JPS6264891A - Removal of non-flowable component of pitch - Google Patents

Removal of non-flowable component of pitch

Info

Publication number
JPS6264891A
JPS6264891A JP20501985A JP20501985A JPS6264891A JP S6264891 A JPS6264891 A JP S6264891A JP 20501985 A JP20501985 A JP 20501985A JP 20501985 A JP20501985 A JP 20501985A JP S6264891 A JPS6264891 A JP S6264891A
Authority
JP
Japan
Prior art keywords
pitch
mesh
spinning
separation
sieve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20501985A
Other languages
Japanese (ja)
Inventor
Yasusuke Hirao
平尾 庸介
Yukio Fukuyama
幸男 福山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP20501985A priority Critical patent/JPS6264891A/en
Publication of JPS6264891A publication Critical patent/JPS6264891A/en
Pending legal-status Critical Current

Links

Landscapes

  • Working-Up Tar And Pitch (AREA)
  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To produce pitch suitable for use as a raw material for a carbon fiber through separation of a non-flowable component of pitch with high efficiency, by pulverizing solid pitch, sifting the pulverized pitch using a sieve having a mesh size of a particular value, and removing the oversize. CONSTITUTION:Solid pitch is pulverized with a ball mill, a jet mill, an automatic mortar, or the like. The pulverized pitch is sifted using a sieve having a mesh size of 100 in terms of Tyler mesh, followed by removal of the oversize. The above method enables the separation of a non-flowable component of pitch with high efficiency and production of pitch suitable for use as a raw material for a carbon fiber with ease. This method also enables the production of a high-performance carbon fiber at low cost by virtue of the low cost of the raw material. A further improvement in separation of a non-flowable component can be attained by further melt filtering the pitch which has been passed through the sieve.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野〕 本発明はピッチ中の炭素質或いは炭化水素質の固形物の
分離n:に関し、さらに詳しくはピッチ全体としては流
動性をもつ温度であっても、その中にあつ°Cはとんど
流動v1を示さイ1い一部の成分を分離する方法に関す
る。 〔従来の技術〕 近年、素材として種々な用途に適合したものが開発され
ているが、その一つに炭素系材料がある。 炭素系材l′!l(炭素、黒鉛材1’l )のものでは
、]−クス、黒鉛電極等が知られているが、材料として
の耐熱性、電導性、軽量性、耐食性等の特徴を生かした
新しい製品も注目を集めている。中でもピッチ系の炭素
1liHは、安価に、高性能のものが得られる可能性を
有するもので、すでに多(の研究が発表されている。 これら製品の最終的な特性は、多数の要因の組合わされ
た結宋として発現されるが、その最も小要な要素の一つ
tit、原料となるピッチの竹状であり、更にそれを支
配するのはピッチの中位構造と分布である。 ピッチは、元来、秤々な化合物の混合物であるため、分
子R分布が広く、また、これを構成1jる各成分のv1
質が巽なっている。そのため、ピッチ製造時の僅かな条
イ′1の違いによっても、(qられたピッチの刺状はそ
の影響を受(−11結東どして111られる製品の特性
も変化覆る。 例えば熱処理時にお
(Industrial Application Field) The present invention relates to the separation of carbonaceous or hydrocarbonaceous solids in pitch, and more specifically, the present invention relates to the separation of carbonaceous or hydrocarbonaceous solids in pitch, and more specifically, the present invention relates to the separation of carbonaceous or hydrocarbonaceous solids in pitch. C indicates a flow v1 and relates to a method of separating some components. [Prior art] In recent years, materials suitable for various uses have been developed, one of which is carbon. Among carbon-based materials (carbon, graphite materials), ]-x, graphite electrodes, etc. are known, but they lack heat resistance, conductivity, and light weight as materials. New products that take advantage of features such as corrosion resistance and corrosion resistance are also attracting attention.In particular, pitch-based carbon 1liH has the potential to be produced at low cost and with high performance, and many studies have already been published. The final characteristics of these products are expressed as a result of a combination of many factors, but one of the most essential elements is tit, the bamboo-like shape of the pitch used as the raw material. It is the intermediate structure and distribution of pitch that governs pitch.Since pitch is originally a mixture of balanced compounds, the molecular R distribution is wide, and the v1 of each component that makes up pitch is wide.
The quality has improved. Therefore, even if there is a slight difference in the grains during pitch manufacturing, the thorn shape of the pitch will be affected by this and the characteristics of the product will also change. For example, during heat treatment oh

【〕るピップの変化はイの程度が少
(jい場合、まず全面光学的等方性を示し、次いて・光
学的1゛シ方F]のメソフエーズが発生し、最終的には
100%光学的賃方f1ピップへど進行J−る。このJ
、うにピップの単なる熱処理によって100%光学的巽
方竹のピッチを得ることは容易であるh<、広い分子量
分布d3よびピッチを構成する成分の熱処理による重縮
合の程度の違いにより、一部のピッチは既に流動f1が
乏しい状態にまで高分子化が進んだ段階でも、反応の近
い部分は、まだ秀方性ヒップの状態を示すことtよ通常
よく児受1」ることである。このような熱処理の進み方
の差はjqられる製品特性の]ン1へロールを難しくす
るばかりでなく、溶融時に成形し、その後の熱処理にJ
、って製品とする場合、イの成形fl+に人きイr障害
にイrることがある。 その顕著な例どしてヒップ系炭素ts111+をあげる
ことが出来る。ピッチ系炭素繊維の製法(東、−・般に
(a)石川ピップ或いはri浦ピッチに熱処理等の処理
を施して紡糸用ピッチとJる]−稈、([))これを紡
糸する二「稈、(C)紡糸した糸を不融化する工程、(
d)不l化した糸を炭化或いは黒鉛化4る■稈、に大別
される。上記紡糸は溶融紡糸にJ、って行なわれる。ヒ
ップは、−[記したように混合物であるため、ピッチ中
でも重縮合反応に8速の差があり、その一部が紡糸調度
でも流動性が乏しい状態にまで重縮合が進んでいる場合
には、あたかもピッチに含まれたEJY物のように動き
、紡糸時、ノズルの閉塞を引き起し、安定した紡糸を不
可能にする。これに対し、このような成分が11成づる
前に熱処理を終了した場合、まだ熟成不−1分t1光学
的等方f1ピップ成分ど、光学的異方性メソフェーズ成
分とが混在する、いわゆる二相分離状態となり、紡糸時
にはぞの二相の粘弾性挙動のjtいにJ、す、糸切れを
頻繁に発生させる原因となる。また、糸切れし>rいJ
、うに紡糸条イ′1を設定して1)、糸径のばらつきが
大きく、安定した品質の炭素mHを(qることが出来イ
1い。更にピッチが仝面光学的等方竹の段階で熱処理を
終了した場合、紡糸時の良好なピッチが1qられるが、
高f/I能の綴紐を得ることtit出来ない。 そのため、高暫能で、かつ品質の安定した炭素組紐の原
料となる紡糸用ピップが得られるピッチの処J!!法に
ついて秤々な提案がなされている。例えば水添後熱処理
する方法(特開昭5L−179285、特開昭58−1
8421)、熱処理後、沈降分離したピッチに更に熱処
理を加える方法(特開昭57−88016.) 、上記
沈降分離の代りに溶剤を用いる方法(特1tfl昭54
−160427)等、その数も多い。 これらの方法にJ:る紡糸用ピッチは、いずれも光学的
異方すりを含み、或いは焼成以降で異方性組vAに転化
し、紡糸時にはピッチが均−系として挙動するにうにし
たものである。 Jなわち、紡糸時にノズルの閉塞を引起すJ:うな過電
の重縮合成分を11成ざ1tずに均一化したピッチを得
るため、熱処理前に予め水添等の処理を行なってピッチ
の分布を整えたり、全体としてやや熟成不十分なところ
で熱処理を終了し、紡糸用に適した部分を分H1する等
である。このように方法はさまざまであるが、処理条件
において過電の重縮合成分を生成さ1!ないよう【、ニ
している点は共通している。これは、紡糸用に適した成
分と、過電に重縮合した紡糸に不適当な成分は、ピッチ
の状態から見ると一層状態となっており、ざらに均一状
態どなっているピップ1)、分子61分布に幅を持って
形成されており、過疫に重縮合した成分のみを分1iI
11することが極めて困難なためである。 〔発明が解決しようとする問題点〕 ところで、選定された条件に厳密に冶って処理を行ない
、常に均質な紡糸用ピッチを得るには、最適に設計され
た装置、高度の制61I付を持ったy1装設備、原#1
段階からのピッチの精製等が必要で、これらがコストア
ップの要因となり、低価格のピツブを原料どしT′JR
択したに1)ががねらず、その侵III何が1分に発揮
出来イ1い不都合があった。 本光明各等(,1ピツヂをBEIFlどした炭素製品、
特に高4’l (1炭素線絹の研究を進める中で、従来
ペレッ1〜状、或いは装量にレッ1〜するのに1−分な
程度に粉砕したピッチを紡糸筒に入れて紡糸を行なって
いたが、J、り細かく粉砕しIこピッチを用いて紡糸す
ることにより、紡糸時が白土することを発見した。 本発明は一1記の発見に基づいU <、−されたもので
、従来回動どされてい1〔過度に重縮合した成分を効率
J、<除去りる方法を提供することを目的とする。 〔問題魚を解決りるための1段〕 本発明は上記の目的を達成するもので、その要旨は、固
化したピッチを粉砕し、タイラーメッシ=1 (以下メ
ツシー1という)数100以、1ニの網で篩分tJ す
るピップの非流動性成分の除去法、および固化したピッ
チを粉砕し、メッシコ数1(’)0以上の絹で篩分(゛
)し、さらに網をパスしたピッチを溶融濾過Jるピップ
の非流動性成分の除去法にある。−(発明の具体的構成
および作用〕 過度に重縮合しlζピッチ成分は、固化しIζピピッを
すりつぶし、メッシコ数100以上の網、特に好ましく
は200以上の網で篩分けJることによって分離1する
ことが出来る。さらに、この分離したピッチを溶融して
濾過することにより一層収率のよい分離が可能となる。 これは次の理由によるものと考えられる。すなわち、ピ
ッチはイの重縮合が進むに連れて、分子量が増大する結
果、その構造が強固となる。そのため、粉砕時に重縮合
が進んだ部分はど粉砕されにくく大きな粒として残る可
能性が高いことが予想される。しかし、ピッチを粉砕覆
るには、種々な粉砕法があり、どのような粉砕法を採用
しても、なお、重縮合が進み過ぎ、目的に沿わない部分
だG−Jを、網上に残留さけることは不可能のように思
われるが、実際には、実質的に1−開操作で十分なこと
が判明した。このことは、逆にピッチの紡糸時に実質的
に流動性がない部分と、紡糸に適した部分とは、固化し
たピッチにおいても、その硬さにおいてかなりのXoが
あることを示()ているものと考えられる。 また、この篩分GJによって、網を通過したピッチをざ
らに溶融濾過づることによって、分11111を完全な
ものと7−ることが出来る。 粉砕装置#3Lボールミル、ジTツトミル、自動乳鉢な
どが適J−る。 」−記篩分tノに使用覆る組番よ、メッシ】数で100
1ズ上、好ましくは2(’)0以上のものを用いること
が必要で、メッシコ数100未満の網ではその効果が大
幅に低下するゎまた、濾過に使用する網(以下心材とい
う)は、当然のことイ1がら篩分番ノに使用した網にり
細かい目のものを用いるが、一般的に、篩分1t Il
’lの目開きの1!2程度の心材が好ましく、濾過によ
る分離の完全性と、濾過に要する時間のバランスから決
定される、ト記完全竹は、心材を通過したピッチを冷却
固化し、顕微鏡観察することによって確認覆ることが出
来る。 濾過を行なうもう一つの利点は、ピッチの収率が向、卜
することである。すなわら、篩分けと濾過との組合わ1
!によって分離する場合には、除去したい成分を篩分【
プに用いる網の目開き以下にならないように加減して粉
砕する必要がイ【<、より細かい粒面にして処理するこ
とが可能となるからである。 加減して粉砕すると、本来100メツシュパスの粒子と
なるべきピッチも、網−Vに残留し、ピッチの収率が低
下する。また、篩分けを行なわないで、ピッチをwI融
′6M過すると、分離が悪く、収率が低下するのみなら
ず、心材中、或いは濾材上に残るピッチの量が多く、目
づまりにより濾過に要する時間が長くなり、濾過効率が
低下する。また、収率が悪いと処理前のピッチ全体の組
成や性状が変化してしまうこともある。 このように、ピッチは類似した構造の成分が連続して分
布する一種の混合物で、使用する目的などににってピッ
チの物性をコントロールする技術は、ピッチを使用する
上において重要であるが、その一部を分離して物性を調
整することは極めて回動とされていた。本発明の方法は
、それを簡単な操作にJ:っで、容易に出来るようにし
たものである。 以下本発明を実施例、比較例を示して説明する。 〔実施例1) 2fJのオートクレーブにテ]〜ラハイドロキノリンを
溶媒とし、コールタールピップ:溶媒−1:1の重量圧
で充填し、90 K’J / onの水素加圧下、47
0℃に1時間保持して、ピッチの水素化処理を行なった
。得られた水素化ピッチを濾過おj:び加熱下で減圧処
理を行ない、熱処理原r1ピッチとした。この熱処即原
料ピッヂをフラスコに入れ、窒素雰囲気下470℃で処
理し紡糸用ピッチを得た。 このピッチを自動乳鉢(商品名、ラボミル、 tJT−
21型 J771−化学製)によってすりつぶし、20
0メツシユのステンレス製網で篩分けした。 この篩分けしたピッチを、0.38φのモノホールノズ
ルを下部に取りつけ、その」−に濾材として325メツ
シ1のステンレス製網をセットした紡糸筒に充填し、紡
糸筒内を不活性ガス雰囲気にして340℃に4渇した。 昇温後窒素ガスで4 Kg/ ctAに加圧してノズル
よりピップを押出し、巻取機にて800m/分の速度で
巻取ったが、極めて紡糸性良好で、ピッチ糸の径も安定
していた。また、溶剤分別による分析値は、これらの処
理を施す前の紡糸用ピッチとの差は認められなかった。 また、篩分けした際、200メツシコ網」二に残ったピ
ッチ、および網を通過したピッチを、それぞれ紡糸温度
の340℃に4温して一〇溶融した後、冷1.rI固化
して偏光顕微鏡で撮影した。これを第1図および第2図
に示す。第1図の網に残ったピッチには、60〜300
μmの未融解部分が散見されたが、第2図の網を通過し
たピッチには全く見られなかった。 〔実施例2〕 篩分けに用いた網を100メツシユ、紡糸筒内で濾過に
用いた網を200メツシユとした外は実施例1と同じに
して紡糸を行なった。糸切れ、糸径のばらつきは、実施
例1とほとんど変りなく、良好な紡糸性を示した。 〔実施例3〕 篩分1Jに用いた網を10(’)メツシュとし、紡糸筒
に網を入れなかった外は、実施例1と同じにして紡糸し
た。糸切れ、糸径のばらつきは、実施例1とばとんど変
りなく、良りYな紡糸性を示した。 〔比較例1〕 紡糸用ピッチをやや粗めにすりつぶし、篩分けに用いた
網を30メツシユに、また紡糸筒内で濾過に用いた網を
200メツシユとした外は、実施例1と全(用じにして
紡糸を行なった。その結果、ノズルがかなりの順位で閉
塞し、またピッチが二相分離気味となっていることに起
因すると思われる不規則なピッチ流量の変動、いわゆる
ピッチの脈打ち現象がノズル下で観察され、いずれの実
施例に比較しても糸切れ頻度が高く糸径のばらつきも大
きかった。また、溶剤分別で見ると、これらの処理をし
ない前の紡糸用ピッチとは、かなり分布が変化している
ことが認められた。 〔比較例2〕 比較例1にて30メツシユ網上に残ったピッチを更にす
りつぶし、再び30メツシユ網で篩分けした。この再度
30メツシコ網で篩分けして網を通過したピッチと、比
較例1で30メツシユ網を通過したピッチとを十分に混
合した後、比較例1と全く同じ条件で紡糸した。その結
果、比較例1で観察された脈打ち現象はなくなり、糸切
れ頻度、糸径のばらつきもかなり改善されたが、篩分に
用いた網に100メツシユを用いた点のみが異なる実施
例2に比較して、その紡糸性は大幅に劣っていた。 〔比較例3〕 実施例1で得た紡糸用ピッチをフラスコから取り出した
状態のまま紡糸筒内に充填した外は、比較例2と同じに
して紡糸した。その結果、比較例2に比べ、紡糸性は更
に悪化し、ノズルの閉塞が頻発し、紡糸不能であった。 〔比較例4〕 紡糸筒内に濾過用の網を入れない外は、比較例3と同じ
にして紡糸した。その結果、比較例3と同様の現象によ
り紡糸不能であった。 上記実施例1・〜3、比較例1〜4の結果を総括して第
1表に示1゜ 〔以下余白] 第  1 〔効果] 以十述べたJ、うに、本発明に係る方d1は、従来内勤
とされていたピッチの非流動性の成分を効率よく分1i
ft−vることが出来るので、炭素製品、特に炭素楳紐
の原石にりf適なピッチが容易に得られ、原料の安価な
ことと相俟って高性能の伏索繊維を安価につくることが
出来、その杼洛的効果は極めて大ぎいものである。
The change in pip caused by Optical rate f1 pip progress J-ru.This J
, it is easy to obtain 100% optical Tatsumitake pitch by simple heat treatment of sea urchin pips. Even at the stage where the polymerization of the pitch has already progressed to a state where the fluidity f1 is poor, the parts close to the reaction still exhibit a state of superior hip, which means that the pitch is usually well-received. Such differences in the progress of heat treatment not only make it difficult to roll the product, but also make it difficult to roll during melting and during subsequent heat treatment.
When making a product like this, there may be problems with the molding process. A notable example of this is the hip type carbon ts111+. Manufacturing method of pitch-based carbon fiber (To, generally (a) Ishikawa pip or Riura pitch is subjected to treatments such as heat treatment to make pitch for spinning) - Culm, ([)) Two methods for spinning this Culm, (C) Process of infusible the spun yarn, (
d) Carbonized or graphitized fibers are broadly classified into culms. The above-mentioned spinning is performed by melt spinning. -[As mentioned above, since it is a mixture, there is an 8-speed difference in the polycondensation reaction even in the pitch, and if some of the polycondensation has progressed to a state where fluidity is poor even in the spinning preparation. , it moves as if it were an EJY object included in the pitch, causing blockage of the nozzle during spinning, making stable spinning impossible. On the other hand, if the heat treatment is terminated before the formation of 11 components, optically anisotropic mesophase components such as the unripe 1 minute t1 optically isotropic f1 pip component are mixed, so-called binary components. A state of phase separation occurs, and the viscoelastic behavior of the two phases during spinning causes yarn breakage to occur frequently. Also, the thread breaks > r
, it is possible to obtain stable quality carbon mH (1) with large variations in yarn diameter by setting the spinning thread A'1.Furthermore, the pitch is at the optically isotropic bamboo stage. If the heat treatment is finished at , a good pitch during spinning will be 1q,
It is not possible to obtain a high f/I binding string. For this reason, Pitch's J! ! Various proposals have been made regarding the law. For example, a method of heat treatment after hydrogenation (JP-A-5L-179285, JP-A-58-1)
8421), a method of further heat-treating the pitch that has been precipitated and separated after heat treatment (JP-A-57-88016), a method of using a solvent instead of the above-mentioned sedimentation (JP-A-57-88016.
-160427) and many others. The spinning pitch used in these methods all contains optical anisotropy, or is converted into an anisotropic set vA after firing, so that the pitch behaves as a homogeneous system during spinning. be. In other words, in order to obtain a uniform pitch without removing the polycondensation component of the overcharge, which causes blockage of the nozzle during spinning, treatment such as hydrogenation is performed in advance before heat treatment to reduce the pitch. The distribution is adjusted, the heat treatment is terminated when the overall ripening is insufficient, and the portion suitable for spinning is divided into H1. As described above, there are various methods, but under the processing conditions, an overcharged polycondensate component is generated.1! They have the same thing in common. This is because the components suitable for spinning and the components unsuitable for spinning that have polycondensed due to overcurrent are in a more uniform state when viewed from the pitch state, and the pip 1) is not in a roughly uniform state. Molecule 61 is formed with a wide distribution, and only the components that have polycondensed over time can be separated into 1iI.
This is because it is extremely difficult to do so. [Problems to be Solved by the Invention] By the way, in order to carry out the process strictly under the selected conditions and always obtain a uniform spinning pitch, an optimally designed device with a high degree of control 61I is required. The y1 equipment I had, original #1
It is necessary to refine the pitch from the stage, which increases the cost, and it is difficult to use low-priced pitch as raw material.
There was an inconvenience that 1) could not be achieved even if I had selected it, and that I could not demonstrate it in 1 minute. Honkomyo etc. (Carbon products made from BEIFl and 1 Pizji, etc.)
In particular, while researching high 4'L (1-carbon wire silk), conventionally we have used pitch that has been ground into pellets, or pitch that takes about 1 minute to make into pellets, into the spinning tube and spins it. However, it was discovered that by spinning using a finely pulverized pitch, the yarn becomes white during spinning.The present invention is based on the discovery described in Item 11 above. , it is an object of the present invention to provide a method for efficiently removing excessively polycondensed components, which have conventionally been rotated. The purpose is to achieve this purpose, and its gist is to remove the non-flowable components of pips by pulverizing the solidified pitch and sifting it with a mesh of 100 or more Tyler Messi = 1 (hereinafter referred to as Metshi 1). , and the solidified pitch is crushed, sieved with silk having a mesh number of 1 (') 0 or more, and the pitch that has passed through the screen is melt-filtered to remove the non-flowable components of the pip. - (Specific structure and operation of the invention) The excessively polycondensed lζ pitch component is separated by solidifying the lζ pitch component and sieving it with a mesh having a mesh size of 100 or more, particularly preferably 200 or more. Furthermore, by melting and filtering this separated pitch, it is possible to separate it with even better yield.This is thought to be due to the following reason.That is, the pitch can be separated by the polycondensation of As the pitch progresses, the molecular weight increases and as a result, the structure becomes stronger. Therefore, it is expected that the parts where polycondensation has progressed during grinding will be difficult to grind and will likely remain as large particles. There are various pulverization methods for pulverizing G-J, and no matter which pulverization method is used, it is impossible to avoid leaving G-J on the mesh, which is a part where polycondensation has progressed too much and is not suitable for the purpose. Although it seems impossible, in practice it has been found that a substantially 1-open operation is sufficient. A suitable part is considered to indicate that even solidified pitch has a considerable amount of By filtering, it is possible to completely remove the 11111. Grinding equipment #3L ball mill, digital mill, automatic mortar, etc. are suitable. Yo, Messi] Number 100
It is necessary to use a net with a mesh count of 1, preferably 2(')0 or more, and a net with a mesh count of less than 100 will greatly reduce its effectiveness.In addition, the net used for filtration (hereinafter referred to as the core material) must, of course, be A fine-mesh mesh is used for the sieve used for the sieve, but in general, the sieve size is 1t
A heartwood with an opening of about 1 to 2 mm is preferable, and is determined from the balance between the completeness of separation by filtration and the time required for filtration. This can be confirmed by microscopic observation. Another advantage of filtration is that it improves pitch yield. In other words, the combination of sieving and filtration 1
! When separating the components by sieving [
It is necessary to adjust the pulverization so that the size does not exceed the opening of the mesh used in the process. If the grinding is done in a controlled manner, the pitch, which should originally be particles of 100 mesh passes, remains in the net-V, resulting in a decrease in pitch yield. Furthermore, if the pitch is passed through a 6M melt without sieving, not only will the separation be poor and the yield will drop, but the amount of pitch remaining in the core material or on the filter medium will be large, resulting in clogging and impeding filtration. The time required increases and the filtration efficiency decreases. Furthermore, if the yield is poor, the overall composition and properties of the pitch before treatment may change. In this way, pitch is a type of mixture in which components with similar structures are continuously distributed, and techniques to control the physical properties of pitch depending on the purpose of use are important when using pitch. Separating a part of it and adjusting its physical properties was considered extremely rotational. The method of the present invention makes it easy to operate. The present invention will be explained below with reference to Examples and Comparative Examples. [Example 1] A 2 fJ autoclave was filled with lahydroquinoline as a solvent at a weight pressure of coal tar pip:solvent-1:1, and under a hydrogen pressure of 90 K'J/on, 47
The pitch was hydrogenated by holding at 0° C. for 1 hour. The obtained hydrogenated pitch was filtered and treated under reduced pressure under heating to obtain a heat-treated raw pitch. This ready-to-heat-treated raw material pitch was placed in a flask and treated at 470° C. in a nitrogen atmosphere to obtain pitch for spinning. This pitch is placed in an automatic mortar (product name: Labo Mill, tJT-
21 type J771-manufactured by Kagaku), 20
The mixture was sieved through a 0-mesh stainless steel screen. The sieved pitch is filled into a spinning tube equipped with a 0.38φ monohole nozzle at the bottom and a stainless steel mesh of 325 mesh 1 set as a filter material, and the inside of the spinning tube is made into an inert gas atmosphere. and cooled to 340°C. After raising the temperature, the pip was extruded from the nozzle by pressurizing it to 4 Kg/ctA with nitrogen gas, and was wound up at a speed of 800 m/min using a winder. The spinnability was extremely good, and the diameter of the pitch yarn was stable. Ta. In addition, the analytical values obtained by solvent fractionation showed no difference from the spinning pitch before these treatments. In addition, the pitch that remained on the 200 mesh screen after sieving and the pitch that passed through the screen were heated to the spinning temperature of 340°C for 10 minutes to melt them, and then cooled for 1 hour. It was solidified with rI and photographed using a polarizing microscope. This is shown in FIGS. 1 and 2. The remaining pitches in the net in Figure 1 include 60 to 300 pitches.
Unmelted portions of .mu.m in size were observed here and there, but they were not observed at all in the pitch that passed through the mesh shown in FIG. [Example 2] Spinning was carried out in the same manner as in Example 1, except that the mesh used for sieving was 100 meshes, and the mesh used for filtration in the spinning cylinder was 200 meshes. The yarn breakage and yarn diameter variations were almost the same as in Example 1, indicating good spinnability. [Example 3] Spinning was carried out in the same manner as in Example 1, except that the mesh used for sieving 1J was a 10(') mesh and no mesh was placed in the spinning tube. The yarn breakage and yarn diameter variations were almost the same as in Example 1, and good spinnability was exhibited. [Comparative Example 1] Example 1 and all ( As a result, the nozzle was clogged to a considerable extent, and irregular fluctuations in the pitch flow rate, so-called pitch pulsation, were observed due to the pitch being slightly separated into two phases. A phenomenon was observed under the nozzle, and the frequency of yarn breakage was high and the variation in yarn diameter was large compared to any of the examples.Also, when looking at the solvent separation, the spinning pitch before these treatments was It was observed that the distribution had changed considerably. [Comparative Example 2] The pitch remaining on the 30 mesh mesh in Comparative Example 1 was further ground and sieved again using the 30 mesh mesh. The pitch that passed through the sieve and the pitch that passed through the 30-mesh screen in Comparative Example 1 were thoroughly mixed and then spun under exactly the same conditions as Comparative Example 1. As a result, the results were as follows: The pulsating phenomenon that occurred during sieving disappeared, and the frequency of yarn breakage and the variation in yarn diameter were significantly improved. [Comparative Example 3] Spinning was carried out in the same manner as in Comparative Example 2, except that the spinning pitch obtained in Example 1 was taken out of the flask and filled into the spinning tube. Compared to Comparative Example 2, the spinnability was further deteriorated, the nozzle was frequently clogged, and spinning was impossible. [Comparative Example 4] Same as Comparative Example 3 except that a filtering net was not inserted into the spinning tube. As a result, spinning was impossible due to the same phenomenon as in Comparative Example 3. The results of Examples 1 to 3 and Comparative Examples 1 to 4 are summarized in Table 1. [Margin] 1st [Effect] The method d1 according to the present invention described above can efficiently divide the non-fluid component of the pitch, which was conventionally considered as office work.
ft-v, it is easy to obtain a suitable pitch for raw stones for carbon products, especially carbon cord, and combined with the low cost of raw materials, it is possible to produce high-performance rope fibers at low cost. It is possible to do so, and its impact is extremely great.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はピッチを粉砕して200メツシユの網で篩分【
フし、網上に残留したピッチを340℃に加熱して溶融
した後冷却固化したものの顕微鏡写真、第2図は200
メツシユパスしたピッチを3/IO℃で加熱溶融した後
、冷HI固化したものの顕微鏡写真である。 1・・・・・・流れ構造、2・・・・・・不融解部分。 手続ン市Jト書(方式) %式% 2、発明の名称 ピッチの非流動f1成分の除去法 3、補正をする者 事f!lどの関係  特み1出願人 (200)昭和電工株式会ン1 4、代理人 東京都中央区八重洲2丁口1番5号 7、補正の内容 明細内箱17頁第9行目から第16行目までの図面の簡
単な説明を削除する。
Figure 1 shows the powdered pitch and sieved with a 200 mesh mesh.
The pitch remaining on the net was heated to 340℃ to melt it, then cooled and solidified.
This is a microscopic photograph of mesh-passed pitch heated and melted at 3/IO° C. and then cooled and solidified with HI. 1...Flow structure, 2...Insoluble part. Procedure City J Toki (Method) % Formula % 2. Name of invention Method for removing non-fluid f1 component of pitch 3. Person making correction f! l What relationship Special feature 1 Applicant (200) Showa Denko Co., Ltd. 1-4, Agent 7-1-5, Yaesu 2-chome, Chuo-ku, Tokyo Contents of amendment Inner box, page 17, lines 9 to 16 Delete the brief description of the drawing up to line 1.

Claims (4)

【特許請求の範囲】[Claims] (1)固化したピッチを粉砕し、タイラーメッシュ数1
00以上の網で篩分けし、篩上を除去することを特徴と
するピッチの非流動性成分の除去法。
(1) Grind the solidified pitch, and the number of Tyler meshes is 1.
A method for removing non-flowing components of pitch, which comprises sieving with a mesh of 0.00 or higher and removing the portion on the sieve.
(2)高性能炭素繊維を製造する紡糸用ピッチに適用す
る特許請求の範囲第1項記載のピッチの非流動性成分の
除去法。
(2) A method for removing non-flowable components of pitch according to claim 1, which is applied to spinning pitch for producing high-performance carbon fibers.
(3)固化したピッチを粉砕し、タイラーメッシュ数1
00以上の網で篩分けし、さらに網をパスしたピッチを
溶融濾過することを特徴とするピッチの非流動性成分の
除去法。
(3) Grind the solidified pitch, and the number of Tyler meshes is 1
A method for removing non-flowing components of pitch, which comprises sieving through a 00 or higher mesh, and then melting and filtering the pitch that has passed through the mesh.
(4)高性能炭素繊維を製造する紡糸用ピッチに適用す
る特許請求の範囲第3項記載のピッチの非流動性成分の
除去法。
(4) A method for removing non-flowable components of pitch according to claim 3, which is applied to spinning pitch for producing high-performance carbon fibers.
JP20501985A 1985-09-17 1985-09-17 Removal of non-flowable component of pitch Pending JPS6264891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20501985A JPS6264891A (en) 1985-09-17 1985-09-17 Removal of non-flowable component of pitch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20501985A JPS6264891A (en) 1985-09-17 1985-09-17 Removal of non-flowable component of pitch

Publications (1)

Publication Number Publication Date
JPS6264891A true JPS6264891A (en) 1987-03-23

Family

ID=16500094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20501985A Pending JPS6264891A (en) 1985-09-17 1985-09-17 Removal of non-flowable component of pitch

Country Status (1)

Country Link
JP (1) JPS6264891A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120043684A1 (en) * 2009-01-21 2012-02-23 Kureha Corporation Method of producing anode material for non-aqueous electrolyte secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120043684A1 (en) * 2009-01-21 2012-02-23 Kureha Corporation Method of producing anode material for non-aqueous electrolyte secondary battery
US8945445B2 (en) * 2009-01-21 2015-02-03 Kureha Corporation Method of producing anode material for non-aqueous electrolyte secondary battery
EP2381517A4 (en) * 2009-01-21 2015-08-19 Kureha Corp Method for producing negative electrode material for nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
US4243512A (en) Process for preparation of pitch for producing carbon fiber
US4016247A (en) Production of carbon shaped articles having high anisotropy
JPH0310727B2 (en)
JPH0354997B2 (en)
EP0166388A2 (en) Process for the production of pitch-type carbon fibers
DE10048368C5 (en) Carbon electrode for melting quartz glass and method for its production
JPH0258596A (en) Production of both pitch for producing high-performance carbon fiber and pitch for producing widely useful carbon fiber
JPS6264891A (en) Removal of non-flowable component of pitch
FR2509331A1 (en) PROCESS FOR PRODUCING CARBON OR GRAPHITE FIBERS FROM OIL BRAI
JPS5841914A (en) Preparation of high-strength and high-modulus carbon fiber
JPS5938280A (en) Preparation of precursor pitch for carbon fiber
WO2021085266A1 (en) Adsorption filter, filter for plating solution purification using same, plating solution purification device and plating solution purification method
WO2016181929A1 (en) Raw material pitch for carbon fiber production
JPS58156023A (en) Production of carbon fiber
WO1985000624A1 (en) Process for manufacturing carbon fiber and graphite fiber
JPS61186520A (en) Production of pitch carbon yarn
JPS59164386A (en) Preparation of precursor pitch for carbon fiber
JPS6264889A (en) Purification of pitch
JPS62104924A (en) Production of pitch carbon fiber
JPS59223316A (en) Preparation of carbon yarn having high strength and high elasticity
KR0146868B1 (en) Method for manufacture
JPH01149892A (en) Production of precursor pitch for general-purpose carbon fiber
JP6862317B2 (en) Carbon fiber manufacturing method
JPH0788604B2 (en) Method for manufacturing pitch-based carbon fiber
JPH046754B2 (en)