JPS626503B2 - - Google Patents

Info

Publication number
JPS626503B2
JPS626503B2 JP56201898A JP20189881A JPS626503B2 JP S626503 B2 JPS626503 B2 JP S626503B2 JP 56201898 A JP56201898 A JP 56201898A JP 20189881 A JP20189881 A JP 20189881A JP S626503 B2 JPS626503 B2 JP S626503B2
Authority
JP
Japan
Prior art keywords
molded product
slip material
weight
ethylene
slip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56201898A
Other languages
Japanese (ja)
Other versions
JPS58102724A (en
Inventor
Yoshikuni Aoyanagi
Susumu Sawada
Takazo Ebina
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP20189881A priority Critical patent/JPS58102724A/en
Publication of JPS58102724A publication Critical patent/JPS58102724A/en
Publication of JPS626503B2 publication Critical patent/JPS626503B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D123/00Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers
    • C09D123/02Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D123/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は防滑性ポリプロピレン成形品に関す
る。詳しくは滑り止め効果に優れ、かつ耐久性も
良好な滑り止め材を取付けたポリプロピレン成形
品に関する。 ポリプロピレン等のポリオレフイン成形品は耐
水性、耐薬品性等に優れ、また衛生的であり、成
形品の規格が一定している等の点から木材、金属
等に替り多用されるようになつた。 しかしながら、このポリオレフイン成形品は上
述のような優れた特長を有する反面、滑り易いと
云う欠点を有している。特にこのポリオレフイン
成形品により荷物を運搬、保管等するのに用いる
パレツトを作成した場合等においては、荷物とパ
レツトとの間、パレツトとフオークリフト等のフ
オークとの間、パレツト同士の間等において滑り
を起し易く、荷物の運搬、移送等を行なうに際
し、荷崩れを起す危険がある。 従来から、上記したような滑りを防止する方法
として、パレツト等の成形品の表面に凹凸を設け
たり、ゴム製の滑り止めを嵌合する等の方法が行
なわれているが、種々の点でまだ満足すべきもの
とはいい難かつた。 本発明者等は上述のような従来のポリプロピレ
ン成形品の滑り易いと云う欠点を解消すべく鋭意
検討を行なつた結果、特殊の組成からなる滑り止
め材を特定の構成でポリプロピレン成形品に取付
けることにより問題を解決し得ることを見出し本
発明を完成した。 すなわち、本発明の要旨はエテレンプロピレン
ジエンゴムと長鎖分岐を有する高圧法低密度ポリ
エチレンとの重量比20:80〜80:20の配合物を成
形してなる滑り止め材をポリプロピレン成形品に
熱溶着してなるポリプロピレン成形品に存する。 以下、本発明の成形品の一例につき図面を用い
て更に説明する。 第1図は本発明の成形品の一例であるパレツト
の斜視図である。 図中1は成形品(パレツト)、2は滑り止め材
をそれぞれ示す。 本発明の成形品(パレツト)1を構成する合成
樹脂は、滑り止め材2との熱溶着性等を考慮し、
ポリプロピレン樹脂が用いられるが、中でも硬度
(JIS K6301による硬度)がJIS A97以上100に近
いものが好ましい。これを更にわかりやすく云え
ばシヨア硬度(ASTM D 2240シヨアDによる
硬度)が60以上、好ましくは70以上のポリプロピ
レンを主成分とする硬質のポリオレフインが好ま
しい。 上述した成形品1を構成するポリプロピレンに
は、酸化防止剤、紫外線吸収剤、熱安定剤、帯電
防止剤、難燃剤、架橋剤、発泡剤、染料、顔料、
有機充填剤、無機充填剤等の添加剤を添加混合し
て用いても良く、また成形品1の成形は射出成
形、押出成形、注型成形等、所望の成形品に応じ
従来の成形方法が任意に用いられる。 成形品1がパレツトの場合には、上記ポリプロ
ピレンに発泡剤を添加し、発泡倍率1.05〜1.5倍
程度の倍率で表層に無発泡層を有する低発泡射出
成形品とするのが望ましい。勿論、無発泡のもの
であつても良い。 滑り止め材2は、エチレンプロピレンジエンゴ
ム及び長鎖分岐を有する高圧法低密度ポリエチレ
ンの配合物を成形して得られるものである。 エチレンプロピレンジエンゴムとは、例えばエ
チレンとプロピレンとジエンとをチグラー系触媒
等の存在下重合したゴム状物であり、不飽和成分
としてのジエン成分としては、ジシクロペンタジ
エン、エチリデンノルボーネン、メチレンノルボ
ーネン、1,4―ヘキサジエン等が挙げられる。 このエチレンプロピレンジエンゴムはエチレン
成分を60〜80重量%、好ましくは70〜80重量%含
有することが望ましい。 また、長鎖分岐を有する高圧法低密度ポリエチ
レンとは、エチレン単独、もしくはエチレンと少
量の共重合成分との混合物を高圧法により重合し
たものであり、密度が0.94以下好ましくは0.925
以下のものである。 またメルトインデツクス(190℃)は0.1〜2.5
g/10分のものであることが好ましい。共重合成
分としては酢酸ビニル、アクリル酸エチル、メタ
クリル酸メチル、マレイン酸ジエチル等が挙げら
れ、その割合は10重量%以下である。 上記高圧法低密度ポリエチレンは近年開発され
た線状低密度ポリエチレンとは異なるものであ
り、分子中に多くの長鎖分岐を有する分子構造の
ものである。長鎖分岐とは炭素数にして2〜6程
度の短鎖分岐よりはるかに多い炭素数を有するも
のを云う。 長鎖分岐を有する高圧法低密度ポリエチレンと
線状低密度ポリエチレンとを物性上比較すれば、
粘度平均分子量によりその相違が如実に表われ、
メルトインデツクス=2のものを例にとれば、長
鎖分岐を有する高圧法低密度ポリエチレンは5万
以下3〜4万程度となり、線状低密度ポリエチレ
ンは7〜8万程度となる。 滑り止め材2は上記したようなエチレンプロピ
レンジエンゴム及び長鎖分岐を有する高圧法低密
度ポリエチレンの配合物からなり、その配合割合
は、エチレンプロピレンジエンゴムが20〜80重量
%、好ましくは30〜70重量%より好ましくは40〜
60重量%、長鎖分岐を有する高圧法低密度ポリエ
チレンが80〜20重量%、好ましくは70〜30重量
%、より好ましくは60〜40重量%とする。勿論こ
の混合物に更に前記したような添加剤を添加混合
しても良い。 また、これらの混合物には上記エチレンプロピ
レンジエンゴム及び長鎖分岐を有する高圧法低密
度ポリエチレンに加え、上記2成分の各々の配合
量を越えない範囲で他の熱可塑性合成樹脂を添加
混合しても良い。他の熱可塑性合成樹脂としては
ポリオレフイン系樹脂が好ましい。 更にまた、上記エチレンプロピレンジエンゴム
の一部をエチレンプロピレンジエンゴムの配合量
を越えない範囲で、エチレンプロピレンゴム、ス
チレンブタジエンゴム、アクリロニトリルブタジ
エンゴム、ポリブタジエンゴム、ポリイソプレン
ゴム、ポリクロロプレンゴム、ポリウレタンゴ
ム、チオコールゴム等の他の合成ゴムで置き替え
ても良い。 滑り止め材2は上述のような混合物に押出成
形、射出成形等の適宜の成形手段により帯状、紐
状、板状、ブロツク状等の所要の形状に成形す
る。 滑り止め材2としては、防滑性、溶着性、圧縮
変形、耐摩耗性等の点から硬度(JIS K6301によ
る硬度)がJIS A75〜JIS A95、引張強度{JIS
K6758−81による強度(但し20℃恒温下)}が50
〜250Kg/cm2であることが望ましい。 滑り止め材2を成形品1に設置するには熱溶着
が用いられるが、例えば、成形品1の表面及び滑
り止め材2の表面を熱風や加熱板を用いて溶融
し、その両者が未だ溶融状態にある間に圧着し、
両者を接合する方法、成形品1を射出成形等によ
り成形する際に金型内の所要位置に滑り止め材2
を固定しておき、溶融状態にあるポリプロピレン
を金型内に充填し、この溶融熱を利用して成形品
1と滑り止め材2とを熱溶着する方法、滑り止め
材2を押出機から帯状、紐状等に押出しつつ、成
形品1の表面(接着性を高めるため予め予熱や酸
化処理等を施しておいても良い)に押圧して溶着
する方法等が用いられる。 通常は成形品1の近くに滑り止め材2を位置さ
せ、この両者に熱風を吹付けて成形品1の表面及
び滑り止め材2の表面を溶融させ両者を圧着する
ことにより溶着する方法が用いられる。 この溶着方法による溶着条件は、熱風の温度、
熱風の風量、熱風の吹出口からの成形品1及び滑
り止め材2までの距離等により変化し一概に決定
し得ないが、ラインスピード1m/min程度を一
例として説明すれば、600〜800℃程度の熱風(熱
風発生機内のヒーター温度)を成形品1の表面及
び滑り止め材2の表面に吹き付け、成形品1の表
面及び滑り止め材2の表面に溶融層を形成させ、
両者の表面が溶融状態にあるうちに、溶融部同志
を0.5Kg/cm程度以上の圧力で押圧ローラー等に
より押圧することにより行なわれる。 次に、実施例により本発明の成形品の特性につ
き更に詳細に説明するが、本発明はその要旨を越
えない限り以下の実施例に限定されるものではな
い。 実施例中に記載した各種物性は以下の測定法に
よつた。 (1) メルトインデツクス:JIS K6760−81に準拠
20℃恒温下で測定した。 (2) 密 度:同上 (3) 引張強度:同上 (4) 伸 度:同上 (5) 180゜剥離強度:幅20mm、厚さ2mmの滑り止
め材を母材に溶着した長さ約250mmの試験片を
用い、滑り止め材の長さ方向約半分の滑り止め
材を母材から剥離し、剥離した滑り止め材を
180゜折り返した状態で滑り止め材及び母材の
一端を試験機のチヤツクに固定し、20℃の恒温
下、50mm/minの一定速度で滑り止め材を母材
から剥離し、剥離に要した力を読み取り、平均
値をKg/cmで表示した。 (6) 滑り角度:定盤上に厚さ2mm、長さ及び幅
250mmの滑り止め材シートを取付け、その上に
厚さ2mm、長さ及び幅80mmのポリエチレン又は
ポリプロピレンからなるシートを載置し、該シ
ートに1Kgの荷重を加えた。この状態から定盤
の一辺を100mm/分の一定速度で引き上げ載置
したシートが滑り始める角度(水平面に対する
角度)を測定し、3回の平均値で示した。 (7) 硬 度:JIS K6301−81A法に準拠し20℃恒
温下で測定した。 (8) 摩耗率:大栄科学(株)製のカストム式織物摩耗
試験機を用い長さ35mm、幅20mm、厚さ2mmの滑
り止め材に40番のサンドペーパーを接触させ、
3.4Kg(7.5 1b)の荷重を加え20℃恒温下スト
ローク50mmで往復運動させ、5000往復繰り返し
て滑り止め材を摩耗させ、滑り止め材の元の重
量に対する摩耗量の重量百分率で示した。 実施例の表中、エチレンプロピレンジエンゴム
を「EPDM」と、また長鎖分岐を有する高圧法低
密度ポリエチレンのうち、エチレン単独重合体を
「HPLD」と、エチレン―酢酸ビニル共重合体を
「EVA」と略記した。 実施例 1〜3 エチレンプロピレンジエンゴム(EPDM)(日
本イーピーラバー(株)製、エチレンプロピレンター
ポリマーEP57T、エチレン含有量67重量%)と
長鎖分岐を有する高圧法低密度ポリエチレン(エ
チレン単独重合体)(HPLD){三菱化成工業(株)
製、ノバテツクF100、メルトインデツクス(190
℃):0.42g/10分、密度:092g/cm3}を下記
第1表の割合で配合し、押出機{田辺プラスチツ
ク機械、VS30−22型押出機、先端ダルメージ型
30φ、L/D:22、圧縮比:3.5}によりペレツ
トとし、次いでプレス成形により厚さ2mm、長さ
及び幅250mmのシートを作成し、これを滑り止め
材とした。 ポリプロピレン{三菱油化(株)製、三菱ノーブノ
ンBC−8、メルトインデツクス(230℃):1.2
g/10分、密度:0.9g/cm3}を用いて製造した
厚さ3.5mm、長さ及び幅250mmの板状体に、上記滑
り止め材シートを、230℃、4Kg/cm25分間加圧
の条件下にプレス成形により熱溶着した。得られ
た滑り止め材の各種物性を第1表に示した。 実施例 4,5 HPLDをエチレン酢酸ビニル共重合体(住友化
学工業(株)製、エバテートD2011、酢酸ビニル含有
量5重量%)に替えたほかは実施例1と同様にし
て滑り止め材を熱溶着した成形品を得た。得られ
た滑り止め材の各種物性を第1表に示した。 比較例 1〜4 実施例で用いたエチレンプロピレンジエンゴム
又はHPLDを用い、エチレンプロピレンジエンゴ
ム単独、HPLD単独又は本発明の範囲外でエチレ
ンプロピレンジエンゴムとHPLDを配合したもの
を用いて作成した滑り止め材を実施例1と同様に
して処理し、滑り止め材を熱溶着した成形品を得
た。得られた滑り止め材の各種物性を第1表に示
した。 実施例 6 実施例1のペレツトを用いて押出機により厚さ
2mm、幅20mm、長さ1mの帯状シートとし、該帯
状シートを滑り止め材として実施例1で用いたと
同じポリプロピレンを用いて製造したパレツトの
表面に第1図に示したと同様の構造に熱溶着し
た。熱溶着は700〜800℃(内蔵したヒーター温
度)、風量120/minの熱風により滑り止め材及
びパレツトの表面を溶融し、両者を2Kg/cmの押
圧力(ローラー線圧)で押圧することにより行な
つた。滑り止め材はパレツトに良好に接着してお
り、防滑性も充分実用に耐えるものであつた。
The present invention relates to anti-slip polypropylene molded articles. Specifically, the present invention relates to a polypropylene molded product equipped with an anti-slip material that has an excellent anti-slip effect and good durability. Polyolefin molded products such as polypropylene have excellent water resistance and chemical resistance, are hygienic, and have uniform specifications for molded products, so they have come to be widely used in place of wood, metal, etc. However, although this polyolefin molded product has the above-mentioned excellent features, it also has the drawback of being slippery. Particularly when pallets used for transporting or storing cargo are made from polyolefin molded products, slipping may occur between the cargo and the pallet, between the pallet and fork such as a forklift, or between pallets. There is a risk of the cargo collapsing when transporting or transferring the cargo. Conventionally, methods to prevent the above-mentioned slipping have been used, such as creating irregularities on the surface of molded products such as pallets, or fitting rubber anti-slip fittings, but these methods have various problems. It's hard to say that I'm still satisfied with it. The inventors of the present invention have conducted intensive studies in order to eliminate the above-mentioned drawback of conventional polypropylene molded products being easy to slip.As a result, the inventors have developed a method for attaching an anti-slip material made of a special composition to a polypropylene molded product in a specific configuration. They discovered that the problem could be solved by doing this and completed the present invention. That is, the gist of the present invention is to mold an anti-slip material formed by molding a blend of ethylene propylene diene rubber and high-pressure low density polyethylene having long chain branches in a weight ratio of 20:80 to 80:20 into a polypropylene molded product. It consists of polypropylene molded products made by heat welding. Hereinafter, an example of the molded product of the present invention will be further explained using the drawings. FIG. 1 is a perspective view of a pallet which is an example of the molded product of the present invention. In the figure, 1 indicates a molded product (pallet), and 2 indicates a non-slip material. The synthetic resin constituting the molded product (pallet) 1 of the present invention is selected from consideration of thermal weldability with the anti-slip material 2, etc.
A polypropylene resin is used, and among them, one having a hardness (hardness according to JIS K6301) of JIS A97 or higher and close to 100 is preferable. To put this more simply, a hard polyolefin containing polypropylene as a main component and having a Shore hardness (hardness according to ASTM D 2240 Shore D) of 60 or more, preferably 70 or more is preferred. The polypropylene constituting the molded article 1 described above contains antioxidants, ultraviolet absorbers, heat stabilizers, antistatic agents, flame retardants, crosslinking agents, blowing agents, dyes, pigments,
Additives such as organic fillers and inorganic fillers may be added and mixed, and the molded product 1 may be molded by conventional molding methods such as injection molding, extrusion molding, cast molding, etc. depending on the desired molded product. Used arbitrarily. When the molded product 1 is a pallet, it is desirable to add a foaming agent to the above-mentioned polypropylene to obtain a low-foaming injection molded product having a non-foamed layer on the surface layer at an expansion ratio of about 1.05 to 1.5 times. Of course, it may be non-foamed. The anti-slip material 2 is obtained by molding a blend of ethylene propylene diene rubber and high pressure low density polyethylene having long chain branches. Ethylene propylene diene rubber is a rubbery product obtained by polymerizing, for example, ethylene, propylene, and diene in the presence of a Ziegler catalyst, etc. The diene component as an unsaturated component includes dicyclopentadiene, ethylidene norbornene, and methylene norbornene. Bohnen, 1,4-hexadiene, and the like. This ethylene propylene diene rubber preferably contains 60 to 80% by weight, preferably 70 to 80% by weight of ethylene component. Furthermore, high-pressure low-density polyethylene having long chain branches is obtained by polymerizing ethylene alone or a mixture of ethylene and a small amount of a copolymer component using a high-pressure method, and has a density of 0.94 or less, preferably 0.925.
These are as follows. Also, the melt index (190℃) is 0.1 to 2.5.
g/10 minutes is preferred. Examples of the copolymerization component include vinyl acetate, ethyl acrylate, methyl methacrylate, diethyl maleate, etc., and the proportion thereof is 10% by weight or less. The above-mentioned high-pressure low-density polyethylene is different from linear low-density polyethylene developed in recent years, and has a molecular structure having many long chain branches in the molecule. A long chain branch is one having a much larger number of carbon atoms than a short chain branch, which is about 2 to 6 carbon atoms. Comparing the physical properties of high-pressure low-density polyethylene with long chain branches and linear low-density polyethylene,
The difference is clearly revealed by the viscosity average molecular weight,
Taking a melt index of 2 as an example, high-pressure low density polyethylene having long chain branches has a value of 50,000 or less, and is about 30,000 to 40,000, and linear low density polyethylene has a value of about 70,000 to 80,000. The anti-slip material 2 is made of a blend of ethylene propylene diene rubber and high-pressure low density polyethylene having long chain branches as described above, and the blending ratio is 20 to 80% by weight of ethylene propylene diene rubber, preferably 30 to 80% by weight. 70% by weight, preferably 40~
60% by weight, high-pressure low density polyethylene having long chain branching accounts for 80-20% by weight, preferably 70-30% by weight, more preferably 60-40% by weight. Of course, the above-mentioned additives may be further added to this mixture. In addition to the above ethylene propylene diene rubber and high-pressure low density polyethylene having long chain branches, other thermoplastic synthetic resins are added to these mixtures in an amount that does not exceed the amount of each of the above two components. Also good. As other thermoplastic synthetic resins, polyolefin resins are preferred. Furthermore, a part of the above ethylene propylene diene rubber may be mixed with ethylene propylene rubber, styrene butadiene rubber, acrylonitrile butadiene rubber, polybutadiene rubber, polyisoprene rubber, polychloroprene rubber, polyurethane rubber, within a range not exceeding the blending amount of ethylene propylene diene rubber. It may be replaced with other synthetic rubbers such as , thiocol rubber, etc. The anti-slip material 2 is formed from the above-mentioned mixture into a desired shape such as a band, a string, a plate, a block, etc. by extrusion molding, injection molding, or other suitable molding means. The anti-slip material 2 should have a hardness (according to JIS K6301) of JIS A75 to JIS A95 and a tensile strength {JIS
Strength by K6758-81 (at constant temperature of 20℃)} is 50
~250Kg/ cm2 is desirable. Heat welding is used to install the anti-slip material 2 on the molded product 1. For example, if the surface of the molded product 1 and the surface of the non-slip material 2 are melted using hot air or a hot plate, both of them are still molten. Crimp while in the state,
A method of joining the two, when molding the molded product 1 by injection molding etc., the anti-slip material 2 is placed at the required position in the mold.
is fixed, molten polypropylene is filled into the mold, and the melting heat is used to thermally weld the molded product 1 and the anti-slip material 2. , a method is used in which the material is extruded into a string shape or the like, and then pressed and welded to the surface of the molded product 1 (which may be preheated, oxidized, etc., to improve adhesion). Usually, a method is used in which a non-slip material 2 is placed near a molded product 1, and hot air is blown onto both to melt the surface of the molded product 1 and the surface of the non-slip material 2, and the two are crimped and welded. It will be done. The welding conditions for this welding method are the temperature of the hot air,
Although it cannot be definitively determined as it varies depending on the amount of hot air, the distance from the hot air outlet to the molded product 1 and the anti-slip material 2, etc., if we take a line speed of about 1 m/min as an example, it will be 600 to 800°C. Blow hot air (temperature of the heater in the hot air generator) to the surface of the molded product 1 and the surface of the anti-slip material 2 to form a molten layer on the surface of the molded product 1 and the surface of the non-slip material 2,
This is done by pressing the molten parts together with a pressure roller or the like at a pressure of about 0.5 kg/cm or more while the surfaces of both are in a molten state. Next, the characteristics of the molded article of the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to the following Examples unless the gist thereof is exceeded. Various physical properties described in the examples were measured by the following measurement methods. (1) Melt index: Compliant with JIS K6760-81
Measured at a constant temperature of 20°C. (2) Density: Same as above.(3) Tensile strength: Same as above.(4) Elongation: Same as above. Using a test piece, peel approximately half of the anti-slip material from the base material in the length direction, and then remove the peeled anti-slip material from the base material.
The anti-slip material and one end of the base material were fixed to the chuck of the testing machine with the material folded back 180 degrees, and the anti-slip material was peeled from the base material at a constant speed of 50 mm/min at a constant temperature of 20°C. The force was read and the average value was expressed in Kg/cm. (6) Sliding angle: 2mm thick, length and width on the surface plate
A 250 mm anti-slip material sheet was attached, and a sheet made of polyethylene or polypropylene with a thickness of 2 mm and a length and width of 80 mm was placed thereon, and a load of 1 kg was applied to the sheet. From this state, one side of the surface plate was pulled up at a constant speed of 100 mm/min, and the angle at which the placed sheet started to slide (angle with respect to the horizontal plane) was measured, and the average value of three measurements was calculated. (7) Hardness: Measured at a constant temperature of 20°C in accordance with JIS K6301-81A method. (8) Wear rate: Using a custom fabric abrasion tester manufactured by Daiei Kagaku Co., Ltd., No. 40 sandpaper was brought into contact with a non-slip material measuring 35 mm in length, 20 mm in width, and 2 mm in thickness.
A load of 3.4 Kg (7.5 1b) was applied, and the anti-slip material was subjected to reciprocating motion at a constant temperature of 20°C with a stroke of 50 mm, repeated 5000 times to wear out the anti-slip material, and the amount of wear was expressed as a weight percentage of the original weight of the anti-slip material. In the table of Examples, ethylene propylene diene rubber is referred to as "EPDM", ethylene homopolymer of high-pressure low density polyethylene with long chain branching is referred to as "HPLD", and ethylene-vinyl acetate copolymer is referred to as "EVA". ” was abbreviated as “. Examples 1 to 3 Ethylene propylene diene rubber (EPDM) (manufactured by Japan EP Rubber Co., Ltd., ethylene propylene terpolymer EP57T, ethylene content 67% by weight) and high-pressure low density polyethylene with long chain branching (ethylene homopolymer) ) (HPLD) {Mitsubishi Chemical Industries, Ltd.
manufactured by Novatec F100, Melt Index (190
℃): 0.42 g/10 minutes, density: 092 g/cm 3 } in the proportions shown in Table 1 below, and extruder {Tanabe Plastic Machinery, VS30-22 type extruder, tip Dalmage type
30φ, L/D: 22, compression ratio: 3.5} to make pellets, and then press molding to create a sheet with a thickness of 2 mm, length and width of 250 mm, and this was used as an anti-slip material. Polypropylene {manufactured by Mitsubishi Yuka Co., Ltd., Mitsubishi Norvenon BC-8, melt index (230℃): 1.2
g/10 minutes, density: 0.9 g/cm 3 } onto a plate with a thickness of 3.5 mm and a length and width of 250 mm, and the above anti-slip material sheet was applied at 230°C for 5 minutes at 4 kg/cm 2 Heat welding was carried out by press molding under pressure conditions. Table 1 shows various physical properties of the obtained anti-slip material. Examples 4 and 5 The anti-slip material was heated in the same manner as in Example 1, except that HPLD was replaced with ethylene-vinyl acetate copolymer (manufactured by Sumitomo Chemical Co., Ltd., Evatate D2011, vinyl acetate content 5% by weight). A welded molded product was obtained. Table 1 shows various physical properties of the obtained anti-slip material. Comparative Examples 1 to 4 Slips created using the ethylene propylene diene rubber or HPLD used in the examples, ethylene propylene diene rubber alone, HPLD alone, or a blend of ethylene propylene diene rubber and HPLD outside the scope of the present invention. The anti-slip material was treated in the same manner as in Example 1 to obtain a molded product with the anti-slip material thermally welded. Table 1 shows various physical properties of the obtained anti-slip material. Example 6 The pellets of Example 1 were used to make a strip sheet with a thickness of 2 mm, width of 20 mm, and length of 1 m using an extruder, and the strip sheet was manufactured using the same polypropylene as used in Example 1 as an anti-slip material. A structure similar to that shown in FIG. 1 was heat welded to the surface of the pallet. Thermal welding is performed by melting the anti-slip material and the surface of the pallet using hot air at a temperature of 700 to 800℃ (built-in heater temperature) and a flow rate of 120/min, and pressing both together with a pressing force (roller linear pressure) of 2 kg/cm. I did it. The anti-slip material adhered well to the pallet, and its anti-slip properties were sufficient for practical use.

【表】 このように本発明の滑り止め材を取付けたポリ
プロピレン成形品は例えば、この成形品を荷物運
搬用のパレツトとした場合等、パレツトに載置し
た物品との間に良好な防滑性を奏し、また摩耗
率、溶着強度等に優れ、実用上大変好ましいもの
である。
[Table] The polypropylene molded product to which the anti-slip material of the present invention is attached has good anti-slip properties between it and the articles placed on the pallet, for example, when this molded product is used as a pallet for transporting cargo. In addition, it is excellent in wear rate, welding strength, etc., and is very preferable for practical use.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の成形品の一例であるパレツト
の斜視図である。 図中1は成形品(パレツト)、2は滑り止め材
をそれぞれ示す。
FIG. 1 is a perspective view of a pallet which is an example of the molded product of the present invention. In the figure, 1 indicates a molded product (pallet), and 2 indicates a non-slip material.

Claims (1)

【特許請求の範囲】 1 エチレンプロピレンジエンゴムと長鎖分岐を
有する高圧法低密度ポリエチレンとの重量比20:
80〜80:20の配合物を成形してなる滑り止め材を
ポリプロピレン成形品に熱溶着してなる防滑性ポ
リプロピレン成形品。 2 エチレンプロピレンジエンゴムは、エチレン
成分を54〜80重量%、プロピレン成分を18〜40重
量%、ジエン成分を1〜10重量%含有するもので
あることを特徴とする特許請求の範囲第1項に記
載のポリプロピレン成形品。 3 長鎖分岐を有する高圧法低密度ポリエチレン
として酢酸ビニルが10重量%以下共重合されたエ
チレン酢酸ビニル共重合体を用いることを特徴と
する特許請求の範囲第1項又は第2項に記載のポ
リプロピレン成形品。
[Claims] 1. Weight ratio of ethylene propylene diene rubber to high pressure low density polyethylene having long chain branches: 20:
A non-slip polypropylene molded product made by thermally welding a non-slip material made from an 80 to 80:20 mixture to a polypropylene molded product. 2. Claim 1, characterized in that the ethylene propylene diene rubber contains 54 to 80% by weight of an ethylene component, 18 to 40% by weight of a propylene component, and 1 to 10% by weight of a diene component. The polypropylene molded product described in . 3. The method according to claim 1 or 2, characterized in that an ethylene-vinyl acetate copolymer copolymerized with 10% by weight or less of vinyl acetate is used as the high-pressure low-density polyethylene having long chain branches. Polypropylene molded product.
JP20189881A 1981-12-15 1981-12-15 Slip resistant polyolefin molded product Granted JPS58102724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20189881A JPS58102724A (en) 1981-12-15 1981-12-15 Slip resistant polyolefin molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20189881A JPS58102724A (en) 1981-12-15 1981-12-15 Slip resistant polyolefin molded product

Publications (2)

Publication Number Publication Date
JPS58102724A JPS58102724A (en) 1983-06-18
JPS626503B2 true JPS626503B2 (en) 1987-02-12

Family

ID=16448645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20189881A Granted JPS58102724A (en) 1981-12-15 1981-12-15 Slip resistant polyolefin molded product

Country Status (1)

Country Link
JP (1) JPS58102724A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170094797A (en) 2014-12-29 2017-08-21 가부시키가이샤 보낙 A composition stably containing a nucleic acid molecule

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO985318L (en) * 1998-11-13 2000-05-15 Borealis As Polyolefin-based article with modified surface
US12103730B2 (en) * 2018-06-29 2024-10-01 Midland Compounding & Consulting, Inc. Recyclable abrasion resistant dunnage tray

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54144447A (en) * 1978-05-04 1979-11-10 Nippon Petrochemicals Co Ltd Polyethylene molded product

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54144447A (en) * 1978-05-04 1979-11-10 Nippon Petrochemicals Co Ltd Polyethylene molded product

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170094797A (en) 2014-12-29 2017-08-21 가부시키가이샤 보낙 A composition stably containing a nucleic acid molecule

Also Published As

Publication number Publication date
JPS58102724A (en) 1983-06-18

Similar Documents

Publication Publication Date Title
KR100414941B1 (en) Heat Resistant Rubber Composition
US6177516B1 (en) Adhesives and composite structures formed therewith
CA2410483C (en) Polyethylene rich/polypropylene blends and their uses
CA1107885A (en) Compositions comprising polybytene, epom and polyolefin
CN103781839B (en) Polymer composition and product prepared therefrom
EP0873242A1 (en) Process for preparing a laminate
CN102892827A (en) Polymer compositions, methods of making the same, and articles prepared from the same
IE913287A1 (en) Coverings based on thermoplastic elastomers, especially floor coverings
JP2003313434A (en) Thermoplastic elastomer composition
JPS626502B2 (en)
US5358994A (en) Thermoplastic material for production and repair of polymeric products and coating of metals
JPS626503B2 (en)
JPS626501B2 (en)
EP3853016B1 (en) Bonding method to attach ethylene-based polymer foam with vulcanized rubber
EP0028106B1 (en) Method for making articles by radio frequency welding
JPH0350703B2 (en)
JP5953825B2 (en) Polyethylene resin composition for three-dimensional network structure and three-dimensional network structure
CA2053891C (en) Method of making extruded polyethylene pipes
JPS6127181B2 (en)
JPS6338293B2 (en)
JPS6055307B2 (en) Polyethylene molded products
JP4137311B2 (en) Polyethylene molded product with anti-slip performance
JP3366461B2 (en) Extrusion molding resin composition
JP6137353B2 (en) Polyethylene resin composition for three-dimensional network structure and method for producing the same
JPS5914058B2 (en) Polyolefin composition with good adhesion to nylon