JPS6264471A - Production of aluminum heat exchanger - Google Patents

Production of aluminum heat exchanger

Info

Publication number
JPS6264471A
JPS6264471A JP20294085A JP20294085A JPS6264471A JP S6264471 A JPS6264471 A JP S6264471A JP 20294085 A JP20294085 A JP 20294085A JP 20294085 A JP20294085 A JP 20294085A JP S6264471 A JPS6264471 A JP S6264471A
Authority
JP
Japan
Prior art keywords
flux
heat exchanger
members
brazing
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20294085A
Other languages
Japanese (ja)
Inventor
Motoyoshi Yamaguchi
山口 元由
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Aluminum Co Ltd
Original Assignee
Furukawa Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Aluminum Co Ltd filed Critical Furukawa Aluminum Co Ltd
Priority to JP20294085A priority Critical patent/JPS6264471A/en
Publication of JPS6264471A publication Critical patent/JPS6264471A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce an Al heat exchanger having excellent corrosion resistance by combining Al members, brazing the members by a potassium fluoroaluminate flux in a non-oxidizing atmosphere and dissolving away the residue of the flux. CONSTITUTION:The Al or Al alloy members are brazed by using the potassium fluoroaluminate flux in the non-oxidizing atmosphere in the stage of combining said members and integrally joining said members to produce the heat exchanger. The flux or the like essentially consisting of any one kind of KAlF4, K2AlF5, H2O or K3AlF6 or >=2 kinds thereof is used as the potassium fluoroaluminate flux. The residue of the flux is dissolved away by immersing the joined member in an alkaline soln. such as caustic soda or acidic soln. such as nitric acid or hydrofluoric acid. The surface of the Al or Al alloy member is thereby made conductive and the corrosion resistance of the aluminum heat exchanger is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はろうイ」けによるアルミ製熱交換器の胃jΔ法
に関し、特にろう付けした△(製熱交換器の耐食性を改
9tするものである。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to the method for producing aluminum heat exchangers using brazing, and particularly for improving the corrosion resistance of brazed aluminum heat exchangers. It is.

〔従来の技術〕[Conventional technology]

一般にアルミ製熱交換器には、第3図(イ)に示すドロ
ンカップタイプの自動70用オイルクーラーのコア、第
3図(ロ)に示すチューブとコルゲートフィンタイプの
自動小用ラジェーターのコア、第3図(ハ)に示すサー
ペンタインタイプのエアコン用コンデンサーのコア、第
3図(ニ)に示すサーペンタインタイプのエアコン用エ
バポレーターのコア等が用いられている。
In general, aluminum heat exchangers include the core of the drone cup type automatic 70 oil cooler shown in Figure 3 (a), the core of the tube and corrugated fin type automatic radiator shown in Figure 3 (b), The core of the serpentine type air conditioner condenser shown in FIG. 3(C), the core of the serpentine type air conditioner evaporator shown in FIG. 3(D), etc. are used.

これ等熱交換器のコアは基本的に第1表に示すプレージ
ングシートと第2表に示すAl又はA1合金部材を組合
ぜ、ろう付は法により一体に接合することにより造られ
ている。
The cores of these heat exchangers are basically made by combining the plating sheets shown in Table 1 and the Al or A1 alloy members shown in Table 2, and joining them together by brazing.

第1表 記 号     心 材    皮材(ろう材)   
合ぜ而B△1 : PC3003BA4343   片
側Bハ121〕C300313△4343   両側[
(△2−.r’C69513A4343   片側13
八220Cら951 8△4343   両側BA23
1つC’3951  B△4045   片側(3△2
4PC6951BA4045   両側13八3PC(
※)   3QO3!3A4003   片側B△、4
PC<※)   3033  [3A4003   両
側BA7PC(※)   3003  BA4004 
  片側!3A8PC(※)   3QO3BA400
4   両側[3八9PC<※)   3003  B
△4005   片側BAIOPC(※)  3003
  BΔ4005   両側Bハ171)C(※)  
3003  r3A4NO4片側13A 18 PC(
※)  3003  B△4NO4両側)r、(※)印
はQ空プレージングシートを示す。
1st notation Heart material Leather material (brazing material)
Combined B△1: PC3003BA4343 One side Bha121] C300313△4343 Both sides [
(△2-.r'C69513A4343 One side 13
8220C et al.951 8△4343 Both sides BA23
1 C'3951 B△4045 One side (3△2
4PC6951BA4045 138 3PCs on both sides (
*) 3QO3!3A4003 One side B△, 4
PC<*) 3033 [3A4003 Both sides BA7PC(*) 3003 BA4004
one side! 3A8PC(*) 3QO3BA400
4 Both sides [389PC<*) 3003 B
△4005 Unilateral BAIOPC (*) 3003
BΔ4005 Both sides Bc171)C(*)
3003 r3A4NO4 one side 13A 18 PC(
*) 3003 B△4NO4 Both sides) r, (*) mark indicates Q empty praising sheet.

第2表 種別    記号 1〉ご××系   1050.11C!011200、
A、1−o、s%C113××X系 3003.300
4.3005、A、j−1,1%Mn−2%Z05×〈
×系  5005.5050 6 x :< x系  6061.6063.6951
7××X系   7072.7NO1 ろう(=jけ法としては塩化物系フラックスを用いる炉
中ろうイ」け法(以下FB法と略記)やフラックスを用
いない真空ろう付は法(以下V D法と略記)が主流で
あったが、最近ではフッ化物系の非@食性フラックスを
用いて非酸化性雰囲気中でろう付けする方法(以下NB
法と略記)が用いられるようになった。N13法(よ3
〜10%程度の低濃度のフラックスを用いるもので、ろ
う6j iプ後のフラックス残渣が非腐食性であるとこ
ろから後処理が不必要となり、他のろう付は法と比中々
して熱交換器の製造コストが安価で・ある。
Table 2 Type Symbol 1〉Go XX series 1050.11C! 011200,
A, 1-o, s%C113xxX series 3003.300
4.3005, A, j-1, 1%Mn-2%Z05×〈
× system 5005.5050 6 x :< x system 6061.6063.6951
7XX (hereinafter referred to as NB brazing method) was the mainstream, but recently a method of brazing in a non-oxidizing atmosphere using a fluoride-based non-edible flux (hereinafter referred to as NB brazing method) has become mainstream.
law and abbreviation) came to be used. N13 method (yo3
This method uses flux at a low concentration of ~10%, and since the flux residue after brazing is non-corrosive, post-treatment is unnecessary, and other brazing methods require very little heat exchange. The manufacturing cost of the vessel is low.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

FB法ではフラックス中にZn Cj!zが10%程1
−σ含まれており、この70分がろうイー]け時に熱交
部材の表面層内部に拡散し、最大[〔〜2%、拡散深さ
100〜200μ程度のZnn拡散層形成するため、表
面電位が約−0,9Vとなる。これは熱交部材のZOの
拡散していない部分)am (−0,70V〜0.75
 v) ニ対し卑どなり、Znn拡散層犠牲腐食層とし
て角さt′1通孔良をを防止づる。しかるにNB法では
使用するフラックスにZnが含まれていないところから
I n拡散層が得られず、深い孔食を防ぐことがでさ′
ない。
In the FB method, Zn Cj! z is about 10% 1
-σ is included, and during this 70 minutes, it diffuses inside the surface layer of the heat exchanger member, forming a Znn diffusion layer with a maximum of ~2% and a diffusion depth of about 100 to 200μ, The potential becomes approximately -0.9V. This is the part of the heat exchanger member where ZO is not diffused) am (-0.70V ~ 0.75
v) On the other hand, the Znn diffusion layer acts as a sacrificial corrosion layer to prevent through-hole defects at angle t'1. However, in the NB method, since the flux used does not contain Zn, an In diffusion layer cannot be obtained, and deep pitting corrosion cannot be prevented.
do not have.

Nf3法rFB法と同等の耐食性とするため(こは、乙
う(−1+−]の萌T稈で水やフレオンを流す管体(こ
、FB法と同ト毛の7n拡散層を形成する70処理を施
すか、又はVB法の場合に耐食性を白土させる7′3法
として知られている電位の卑・1フインを犠1′1材ど
じて、電位の円な管体を防3するs= K防食法がにえ
られる。しかるにNB法では7n処理を施した場合でも
、また犠1′1フィンを用いた県会でも、管体に貫通孔
食が発生1)る事例が報告されている。
In order to achieve the same corrosion resistance as the Nf3 method and the FB method (this is a tube in which water or Freon flows through a (-1+-) T culm), a 7n diffusion layer of the same hair as the FB method is formed. 70 treatment or, in the case of the VB method, by sacrificing the base 1 fin of the potential known as the 7'3 method to improve corrosion resistance, prevent the circular tube body of the potential. s = K corrosion protection method is available.However, even when 7n treatment is applied with the NB method, and even in prefectural meetings using sacrificial 1'1 fins, cases have been reported in which through-pitting corrosion occurs in the pipe body1). ing.

(R:角点を解決するための手段〕 本発明はこれに鑑み種々検討の結果、NB法て−は7ル
イ[lアルミン酸カリウム系フラックスがろう付けic
 L、−熱交換器の表面lこ残渣として残り、その主成
分(まl<Af F4 、に3 Al F6等で熱交換
器の表面に緻密に固着し、しかし非導電性であることを
知見した。従ってフィン等に犠牲腐食効果を持たせても
、フィンと防食する管体の間に防食電流が流れず、また
腐食過程でフラックス残渣皮膜が部分的に破壊されても
十分な防食電、流が流れず、管体の孔食を防止すること
ができ4τいことを知った。これ等の知見に基づき更に
検討の結果、N 13法によりろう付けしたアルミ製熱
交換器の耐食性を改善することができるアルミ製熱交換
器の製造法を開発したものである。
(R: Means for solving the corner point) In view of this, the present invention has been developed as a result of various studies.
L, - remains as a residue on the surface of the heat exchanger, its main component (Al<Af F4, 3Al F6, etc.) is found to be densely adhered to the surface of the heat exchanger, but is non-conductive. Therefore, even if the fins etc. have a sacrificial corrosion effect, no anti-corrosion current will flow between the fins and the pipe body to be protected from corrosion, and even if the flux residue film is partially destroyed during the corrosion process, there will be no sufficient anti-corrosion current. We learned that the current does not flow, preventing pitting corrosion of the pipe body, and that the corrosion resistance of the aluminum heat exchanger brazed using the N13 method was improved as a result of further investigation based on these findings. We have developed a method for manufacturing aluminum heat exchangers that can

即ら本発明製造法は、△(又はへ2合金部材を組合せて
ろう付(Jにより一体に接合づる熱交換器の製)青にお
いて、フルオロアルミン酸カリウム系フラックスを用い
て非酸化性雰囲気中でろう付けした後、フラックス残渣
を溶解除去して△(又はAl部材の表面を導電性とした
ことを特徴とするものである。
That is, the manufacturing method of the present invention involves brazing (or brazing by combining two alloy members (manufacturing of a heat exchanger joined together by J) in a non-oxidizing atmosphere using potassium fluoroaluminate flux. After brazing with aluminum, the flux residue is dissolved and removed to make the surface of the Al member conductive.

本発明にあいこ、フルオロアルミン酸カリウム系フラッ
クスとしては、1〈△fF+、Kz△fFs  、Kz
  Af 「s  ・l−120、に:  A 、e 
F6の何れか1種又は2種以上の混合物を主成分と呵る
フラックス、又は八(F3とKFとをそれぞれ50〜6
0W(%、40〜50W[%の割合で混合したフラウク
スを用いる。またろう付は後のフラックス残漬の溶解除
去には種々の方法があり、例えば苛性ソーダ等のアルカ
リ液や、硝酸、弗酸、硫M等の酸性液中に浸漬する方法
が筒中で効果的である。
In the present invention, potassium fluoroaluminate fluxes include 1〈△fF+, Kz△fFs, Kz
Af "s ・l-120, to: A, e
A flux containing either one type of F6 or a mixture of two or more types of F6 as a main component, or a flux containing 50 to 6
Flux mixed at a ratio of 0W (%, 40 to 50W [%) is used. Also, there are various methods for dissolving and removing residual flux after brazing. For example, using an alkaline solution such as caustic soda, nitric acid, or hydrofluoric acid. , immersion in an acidic solution such as sulfur M in a cylinder is effective.

〔作用〕[Effect]

NB法でろう付けしたアルミ製熱交換器の表面に固着し
ている非導電性のフラックス残渣を溶解除去することに
より、熱交換器の表面は導電性となり、フィンと防食す
る管体間には十分な防食電流が流れ、管体の孔食発生を
効果的に防什−4ることができる。上記の如りN 方法
でろう(=Jけしだアルミ製熱交換器の表面には、非導
電性のフラックス残漬か固もし、例えフィンに犠牲腐食
効果を持たせたとし1でもフィンと防食する管体間には
防食電流が流れず、管体の孔食を防止することはでさな
いが、アルミ製熱交換器の表面からフラックス残漬を溶
解除去することにより、フィンと防食す゛る管体間には
、十分な防食電流が流れるようになり、管体の孔食発生
を防+t t、て熱交換器のRQを茗しく長くすること
ができ、る。
By dissolving and removing the non-conductive flux residue that adheres to the surface of the aluminum heat exchanger brazed using the NB method, the surface of the heat exchanger becomes conductive, and there is a gap between the fins and the anti-corrosion tube. A sufficient anticorrosion current flows, and pitting corrosion of the tube body can be effectively prevented. As mentioned above, the surface of the aluminum heat exchanger should be left with non-conductive flux or hardened. Corrosion-preventing current does not flow between the fins and the anti-corrosion tubes, so it is not possible to prevent pitting corrosion on the tube bodies. A sufficient anti-corrosion current flows between the bodies, preventing pitting corrosion in the tube bodies, and making it possible to lengthen the RQ of the heat exchanger.

〔実施例1〕 厚さ1 mtn、巾50mttt、長さ50tumの1
050合金(I14痩99.50%以上の純Al)を1
〜リクレンで脱脂した後、KAfF+を10%の温度で
水に懸濁させたフラックス液に浸漬し、110℃の温度
で30分間乾燥させた。これについてNB法を模してN
Zガス雰囲気中で610℃の温度に10分間加熱した後
、表面に固着したフラックス残渣を第3表に示す溶解処
理工程により溶解除去した。これについてテスターによ
り表面の一導電性を調べた。その結果を第3表に併記し
た。
[Example 1] 1 with a thickness of 1 mtn, a width of 50 mttt, and a length of 50 tum.
050 alloy (I14 thinner than 99.50% pure Al) 1
~ After degreasing with Reclen, KAfF+ was immersed in a flux solution in which KAfF+ was suspended in water at a temperature of 10%, and dried at a temperature of 110° C. for 30 minutes. Regarding this, imitating the NB method, N
After heating at a temperature of 610° C. for 10 minutes in a Z gas atmosphere, the flux residue stuck to the surface was dissolved and removed by the dissolution process shown in Table 3. Regarding this, the conductivity of the surface was examined using a tester. The results are also listed in Table 3.

第3表 製造ri=   No     溶 解 処 理 工 
程     表面メタ電性本発明法 15%Na 0f
−1・60℃×1分→水洗→   あり30%1−IN
O3・室温×1分→水洗→乾燥 !!   230%liN 03 ・室温×二〇分−水
洗→  あり乾燥 II   35%ト1「・室温×2分−)水洗→   
   あり乾燥 リ   41門H2SO4・50℃×2分→水(5を一
→    あり乾燥 従来法  5 イーcし              
    なし第3表から明らかなように、本発明法NG
 1〜4により表面に固着したフラックス残漬を溶解除
去したものは表面の導電性が([1られたが、溶解処理
しない従来法NO,5ではフラックス残漬の固着により
表面が非導電性となっていることが判る。
Table 3 Manufacturing ri=No Melting treatment
Process Surface metaelectricity Inventive method 15%Na 0f
-1・60℃×1 minute→Washing→ Yes 30% 1-IN
O3/room temperature x 1 minute → washing with water → drying! ! 230%liN 03 ・Room temperature x 20 minutes - Washing with water → Yes Drying II 35% LiN 03 ・Room temperature x 2 minutes -) Washing with water →
Dry with drying method 41 H2SO4・50℃×2 minutes → Water (5 in 1 → Conventional method with drying 5 Ec)
None As is clear from Table 3, the method of the present invention is NG.
The conductivity of the surface was determined by dissolving and removing the residual flux stuck to the surface in steps 1 to 4 ([1], but in conventional method NO, which does not involve dissolution treatment, the surface became non-conductive due to the adhesion of the residual flux). It turns out that it is.

・′実施例2〕 0′!1図に示1Jように1050合金からイrる押出
多穴チューブ(1)と、八(−1%Mn −2%Zn合
金を芯+オとし、−での両面に10%の割合て・1:3
へ4045合金< A f −10%3i合金)をクラ
ッドしたプレージングシートからなるコルゲートフィン
(2)を組合せ、鉄製冶具で固定してトリクレンで脱脂
した後、KAアF十を10%の濃度で水に懸濁させたフ
ラックス液に浸漬し、110℃の温度で30分間乾燥さ
せた。
・'Example 2] 0'! As shown in Figure 1J, an extruded multi-hole tube (1) made of 1050 alloy is made of 8 (-1% Mn -2% Zn alloy as the core + O, and 10% on both sides at -). 1:3
A corrugated fin (2) made of a plating sheet clad with 4045 alloy < A f -10% 3i alloy) was assembled, fixed with an iron jig and degreased with trichlene, and then KAAF was applied at a concentration of 10%. It was immersed in a flux solution suspended in water and dried at a temperature of 110° C. for 30 minutes.

これをNz、ガス雰囲気中で610°Cの温度に10分
間加熱してろう付けを行なった。これを第4表に示す溶
解処理工程により、表面に固着したフラックス残渣を溶
解除去してリーペンタインクイブのエバポレーター用コ
アを作成した。
This was heated to a temperature of 610° C. for 10 minutes in a Nz gas atmosphere to perform brazing. This was subjected to the dissolution treatment process shown in Table 4 to dissolve and remove the flux residue adhered to the surface, thereby producing a core for an evaporator of a repentine ink.

これについてJISZ2371に基つく塩水噴霧試験を
1000時間行ない押出多穴チューブに発生した最大孔
食深さを測定した。ぞの結果を第4表に()f記した。
Regarding this, a salt water spray test based on JIS Z2371 was conducted for 1000 hours, and the maximum depth of pitting corrosion occurring in the extruded multi-hole tube was measured. The results are shown in Table 4 ()f.

第4表 製造7人  11′0     洛 解 氾 理 丁 
程   表面導電性 最大孔食深さくm)本発明法 6
 5%Na OH”60”CX1分−を水洗→   あ
り     0.130%l−1NO3・室温×1分→
水洗→乾燥 r7  730%1lNO5−室温x10分−→水洗→
  あり     0.2乾燥 ・t    85%IF・室温×2分−→水洗〉   
   あり     0.2乾燥 ・・   91は1−1zSO+ ・50℃×2分−→
水洗→    あり     0,1蛇操 11來1人  +0 1;;シ           
         なし      0.7第4表より
明らかなように本発明法No 8−9に上り製)香した
サーペンタインタイプのエバポレーターのろう付は二コ
アにおける押出多穴チューブの最大孔食深さは何れb 
O,1〜0 、2 mmと浅く、耐食性が良好であるこ
とが判る。これに対しフラックス残渣を溶解処理しない
従来法でCよ最大孔食深さが0 、7 mmと深くなっ
ている。
Table 4 Manufacturer: 7 people 11'0
Surface conductivity Maximum pitting depth (m) Method of the present invention 6
Wash 5% Na OH "60" CX 1 minute with water → Yes 0.130% l-1 NO3 at room temperature x 1 minute →
Washing with water → drying r7 730% 1l NO5 - room temperature x 10 minutes - → washing with water →
Yes 0.2 dry, t 85% IF, room temperature x 2 minutes -→Wash>
Yes 0.2 drying... 91 is 1-1zSO+ 50℃ x 2 minutes -→
Water washing → Yes 0,1 snake operation 11 people +0 1;;shi
None 0.7 As is clear from Table 4, the maximum pitting depth of the extruded multi-hole tube in two cores is b
It can be seen that the corrosion resistance is as shallow as 0.1 to 0.2 mm and has good corrosion resistance. On the other hand, in the conventional method in which the flux residue is not dissolved, the maximum pitting depth is as deep as 0.7 mm compared to C.

〔実施例3〕 第2図に示すように3003合金(八(−0,1%Cu
 −1,2%Mn合金)を芯材とし、その片面に[3Δ
4343合金(A!−7,5%S1合金)をクラッドし
たBへ11PCからなる偏平チコーブ(3)間にA 、
e −1%Mn−2%70合金からなる]ルゲートフィ
ン〈4)を設け、その両端にBAIIPCからなるプレ
ート(6)と、両側にB△11PCからなる1ナイドブ
レー!−(,5)を取付けて自動小用ラジェーターを組
立て、これを冶具で固定してトリクレン蒸気脱脂を行な
っLo 尚図において(7)はプラスチック製のタンクを示で′
。またBへ11PCからなる偏平チューブ(3)の芯材
(3003合金)の電イQは−0,7V (飽和甘木電
極、5%NaC,e、25°C中で測定)、八(−1%
M11−2%711全71らなるコルゲートフィンの電
位は−〇、9Vであつ lこ 。
[Example 3] As shown in Figure 2, 3003 alloy (8(-0.1% Cu
-1,2% Mn alloy) as the core material, and one side of it has [3Δ
A to B clad with 4343 alloy (A!-7,5% S1 alloy) between flat chicoves (3) made of 11PC,
A rugate fin (4) made of e-1%Mn-2%70 alloy is provided, and plates (6) made of BAIIPC are provided at both ends of the rugate fin (4), and 1 night blade made of BΔ11PC is provided on both sides! - Attach (, 5) and assemble a small automatic radiator, fix it with a jig and perform tri-clean vapor degreasing. In the figure, (7) shows a plastic tank.
. In addition, the voltage Q of the core material (3003 alloy) of the flat tube (3) made of 11PC to B is -0.7V (measured with saturated Amagi electrode, 5% NaC,e, at 25°C), 8 (-1 %
The potential of the corrugated fin made of M11-2%711 is -0,9V.

次にこれをKAfF+を10%の濃度で水に懸濁さ、せ
たフラックス液に浸漬し、110℃の温度で30分間乾
燥さ14だ後、Nzガス雰囲気中で610℃の温度に1
0分間加熱してろう付けを行なった。これを室温の5%
HF中に2分間浸ifi lyた後水洗乾燥して表面に
固着するフラックス残渣を溶解除去した。これについて
フラックス残渣を除去しない従来品と共にJISZ23
71に基づく塩水噴霧試験を行ない、偏平デーコープに
4通孔食が発生するまでの時間をlt較した7その結果
従来品は15001tN間で4通孔食を発生するのに対
し、本発明法により製造したラジェーターではd通几食
が発1するのに4500時間を要した。
Next, this was immersed in a flux solution containing KAfF+ suspended in water at a concentration of 10%, dried at a temperature of 110°C for 30 minutes, and then heated to a temperature of 610°C in a Nz gas atmosphere for 14 minutes.
Brazing was performed by heating for 0 minutes. This is 5% of room temperature.
After being immersed in HF for 2 minutes, it was washed with water and dried to dissolve and remove the flux residue stuck to the surface. Regarding this, along with conventional products that do not remove flux residue, JIS Z23
A salt spray test based on 71 was conducted and the time required for 4-pass pitting to occur on a flat decoup was compared.7 As a result, while the conventional product caused 4-pass pitting at 15,001 tN, the method of the present invention It took 4,500 hours for the manufactured radiator to generate 1 d-time eclipse.

〔発明の効果〕〔Effect of the invention〕

このように本発明によればアルミ製熱交換器の耐食性を
改善し、その右のを3倍以上も艮くづることがr:さる
bので、工業上顕著な効果を秦づるちのである。
As described above, according to the present invention, the corrosion resistance of aluminum heat exchangers can be improved and the corrosion resistance can be improved by more than three times, resulting in a remarkable industrial effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はIL−ベンタインタイプのエバポレーター・用
コアの一例を示す説明図、第2図は自動車用ラジェータ
ーのコアの一例を示す説明図、第3図(イ)、((〕)
、(ハ)、(ニ)はアルミ1ツ熱交換器の各種コアの一
例を示すもので、(イ)はドロンカップタイプの自動車
用オイルクーラーのコア、(ロ)は自動重用ラジェータ
ーのコア、くハ)はサーペンタインタイプのコンデンサ
ーのコア、(ニ)はサーペンタインタイプのエバポレー
ターのコアを示づ。 1 ・・・ 押出多穴チコーーブ 2 ・・・ コルゲートフィン 3 ・・・ 偏平チューブ 4 ・・・ コルゲートフィン 5 ・・・ →ノイドブラケット 6 ・・・ プレート 7 ・・・ プラスチック胃タンク 第1図 第2図 第3図 (ロ) (ハ)
Fig. 1 is an explanatory diagram showing an example of a core for an IL-Bentine type evaporator, Fig. 2 is an explanatory diagram showing an example of a core for an automobile radiator, and Fig. 3 (a), (())
, (C), and (D) show examples of various cores for single-aluminum heat exchangers; (A) is the core of a Dron cup type automobile oil cooler; (B) is the core of an automatic heavy duty radiator; (c) shows the core of a serpentine-type condenser, and (d) shows the core of a serpentine-type evaporator. 1... Extruded multi-hole Chicove 2... Corrugated fin 3... Flat tube 4... Corrugated fin 5... → Noid bracket 6... Plate 7... Plastic gastric tank Figure 1, Figure 2 Figure 3 (B) (C)

Claims (1)

【特許請求の範囲】[Claims]  Al又はAl合金部材を組合せてろう付けにより一体
に接合する熱交換器の製造において、フルオロアルミン
酸カリウム系フラックスを用いて非酸化性雰囲気中でろ
う付けした後、フラックス残渣を溶解除去してAl又は
Al部材の表面を導電性としたことを特徴とするアルミ
製熱交換器の製造法。
In the manufacture of heat exchangers that combine Al or Al alloy members and join them together by brazing, after brazing in a non-oxidizing atmosphere using potassium fluoroaluminate flux, the flux residue is dissolved and removed to form an Al Or a method for manufacturing an aluminum heat exchanger, characterized in that the surface of the Al member is conductive.
JP20294085A 1985-09-13 1985-09-13 Production of aluminum heat exchanger Pending JPS6264471A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20294085A JPS6264471A (en) 1985-09-13 1985-09-13 Production of aluminum heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20294085A JPS6264471A (en) 1985-09-13 1985-09-13 Production of aluminum heat exchanger

Publications (1)

Publication Number Publication Date
JPS6264471A true JPS6264471A (en) 1987-03-23

Family

ID=16465679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20294085A Pending JPS6264471A (en) 1985-09-13 1985-09-13 Production of aluminum heat exchanger

Country Status (1)

Country Link
JP (1) JPS6264471A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010021769A1 (en) 2008-08-18 2010-02-25 Carrier Corporation Method for removing brazing residues from aluminum articles

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5533863A (en) * 1978-08-31 1980-03-10 Anritsu Corp Removing agent of flux for brazing and after brazing treatment washing method using said agent
JPS5626672A (en) * 1979-05-17 1981-03-14 Aluminum Co Of America Method of recovering melting agent salt for brazing
JPS6018294A (en) * 1983-07-13 1985-01-30 Sanden Corp Aluminum-brazed joint
JPS6046867A (en) * 1983-08-23 1985-03-13 Showa Alum Corp Brazing method of aluminum and its alloy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5533863A (en) * 1978-08-31 1980-03-10 Anritsu Corp Removing agent of flux for brazing and after brazing treatment washing method using said agent
JPS5626672A (en) * 1979-05-17 1981-03-14 Aluminum Co Of America Method of recovering melting agent salt for brazing
JPS6018294A (en) * 1983-07-13 1985-01-30 Sanden Corp Aluminum-brazed joint
JPS6046867A (en) * 1983-08-23 1985-03-13 Showa Alum Corp Brazing method of aluminum and its alloy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010021769A1 (en) 2008-08-18 2010-02-25 Carrier Corporation Method for removing brazing residues from aluminum articles
EP2321449A1 (en) * 2008-08-18 2011-05-18 Carrier Corporation Method for removing brazing residues from aluminum articles
EP2321449A4 (en) * 2008-08-18 2014-11-05 Carrier Corp Method for removing brazing residues from aluminum articles

Similar Documents

Publication Publication Date Title
KR0139548B1 (en) Method pof manufacturing heat exchanger
US4359181A (en) Process for making a high heat transfer surface composed of perforated or expanded metal
CA2346587C (en) Method of manufacturing an aluminum product
EP1067213B1 (en) Conversion coatings on aluminium from KF solutions for flux-less brazing
JPS6015064A (en) Heat exchanger
JPH07227695A (en) Flux for brazing, heat exchanger and production of heat exchanger
EP0431632A1 (en) Heat exchanger made of aluminum
US2646620A (en) Method of joining together the ends of thin-walled aluminum heat exchange tubes
JPS5831267B2 (en) Manufacturing method of aluminum heat exchanger
JPS6264471A (en) Production of aluminum heat exchanger
JPS58171580A (en) Method for preventing corrosion of heat exchanger made of aluminum
JPS6018294A (en) Aluminum-brazed joint
JPS6174771A (en) Production of aluminum heat exchanger
JPH10263799A (en) Manufacture of heat exchanger excellent in corrosion resistance
JPH0223265B2 (en)
JPS61246354A (en) Aluminum tube having many holes for heat exchanger and its manufacture
JPS60194296A (en) Material for heat exchanger, which is prominent in anticorrosion
JPS6215678Y2 (en)
EP1200226A1 (en) Soldering flux
JPS58163573A (en) Brazing method of aluminium material
JPS59137792A (en) Heat exchanger
JPH09222294A (en) Heat-exchanger made of aluminum and manufacture thereof
JPS61235072A (en) Production of aluminum heat exchanger
JPH09113178A (en) Fin tube type evaporator and method of manufacture
JPH05112853A (en) Manufacture of heat exchanger made of aluminum alloy