemical class 0.000 claims description 46
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 40
- 229910052783 alkali metal Inorganic materials 0.000 claims description 14
- 238000004519 manufacturing process Methods 0.000 claims description 12
- 150000001735 carboxylic acids Chemical group 0.000 claims description 6
- 150000001340 alkali metals Chemical group 0.000 claims description 5
- 150000002910 rare earth metals Chemical class 0.000 claims description 5
- 229910052727 yttrium Inorganic materials 0.000 claims description 3
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims description 3
- 125000000217 alkyl group Chemical group 0.000 claims description 2
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 23
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 21
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 21
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 13
- 239000000243 solution Substances 0.000 description 11
- 238000000034 method Methods 0.000 description 10
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 6
- 239000000203 mixture Substances 0.000 description 5
- 239000003960 organic solvent Substances 0.000 description 5
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 4
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 229910001404 rare earth metal oxide Inorganic materials 0.000 description 4
- 238000010992 reflux Methods 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 239000008096 xylene Substances 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- NBTOZLQBSIZIKS-UHFFFAOYSA-N methoxide Chemical compound [O-]C NBTOZLQBSIZIKS-UHFFFAOYSA-N 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- WQDUMFSSJAZKTM-UHFFFAOYSA-N Sodium methoxide Chemical compound [Na+].[O-]C WQDUMFSSJAZKTM-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 230000001476 alcoholic effect Effects 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000000921 elemental analysis Methods 0.000 description 2
- QMYQAWPIPPLING-UHFFFAOYSA-N ethanolate;scandium(3+) Chemical compound [Sc+3].CC[O-].CC[O-].CC[O-] QMYQAWPIPPLING-UHFFFAOYSA-N 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000011403 purification operation Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-N Propionic acid Chemical class CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 150000001244 carboxylic acid anhydrides Chemical class 0.000 description 1
- 150000001734 carboxylic acid salts Chemical class 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 1
- 239000007810 chemical reaction solvent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 1
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 150000004675 formic acid derivatives Chemical class 0.000 description 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 1
- KJZYNXUDTRRSPN-UHFFFAOYSA-N holmium atom Chemical compound [Ho] KJZYNXUDTRRSPN-UHFFFAOYSA-N 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- HAUKUGBTJXWQMF-UHFFFAOYSA-N lithium;propan-2-olate Chemical compound [Li+].CC(C)[O-] HAUKUGBTJXWQMF-UHFFFAOYSA-N 0.000 description 1
- OHSVLFRHMCKCQY-UHFFFAOYSA-N lutetium atom Chemical compound [Lu] OHSVLFRHMCKCQY-UHFFFAOYSA-N 0.000 description 1
- 229960002523 mercuric chloride Drugs 0.000 description 1
- LWJROJCJINYWOX-UHFFFAOYSA-L mercury dichloride Chemical compound Cl[Hg]Cl LWJROJCJINYWOX-UHFFFAOYSA-L 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 description 1
- NREVZTYRXVBFAQ-UHFFFAOYSA-N propan-2-ol;yttrium Chemical compound [Y].CC(C)O.CC(C)O.CC(C)O NREVZTYRXVBFAQ-UHFFFAOYSA-N 0.000 description 1
- PBPHNIURXZNSCL-UHFFFAOYSA-K propanoate;scandium(3+) Chemical compound [Sc+3].CCC([O-])=O.CCC([O-])=O.CCC([O-])=O PBPHNIURXZNSCL-UHFFFAOYSA-K 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 1
- DVMZCYSFPFUKKE-UHFFFAOYSA-K scandium chloride Chemical compound Cl[Sc](Cl)Cl DVMZCYSFPFUKKE-UHFFFAOYSA-K 0.000 description 1
- GZCRRIHWUXGPOV-UHFFFAOYSA-N terbium atom Chemical compound [Tb] GZCRRIHWUXGPOV-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- FRNOGLGSGLTDKL-UHFFFAOYSA-N thulium atom Chemical compound [Tm] FRNOGLGSGLTDKL-UHFFFAOYSA-N 0.000 description 1
- 150000003613 toluenes Chemical class 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
本発明は、希土類金属アルコキシドの製造法に
関する。さらに詳しくは、本発明は一般式()
MnX3 ()
〔式中、Mは希土類金属元素(ただし、イツト
リウムを除く)、すなわち、スカンジウム
(Sc)、ランタン(La)、セリウム(Ce)、プラセ
オジム(Pr)、ネオジム(Nd)、サマリウム
(Sm)、ユウロピウム(Eu)、ガドリニウム
(Gd)、テルビウム(Tb)、デイスプロシウム
(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツ
リウム(Tm)、イツテルビウム(Yb)、ルテチウ
ム(Lu)を示し、Xはカルボン酸残基を示し、
nは1または2を示す。ただしnが1を示す場合
Xは1価のカルボン酸残基を示し、nが2を示す
場合Xは2価のカルボン酸残基を示す。〕で表わ
される希土類金属カルボン酸塩と一般式()
ROM′ ()
(式中、Rはアルキル基を示し、M′はアルカ
リ金属原子を示す)で表わされるアルカリ金属ア
ルコキシドを反応させることを特徴とする一般式
()
M(OR)3
(式中、MおよびRは先に定義した通りであ
る)で表わされる希土類金属アルコキシドを製造
する方法を提供することに関する。
近年エレクトロニクス産業の進展に伴い希土類
元素が幅広い分野で利用されてきており、フアイ
ンセラミツクスの分野においては希土類金属の酸
化物が重要な役割を占めている。特に酸化イツト
リウムはジルコニア(酸化ジルコニウム)に添加
することによつて、ジルコニアセラミツクス製品
の相転移を制御することから大いに注目を集めて
いる。このような希土類金属の酸化物の製造法と
して、一般式()で表わされる希土類金属アル
コキシドを加え加水分解するのが有用である。そ
してこの希土類金属の酸化物の中間体である希土
類金属アルコキシドの製造法としては従来、塩
化スカンジウム無水物とメタノールを反応させる
方法[「Zeitschrift Allorgnischeund、
Allgemeine Chemie」第67〜71頁325(1―2)
(1963)]、希土類金属塩化物の無水物とアルカ
リ金属アルコキシドとを反応させる方法
[「Proceeding Nucleus Radiation Chemical、
Symposium」第15〜19頁(1964)、「Chemistry
and Industory」第120頁(1963)、「同」、第9巻
第382〜383頁(1965)、「同」第32巻 第1379頁
(1966)、「Chemische Berichte」第93巻第652〜
657頁(1960)、「Inorganic Chemistry」第5
(3)巻 第342〜346頁(1966)、「米国特許第
3278571号」公報]、希土類金属とアルコールと
を塩化第2水銀を触媒として反応させる方法
[「Inorganic Chemistry」第5(3)巻 第342
〜346頁(1966)、「米国特許第3278571号」公報]
が知られていた。これらを化学式により要約対比
すると次のとおりである。
The present invention relates to a method for producing rare earth metal alkoxides. More specifically, the present invention is based on the general formula () MnX 3 () [where M is a rare earth metal element (excluding yttrium), that is, scandium (Sc), lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), disprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm) , Ytterbium (Yb), Lutetium (Lu), X represents a carboxylic acid residue,
n represents 1 or 2. However, when n represents 1, X represents a monovalent carboxylic acid residue, and when n represents 2, X represents a divalent carboxylic acid residue. ] is reacted with an alkali metal alkoxide represented by the general formula () ROM' () (wherein R represents an alkyl group and M' represents an alkali metal atom). The present invention relates to a method for producing rare earth metal alkoxides having the general formula () M(OR) 3 , where M and R are as defined above. In recent years, with the progress of the electronics industry, rare earth elements have been used in a wide range of fields, and oxides of rare earth metals play an important role in the field of fine ceramics. In particular, yttrium oxide is attracting a lot of attention because it controls the phase transition of zirconia ceramic products by adding it to zirconia (zirconium oxide). As a method for producing such a rare earth metal oxide, it is useful to add and hydrolyze a rare earth metal alkoxide represented by the general formula (). The conventional method for producing rare earth metal alkoxides, which are intermediates of rare earth metal oxides, is to react scandium chloride anhydride with methanol [Zeitschrift Allorgnischeund,
"Allgemeine Chemie", pp. 67-71, 325 (1-2)
(1963)], a method for reacting anhydrous rare earth metal chlorides with alkali metal alkoxides [Proceeding Nucleus Radiation Chemical,
"Chemistry Symposium" pp. 15-19 (1964), "Chemistry
and Industry”, p. 120 (1963), “Ibid.”, Vol. 9, pp. 382-383 (1965), “Ibid.”, Vol. 32, p. 1379 (1966), “Chemische Berichte”, Vol. 93, pp. 652-383
657 pages (1960), "Inorganic Chemistry" No. 5
(3), pp. 342-346 (1966), “U.S.
3278571], a method of reacting rare earth metals and alcohol using mercuric chloride as a catalyst [``Inorganic Chemistry'' Vol. 5 (3) No. 342
~346 pages (1966), “U.S. Patent No. 3278571”]
was known. A summary comparison of these using chemical formulas is as follows.
【表】【table】
【表】
号公報記載の方法]
しかしながら、前記した従来方法では得られる
希土類金属アルコキシドの収率が低いばかりでな
く、不純物を含むという欠点を有している。その
結果、これを加水分解して得られる希土類金属の
酸化物も不純物を多量に含有し、高純度の希土類
金属アルコキシドを得るために精製操作を必要と
する。その結果、希土類金属アルコキツドの製造
コストは高くなり、希土類金属の酸化物も安価に
得られない。さらに、前記従来方法のうち、に
ついては出発原料である希土類金属塩化物の無水
物は、一般に非常に吸湿性が高く、工業的に大量
に取り扱うことは極めて困難であり、またにつ
いては出発原料である希土類金属が一般に非常に
高価であり、かつ反応を完結させる為には長時間
の加熱還流を必要とし、同じく工業的に大量に製
造する方法としては不適当である。
本発明者等は、これらの事情に鑑み、希土類金
属アルコキシドの製造法について鋭意検討を重ね
た。その結果、前記従来技術に対して、希土類金
属塩化物の無水物のかわりに希土類金属のカルボ
ン酸塩無水物を出発原料として使用し、これとア
ルカリ金属アルコキシドとを反応させることによ
り、希土類金属アルコキシドが高収率且つ高純度
で得られることを見出し、本発明を完成させるに
いたつた。
本発明によれば、希土類金属アルコキシドが高
純度そして高収率で得られ、希土類金属アルコキ
シドの精製操作を必要とすることなしに希土類金
属アルコキシドを低コストで製造できる。すなわ
ち、本発明の製造法では希土類金属アルコキシド
をほとんど不純物を含有せずしかも90%以上とい
う高収率で得ることができる。したがつて、本発
明は、従来技術が不純物を多量に含み、低収率で
目的物が得られなかつたのに比べると、収率、純
度、操作性、および経済性の諸点で格段に改良さ
れている。
本発明の希土類金属アルコキシドの製造法をよ
り詳しく説明すると次のとおりである。まず希土
類金属のカルボン酸塩無水物と有機溶媒との混合
液にアルカリ金属アルコキシドを加えて室温から
溶媒の還流温度範囲内で1〜3時間撹拌する。そ
の後、反応液をろ過かしてアルカリ金属のカルボ
ン酸塩を除くと均一透明な希土類金属アルコキシ
ドの有機溶媒溶液が得られる。必要によりこのろ
液を蒸発乾固した後、その残渣に溶解用有機溶媒
を加えて希土類金属アルコキシドを溶解し、さら
に不溶物があればろ過して均一透明な希土類金属
アルコキシド溶解溶液を得る。反応に際して出発
原料である希土類金属のカルボン酸塩無水物は1
価または2価のカルボン酸塩無水物が使用される
が、蟻酸塩、酢酸塩、プロピオン酸塩の使用が好
ましい。また、希土類金属のカルボン酸塩無水物
1モルに対して、アルカリ金属アルコキシド3〜
3.3モルそして有機溶媒は0.85〜5lの範囲が経済的
にも好ましい。また、使用される反応溶媒として
は不活性は有機溶媒であればよく、特に溶解性、
操作性などの点からベンゼン、トルエン、キシレ
ンなどの芳香族炭化水素またはメタノール、エタ
ノール、ヘキサノール、オクタノールなどのアル
コール類が好ましい。そして、生成した希土類金
属アルコキシドの溶解用溶媒としては、希土類金
属アルコキシドの溶解性があるものであればよ
く、特にベンゼン、トルエン、キシレンなどの芳
香族炭化水素が好ましく、その使用量は希土類金
属のカルボン酸塩無水物1モルに対して0.5〜5l
の量で十分生成した希土類金属アルコキシドを溶
解する。
希土類金属アルコキシドは微量の水分でも容易
に加水分解されるために、通常は溶液のまま次の
用途に用いられるが、必要に応じて溶媒を留去
し、湿気を遮断して慎重に扱えば単離することも
可能である。
本発明の製造法において、希土類金属のカルボ
ン酸塩無水物とアルカリ金属アルコキシドとを反
応させる方法としては、以下の(1)に示したよう
に、希土類金属のカルボン酸塩無水物に直接アル
カリ金属アルコキシドを反応させてもよいが、(2)
に示したように希土類金属のカルボン酸塩無水物
のアルコール溶液中にアルカリ金属を加えてアル
カリ金属アルコキシドを生成せしめ、これと希土
類金属のカルボン酸塩無水物とを反応させてもよ
い。以下にその概要を示す。
(1) [Table] Method of publication]
However, the conventional method described above not only has a low yield of rare earth metal alkoxide but also has the disadvantage that it contains impurities. As a result, the rare earth metal oxide obtained by hydrolyzing this also contains a large amount of impurities and requires a purification operation to obtain a highly pure rare earth metal alkoxide. As a result, the manufacturing cost of rare earth metal alkoxides becomes high, and rare earth metal oxides cannot be obtained at low cost. Furthermore, among the conventional methods mentioned above, the anhydrous rare earth metal chloride that is the starting material is generally very hygroscopic and is extremely difficult to handle industrially in large quantities; Certain rare earth metals are generally very expensive and require long heating and refluxing to complete the reaction, making them unsuitable for industrial mass production. In view of these circumstances, the present inventors have conducted extensive studies on the method for producing rare earth metal alkoxides. As a result, in contrast to the prior art, a rare earth metal alkoxide can be produced by using a rare earth metal carboxylate anhydride as a starting material instead of a rare earth metal chloride anhydride and reacting this with an alkali metal alkoxide. The present inventors have discovered that this can be obtained in high yield and purity, and have completed the present invention. According to the present invention, rare earth metal alkoxides can be obtained with high purity and high yield, and rare earth metal alkoxides can be produced at low cost without requiring purification operations of rare earth metal alkoxides. That is, in the production method of the present invention, rare earth metal alkoxides can be obtained with almost no impurities and at a high yield of 90% or more. Therefore, the present invention is significantly improved in terms of yield, purity, operability, and economical efficiency compared to the conventional technology, which contained a large amount of impurities and could not obtain the desired product in a low yield. has been done. The method for producing rare earth metal alkoxide of the present invention will be explained in more detail as follows. First, an alkali metal alkoxide is added to a mixed solution of a rare earth metal carboxylate anhydride and an organic solvent, and the mixture is stirred for 1 to 3 hours at a temperature ranging from room temperature to the reflux temperature of the solvent. Thereafter, the reaction solution is filtered to remove the alkali metal carboxylate, resulting in a homogeneous and transparent solution of the rare earth metal alkoxide in an organic solvent. If necessary, this filtrate is evaporated to dryness, and then an organic solvent for dissolution is added to the residue to dissolve the rare earth metal alkoxide, and if any insoluble matter is present, it is filtered to obtain a homogeneous and transparent solution of the rare earth metal alkoxide. The starting material for the reaction, rare earth metal carboxylate anhydride, is 1
Anhydrous or divalent carboxylic acid salts are used, with preference given to the use of formates, acetates, propionates. Also, for 1 mole of rare earth metal carboxylate anhydride, 3 to 3 alkali metal alkoxides
3.3 mol and the organic solvent is preferably in the range of 0.85 to 5 liters from an economic standpoint. In addition, as the reaction solvent used, any inert organic solvent may be used.
From the viewpoint of operability, aromatic hydrocarbons such as benzene, toluene, and xylene, and alcohols such as methanol, ethanol, hexanol, and octanol are preferred. The solvent for dissolving the generated rare earth metal alkoxide may be any solvent as long as it is soluble in the rare earth metal alkoxide, and aromatic hydrocarbons such as benzene, toluene, and xylene are particularly preferable. 0.5 to 5 liters per mole of carboxylic acid anhydride
amount is enough to dissolve the generated rare earth metal alkoxide. Rare earth metal alkoxides are easily hydrolyzed even with trace amounts of moisture, so they are usually used as solutions for the next purpose, but if necessary, they can be easily processed by distilling off the solvent, blocking moisture, and handling carefully. It is also possible to separate them. In the production method of the present invention, the method of reacting the rare earth metal carboxylate anhydride with the alkali metal alkoxide is as shown in (1) below. Alkoxides may be reacted, but (2)
As shown in , an alkali metal may be added to an alcoholic solution of a rare earth metal carboxylate anhydride to generate an alkali metal alkoxide, and this may be reacted with the rare earth metal carboxylate anhydride. The outline is shown below. (1)
【表】
(M,M′、R、Xおよびnは前記と同じ意
味を有する)
希土類金属のカルボン酸塩無水物の有機溶媒
溶液に、アルカリ金属アルコキシドをそのまま
かあるいは有機溶媒に溶解したものを加える。
ここでsolv1およびsolv2はそれぞれ独立にベン
ゼン、トルエン、キシレンなどの芳香族炭化水
素またはメタノール、エタノール、ブタノー
ル、オクタノールなどの脂肪族アルコールであ
るかまたは同一であつてもよい。
(2) MnX3/solv(アルコール)+アルカリ金属→
nM(OR)3
(M、R、Xおよびnは前記と同じ意味を有
する)
希土類金属のカルボン酸塩無水物のアルコー
ル溶液にアルカリ金属を加える。ここでsolv
は、メタノール、エタノール、ブタノール、オ
クタノールなどの脂肪族アルコールまたはこれ
ら脂肪族アルコールとベンゼン、トルエン、キ
シレンなどの芳香族炭化水素との混合溶媒が使
用できる。次に本発明の実施例を示す。
実施例 1
イツテルビウムメトキシドの製造[反応法(1)の
方法]
100ml容量の丸底フラスコに無水酢酸イツテル
ビウム9.2g(0.03モル)およびトルエン50mlを入
れ、撹拌しながらナトリウムメトキシドのメタノ
ール溶液(CH3ONaとして28%、0.09モル)を滴
下し、滴下後、マントルヒーターで加温して2時
間還流する。反応液を室温に冷却し、析出した結
晶をろ別した後、ろ液を蒸発乾固し、残留物にト
ルエン30ml加えて残留物を溶解してろ別すると、
均一透明なトルエン溶液が得られる。このトルエ
ン溶液を蒸発乾固してイツテルビウムメトキシド
7.3g(収率91.9%)を得た。
元素分析値 C 13.5%(理論値13.5%)
H 3.7%( 〃 3.4%)
O 18.8%( 〃 18.0%)
次に、実施例1に準じた本発明の反応法(1)によ
る実施例を第1表に示す。[Table] (M, M', R, Add.
Here, solv 1 and solv 2 may each independently be an aromatic hydrocarbon such as benzene, toluene, or xylene, or an aliphatic alcohol such as methanol, ethanol, butanol, or octanol, or may be the same. (2) MnX 3 /solv (alcohol) + alkali metal→
nM(OR) 3 (M, R, X and n have the same meanings as above) An alkali metal is added to an alcoholic solution of rare earth metal carboxylate anhydride. here solv
For example, an aliphatic alcohol such as methanol, ethanol, butanol, or octanol, or a mixed solvent of these aliphatic alcohols and an aromatic hydrocarbon such as benzene, toluene, or xylene can be used. Next, examples of the present invention will be shown. Example 1 Production of itterbium methoxide [Reaction method (1)] 9.2 g (0.03 mol) of itterbium acetate anhydride and 50 ml of toluene were placed in a 100 ml round bottom flask, and a methanol solution of sodium methoxide was added while stirring. (28% as CH 3 ONa, 0.09 mol) was added dropwise, and after the dropwise addition, the mixture was heated with a mantle heater and refluxed for 2 hours. After cooling the reaction solution to room temperature and filtering out the precipitated crystals, the filtrate was evaporated to dryness, 30 ml of toluene was added to the residue, the residue was dissolved, and the mixture was filtered.
A homogeneous and transparent toluene solution is obtained. This toluene solution was evaporated to dryness to produce itterbium methoxide.
7.3g (yield 91.9%) was obtained. Elemental analysis values C 13.5% (theoretical value 13.5%) H 3.7% (〃 3.4%) O 18.8% (〃 18.0%) Next, an example using the reaction method (1) of the present invention based on Example 1 was conducted. It is shown in Table 1.
【表】【table】
【表】
実施例 16
スカンジウムエトキシドの製造[反応法(2)の方
法]
100ml容量の丸底フラスコにプロピオン酸スカ
ンジウム(0.03モル)、ベンゼン50mlおよびエタ
ノール10mlを入れ撹拌しながら金属リチウム0.6g
(0.09モル)を徐々に添加した。添加終了後マン
トルヒータで加温して1時間還流したのち、実施
例1に準じて操作を行ないスカンジウムエトキシ
ド6.4g[収率95.6%]を得た。
原素分析値 C H O
理論値 32.2 6.7 21.4
分析値 31.8 6.7 21.1
次に、実施例16に準じた本発明の反応法(2)の実
施例を第2表に示す。[Table] Example 16 Production of scandium ethoxide [Method of reaction method (2)] Scandium propionate (0.03 mol), benzene 50 ml and ethanol 10 ml were placed in a 100 ml round bottom flask, and while stirring, 0.6 g of metallic lithium was added.
(0.09 mol) was added gradually. After the addition was completed, the mixture was heated with a mantle heater and refluxed for 1 hour, and then the same procedure as in Example 1 was carried out to obtain 6.4 g of scandium ethoxide (yield: 95.6%). Elemental analysis value C H O Theoretical value 32.2 6.7 21.4 Analysis value 31.8 6.7 21.1 Next, an example of the reaction method (2) of the present invention based on Example 16 is shown in Table 2.
【表】【table】
【表】
比較例 1
(「Inorg.Chem.」記載例)
300ml容量の丸底フラスコにリチウムイソプロ
ポキシド24.3g(0.37モル)およびイソプロピル
アルコール150mlを入れ、撹拌しながらテトラヒ
ドロフラン25mlに溶解したイツトリウムトリクロ
ライド23.4g(0.12モル)を滴下する。滴下終了
後、マントルヒーターで45℃に加温して3時間撹
拌した後反応液を蒸発乾固する。残留物にベンゼ
ン150mlを加え、不溶物をろ別し、ベンゼンを留
去するとイツトリウムイソプロポキシド16.8g
(収率52.6%)を得た。
次に比較例1に準じた比較例を第3表に示す。[Table] Comparative Example 1 (Example described in "Inorg.Chem.") 24.3 g (0.37 mol) of lithium isopropoxide and 150 ml of isopropyl alcohol were placed in a 300 ml round bottom flask, and while stirring, yttrium was dissolved in 25 ml of tetrahydrofuran. 23.4 g (0.12 mol) of trichloride is added dropwise. After completion of the dropwise addition, the mixture was heated to 45°C using a mantle heater, stirred for 3 hours, and then the reaction solution was evaporated to dryness. Add 150ml of benzene to the residue, filter out insoluble matter, and distill off the benzene to obtain 16.8g of yttrium isopropoxide.
(yield 52.6%). Next, Table 3 shows comparative examples based on Comparative Example 1.
【表】
比較例 17
(「Z、Anorg.All.Chemic.」記載例)
300ml容量の丸底フラスコにメタノール150mlお
よびスカンジウムクロライド無水物6.1g(0.04モ
ル)入れ加温して還流させる。この中へ0.12モル
の乾燥アンモニアガスを導入し1時間加熱還流
後、嵩だかの結晶をろ過した後、この結晶を熱メ
タノールで十分に洗い複製した塩化アンモニウム
を完全に除去するた白色結晶としてスカンジウム
メトキシドが得られた。収量は3.1gで収率は56.3
%であつた。[Table] Comparative Example 17 (Example described in "Z, Anorg.All.Chemic.") 150 ml of methanol and 6.1 g (0.04 mol) of anhydrous scandium chloride are placed in a 300 ml round bottom flask and heated to reflux. 0.12 mol of dry ammonia gas was introduced into this, and after heating under reflux for 1 hour, the bulky crystals were filtered out, and the crystals were thoroughly washed with hot methanol to completely remove the replicated ammonium chloride. Methoxide was obtained. The yield is 3.1g and the yield is 56.3
It was %.
Claims (1)
リウムを除く)を示し、Xはカルボン酸残基を示
し、nは1または2を示す。ただし、nが1を示
す場合Xは1価のカルボン酸残基を示し、nが2
を示す場合Xは2価のカルボン酸残基を示す。〕
で表わされる希土類金属カルボン酸塩と一般式 ROM′ (式中、Rはアルキル基を示し、M′はアルカ
リ金属原子を示す)で表わされるアルカリ金属ア
ルコキシドを反応させることを特徴とする一般式 M(OR)3 (式中、MおよびRは先に定義した通りであ
る)で表わされる希土類金属アルコキシドの製造
法。[Claims] 1 General formula MnX 3 [wherein M represents a rare earth metal element (excluding yttrium), X represents a carboxylic acid residue, and n represents 1 or 2. However, when n represents 1, X represents a monovalent carboxylic acid residue, and n represents 2
When it represents, X represents a divalent carboxylic acid residue. ]
A rare earth metal carboxylate represented by the general formula M is characterized by reacting an alkali metal alkoxide represented by the general formula ROM' (wherein R represents an alkyl group and M' represents an alkali metal atom). A method for producing a rare earth metal alkoxide represented by (OR) 3 (wherein M and R are as defined above).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6102583A JPS59186936A (en) | 1983-04-08 | 1983-04-08 | Preparation of rare earth metal alkoxide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6102583A JPS59186936A (en) | 1983-04-08 | 1983-04-08 | Preparation of rare earth metal alkoxide |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59186936A JPS59186936A (en) | 1984-10-23 |
JPS626694B2 true JPS626694B2 (en) | 1987-02-13 |
Family
ID=13159348
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6102583A Granted JPS59186936A (en) | 1983-04-08 | 1983-04-08 | Preparation of rare earth metal alkoxide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59186936A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS597126A (en) * | 1982-07-06 | 1984-01-14 | Hokko Chem Ind Co Ltd | Preparation of yttrium alkoxide |
JPS59186935A (en) * | 1983-04-07 | 1984-10-23 | Hokko Chem Ind Co Ltd | Preparation of rare earth metal alkoxide |
-
1983
- 1983-04-08 JP JP6102583A patent/JPS59186936A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS597126A (en) * | 1982-07-06 | 1984-01-14 | Hokko Chem Ind Co Ltd | Preparation of yttrium alkoxide |
JPS59186935A (en) * | 1983-04-07 | 1984-10-23 | Hokko Chem Ind Co Ltd | Preparation of rare earth metal alkoxide |
Also Published As
Publication number | Publication date |
---|---|
JPS59186936A (en) | 1984-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4837190A (en) | Organic solvent soluble polyvalent metal alkoxy alkoxides | |
CN110040758A (en) | A kind of preparation method of anhydrous rare-earth chlorination | |
JPS6325207A (en) | Manufacture of metallic oxide having no halide and metallic oxide | |
US4507245A (en) | Process for the production of a rare earth metal alkoxide | |
CN102791677B (en) | Preparation method of 4-aminomethylbenzoic acid | |
JP3472939B2 (en) | Method for producing lanthanum-based perovskite-type composite oxide | |
Chandler et al. | Synthesis, characterization, and reactivity of lead (II) glycolate complexes | |
JPS626694B2 (en) | ||
JPS61130246A (en) | Manufacture of cerium alkoxide | |
JP3307685B2 (en) | Method for producing β-diketonate complex of rare earth element | |
JPS59186935A (en) | Preparation of rare earth metal alkoxide | |
US3975416A (en) | Preparation of yttrium and lanthanide hexafluoroisopropoxide diammoniates | |
JP3348964B2 (en) | Method for producing rare earth metal alkoxy alcoholate | |
Archer et al. | The role of precursor segregation in the formation of perovskite phase PbTiO3 from lead (II) glycolate and phenoxyglycolate compounds | |
JPH0114888B2 (en) | ||
JPH0819137B2 (en) | Method for producing metal-containing alcohol solution | |
JP4656292B2 (en) | Method for producing metal alkanolamine compounds | |
JP2002363122A (en) | New alkoxyalcoholate of rare earth metal | |
JP2003342222A (en) | Method for producing zinc acetylacetonate monohydrate | |
JP4266285B2 (en) | Method for producing vanadium tris (β-diketonate) | |
JP3270207B2 (en) | Production method of rare earth alkoxide | |
CN117924348A (en) | One-pot method preparation technology of ALD precursor tin complex | |
JPH0796554B2 (en) | Copper (II) alkoxy alcoholate and method for producing the same | |
JPH0819138B2 (en) | Method for producing metal-containing alcohol solution | |
JPS59162132A (en) | Production of oxysulfate of rare earth element |