JPS6264041A - Ionization chamber type radiation detector - Google Patents

Ionization chamber type radiation detector

Info

Publication number
JPS6264041A
JPS6264041A JP20496785A JP20496785A JPS6264041A JP S6264041 A JPS6264041 A JP S6264041A JP 20496785 A JP20496785 A JP 20496785A JP 20496785 A JP20496785 A JP 20496785A JP S6264041 A JPS6264041 A JP S6264041A
Authority
JP
Japan
Prior art keywords
carbon fiber
entrance window
container body
radiation detector
reinforced resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20496785A
Other languages
Japanese (ja)
Inventor
Shigeru Sato
茂 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP20496785A priority Critical patent/JPS6264041A/en
Publication of JPS6264041A publication Critical patent/JPS6264041A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

PURPOSE:To improve the radiation transmitting rate, the sensibility of detector and the air-tightness by employing a complex member reinforced with highly strong carbon fiber reinforced resin at the radiation incident window section. CONSTITUTION:A container body 60 and a X-ray incident window section 61 are integrated through mechanical machining where the window section 61 is made as thin as 0.5mm while the window section 61 is provided with carbon fiber reinforced resin 62 at the inside and made as thick as 2mm. The body 60 and the resin 62 are secured through adhesive. In the resin 62, the fibers are arranged longitudinally in eight layers while laterally in two layers thus to form such X-ray incident window as having rational strength corresponding with the inner stress.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、電離箱形放射線検出器に係り、特に、X@C
T装置において、良好な画像を得るのに有効な検出効率
の高い電離箱形放射線検出器に関するものである。
[Detailed Description of the Invention] [Technical Field] The present invention relates to an ionization chamber type radiation detector, and in particular,
The present invention relates to an ionization chamber type radiation detector with high detection efficiency and which is effective for obtaining good images in T apparatuses.

〔背景技術〕[Background technology]

従来のX線CT装置の撮影方式は、約40°の開き角の
扇型ビームX線を放射するX線源と、多素子電離箱形放
射線検出器(以下、検出器という)とを約1mの距離で
対向させて設置し、このX線源と検出器とを、X線源と
検出器との間に置かれた被写体を中心として、相互の位
置関係を保持したまま回転させ、被検体に多方向からX
線を照射してX線強度分布を計測し、その信号を計算機
処理することによって断層像を得る方式である。この種
の方式のX@CT装置においては、検出器として、主に
キセノン電離相検出器が用いられている(特開昭54−
17889号、特開昭54−89791号公報参照)。
The imaging method of conventional X-ray CT equipment uses an X-ray source that emits fan-shaped X-rays with an aperture angle of about 40° and a multi-element ionization chamber radiation detector (hereinafter referred to as the detector) at a distance of about 1 m. The X-ray source and detector are placed facing each other at a distance of X from multiple directions
This method irradiates X-rays, measures the X-ray intensity distribution, and obtains tomographic images by computer processing the signals. In this type of X@CT system, a xenon ionization phase detector is mainly used as a detector (Japanese Patent Application Laid-Open No.
17889, JP-A-54-89791).

従来のこの種の検出器を第3図及び第4図に示す。Conventional detectors of this type are shown in FIGS. 3 and 4.

第3図及び第4図において、容器本体lとM2とボルト
3とによって形成された密閉空間には、電極板アッセン
ブリー5が収容さitている。電極板アッセンブリ−5
自体は、信号電極板51とバイアス電極板52とを交互
にかつ平行に支持枠6に保持させたものである。この電
極板アッセンブリー5は、キセノンガスと共に容器本体
l内に封入され、一方のガスケット4に形成された導体
に電気的に接続され、この導体によって電極の検出信号
を外部へ取り出すためのものである。そして、X線入射
窓部11からのX線の入射によってキセノンガスに電離
作用が生じ、電極板アッセンブリー5がX線の入射量に
応じた電気信号を出力するようになっている。
In FIGS. 3 and 4, an electrode plate assembly 5 is housed in a sealed space formed by the container body 1, M2, and bolt 3. As shown in FIG. Electrode plate assembly 5
The support frame 6 has signal electrode plates 51 and bias electrode plates 52 held alternately and parallel to each other. This electrode plate assembly 5 is sealed in a container body l along with xenon gas, is electrically connected to a conductor formed on one gasket 4, and is used to extract detection signals from the electrodes to the outside. . The incidence of X-rays from the X-ray entrance window 11 causes an ionization effect on the xenon gas, and the electrode plate assembly 5 outputs an electrical signal according to the amount of incident X-rays.

容器本体1及び蓋2は、キセノンガスが高圧であるため
、これに対応できる充分な厚みをもつアルミニウム合金
によって構成されているのが普通である。
Since the container body 1 and the lid 2 are under high pressure of xenon gas, they are usually made of an aluminum alloy having a sufficient thickness to cope with the high pressure.

しかしながら、このような検出器では、容器本体1の前
面壁を薄肉にして形成し、かつX線が入射するX線入射
窓部11を設けているが、容器本体l及び蓋2は圧力容
器であるため、放射線入射窓部11をある限度以上に薄
くすることができなし)。
However, in such a detector, the front wall of the container body 1 is made thin and an X-ray entrance window 11 is provided through which X-rays enter, but the container body 1 and the lid 2 are pressure vessels. Therefore, it is not possible to make the radiation entrance window 11 thinner than a certain limit).

第5図にキセノンガス封入時に変形した圧力容器の断面
を示すが、X線入射窓部11の窓部(窓部4mm、他1
5mm)を薄くしているため、ここでの変形が最も大き
く(第5図の符号20)、図中ての上下方向の引張応力
が最大となる。窓部をさらに薄くすると、アルミニウム
合金への引張応力が許容応力を越え、破断の恐れが出て
くる。
Figure 5 shows a cross section of the pressure vessel deformed when xenon gas is filled, and the window part of the X-ray entrance window 11 (window part 4 mm, other 1
5 mm), the deformation here is the largest (reference numeral 20 in FIG. 5), and the tensile stress in the vertical direction in the figure is the largest. If the window is made even thinner, the tensile stress on the aluminum alloy will exceed the allowable stress, and there is a risk of breakage.

一方、アルミニウム合金は、x、mar装置でよく使わ
れる平均エネルギー70KeVのX線に対して、第6図
に示すような透過率を示す。ちなみに、実測及び計算の
結果、4mn+厚では、透過率78%つまり22%がX
線入射窓部11で減衰され、出力に寄与しないことにな
る。強度との関係で入射窓におけるX線の透過率をさら
に高めることができないので、X線の利用効率をより向
上させにくい要因となっている。
On the other hand, aluminum alloy exhibits a transmittance as shown in FIG. 6 for X-rays with an average energy of 70 KeV, which is often used in x-mar devices. By the way, as a result of actual measurements and calculations, at 4mm+thickness, the transmittance is 78%, that is, 22%.
It is attenuated by the line entrance window 11 and does not contribute to the output. Because it is not possible to further increase the transmittance of X-rays in the entrance window due to the intensity, this is a factor that makes it difficult to further improve the efficiency of X-ray utilization.

また、容器本体1全体を炭素繊維強化樹脂で構成するこ
とは、アルミニウム合金製に比べX線利用効率に優れる
が、容器内のキセノンガスが外部へ漏れ出し、内圧が低
下するという長期的(年オーダー)な気密性と加工性に
問題がある。さらに。
In addition, constructing the entire container body 1 from carbon fiber-reinforced resin has superior X-ray usage efficiency compared to aluminum alloy, but it also has long-term effects such as the xenon gas inside the container leaking out and the internal pressure decreasing (years). There are problems with the airtightness and workability of the product. moreover.

X線入射窓部11だけを、炭素繊維強化樹脂とし、他を
アルミニウム合金とし、接合(接着)して容器本体1と
する場合においても、接合部分及び、炭素繊維強化樹脂
の気密性に問題があった。
Even when only the X-ray entrance window 11 is made of carbon fiber-reinforced resin and the other parts are made of aluminum alloy and are bonded (adhered) to form the container body 1, there is a problem with the airtightness of the joint part and the carbon fiber-reinforced resin. there were.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、放射線入射窓部における放射線透過率
を高めることにより、検出器としての感4一 度を向上させ、かつ気密性に優れた電離箱形放射線検出
器を提供することにある。
An object of the present invention is to provide an ionization box-type radiation detector that improves the sensitivity of the detector by increasing the radiation transmittance at the radiation entrance window and has excellent airtightness.

本発明の前記ならびにその他の目的と新規な特徴は、本
明細書の記述及び添付図面によって明らかになるであろ
う。
The above and other objects and novel features of the present invention will become apparent from the description of this specification and the accompanying drawings.

(発明の概要〕 本願において開示される発明のうち1代表的なものの概
要を簡単に説明すれば、下記のとおりである。
(Summary of the Invention) A brief outline of one typical invention disclosed in this application is as follows.

すなわち、気密性を保つため、容器本体は、アルミニウ
ム合金等の機械的に強固で加工しやすい金属とするが、
放射線入射窓部の肉厚を従来よりきわめて薄くし、強度
不足となるところを、より高強度な炭素繊維強化樹脂で
補強する複合材とすることにより、X線透過率の優れた
放射線入射窓構造としたものである。
In other words, in order to maintain airtightness, the container body is made of a mechanically strong and easy-to-process metal such as aluminum alloy.
The radiation entrance window structure has excellent X-ray transmittance by making the wall thickness of the radiation entrance window much thinner than before, and by using a composite material that reinforces areas where strength is insufficient with higher strength carbon fiber reinforced resin. That is.

〔発明の構成〕[Structure of the invention]

以下、本発明を実施例とともに図面を用いて説明する。 Hereinafter, the present invention will be explained using examples and drawings.

なお、実施例を説明するための全図において、同−機能
を有するものは同一符号をイ」け、その繰り返しの説明
は省略する。
In all figures for explaining the embodiments, parts having the same functions are denoted by the same reference numerals, and repeated explanations thereof will be omitted.

第1図に本発明の一実施例の電離箱形放射線検出器の容
器本体の構成を示す。
FIG. 1 shows the structure of a container body of an ionization chamber type radiation detector according to an embodiment of the present invention.

第1図において、容器本体6oとX線入射窓部61は、
アルミニウム合金等の機械的に強固で加工しやすい金属
で、機械加工(主にフライス)により一体物で作られて
いる。そして、X線入射窓部61の厚みを0 、5 m
mと非常に薄くしである。
In FIG. 1, the container body 6o and the X-ray entrance window 61 are
Made of a mechanically strong and easy-to-work metal such as an aluminum alloy, it is made in one piece by machining (mainly milling). Then, the thickness of the X-ray entrance window 61 is set to 0.5 m.
It is very thin and has a thickness of m.

その窓幅Wは25mmであり、X線入射窓部61の」―
下端61Aは、3mm半径の円弧で丸みをもたせ、応力
の集中を避けている。このX線入射窓部61の内側には
、これを補強するために炭素繊維強化樹脂62が設けら
れおり、その厚みは2mmとしている。容器本体60と
炭素繊維強化樹脂62は、接着剤で固定されている。具
体的には、アルミニウム合金からなる容器本体60と炭
素繊維強化樹脂61の接着面をサンドペーパーで研摩し
、溶剤で脱脂した後、エポキシ接着剤を前記両者の接着
面に厚み30〜50μmになるように塗布し、両面を合
せ、加圧(約5kg/cJ程度)、加熱(50層程度)
し、接着剤が硬化するのを待ち、第1図(b)に示すよ
うに容器本体60を作成する。このとき、炭素繊維強化
樹脂62の繊維方向性と配列に注意する。炭素繊維強化
樹脂62は、繊維方向における引張強度と、その垂直方
向における引張強度が大きく異なる異方性を有する特徴
を有している。
The window width W is 25 mm, and the width of the X-ray entrance window 61 is 25 mm.
The lower end 61A is rounded with a circular arc having a radius of 3 mm to avoid concentration of stress. A carbon fiber reinforced resin 62 is provided inside the X-ray entrance window 61 to reinforce it, and its thickness is 2 mm. The container body 60 and the carbon fiber reinforced resin 62 are fixed with an adhesive. Specifically, the bonding surfaces of the container body 60 made of an aluminum alloy and the carbon fiber reinforced resin 61 are polished with sandpaper, degreased with a solvent, and then epoxy adhesive is applied to the bonding surfaces of both to a thickness of 30 to 50 μm. Coat as shown, put both sides together, apply pressure (approx. 5 kg/cJ), and heat (approx. 50 layers)
After waiting for the adhesive to harden, a container body 60 is created as shown in FIG. 1(b). At this time, pay attention to the fiber direction and arrangement of the carbon fiber reinforced resin 62. The carbon fiber reinforced resin 62 has anisotropy in which the tensile strength in the fiber direction and the tensile strength in the direction perpendicular to the fiber direction are significantly different.

一般に、炭素繊維強化樹脂の繊維方向では、引張強度が
約150kg/mmであるのに対し、これと垂直な方向
では、約5kg/mmである。前者は、後者の30倍の
強度となる。2mIn厚の炭素繊維強化樹脂は、例えば
、一方向繊維で−M0.2mm厚の炭素繊維強化樹脂を
10層重ねて構成する。
Generally, the tensile strength of carbon fiber reinforced resin is about 150 kg/mm in the fiber direction, while it is about 5 kg/mm in the direction perpendicular to this. The former is 30 times stronger than the latter. The carbon fiber reinforced resin having a thickness of 2 ml is constructed by stacking, for example, 10 layers of carbon fiber reinforced resin having a thickness of -M0.2 mm using unidirectional fibers.

いま、第5図で示したように、容器本体1の内圧が加わ
ると、図で一ヒ下方向(縦方向)での引張応力は横方向
引張応力の約4倍程度の大きさとなる。そこで、炭素繊
維強化樹脂62の繊維方向は8層を縦方向に2層を横方
向に配向させることにより、発生する内部応力に合った
合理的な強度を有するX線入射窓を構成することができ
る。なお炭素繊維1本は、7〜10μ■直径と非常に細
いフィラメントであるので、前記の容器本体lの内圧に
こだわらず、あらかじめ、4:1に織物のように織って
、必要とする異方性を持たせることも可能である。この
ときの縦方向の引張強度は、約80 kg/ rn r
d e横方向は約20kg/mnrとなり、2H厚であ
れば、内圧30kg/dに対し、充分耐え得る構造であ
る。
Now, as shown in FIG. 5, when the internal pressure of the container body 1 is applied, the tensile stress in the downward direction (vertical direction) in the figure becomes about four times as large as the horizontal direction tensile stress. Therefore, the fiber direction of the carbon fiber reinforced resin 62 can be oriented in such a way that eight layers are oriented in the vertical direction and two layers are oriented in the horizontal direction, thereby constructing an X-ray entrance window that has a reasonable strength that matches the internal stress that occurs. can. Note that one carbon fiber is a very thin filament with a diameter of 7 to 10 μm, so regardless of the internal pressure of the container body, it can be woven like a 4:1 textile in advance to achieve the required anisotropy. It is also possible to give it a gender. The tensile strength in the longitudinal direction at this time is approximately 80 kg/rn r
d eThe horizontal direction is about 20 kg/mnr, and if it is 2H thick, it has a structure that can sufficiently withstand an internal pressure of 30 kg/d.

前記炭素繊維強化樹脂62は、その密度(f)を1.6
、X線吸収係数(μ)を0.26c+aのものを用いた
ので、その厚みに対し、X線透過率は、第6図に示す(
b)の曲線となる。
The carbon fiber reinforced resin 62 has a density (f) of 1.6.
, with an X-ray absorption coefficient (μ) of 0.26c+a, the X-ray transmittance for that thickness is shown in Figure 6 (
It becomes the curve b).

従って本実施例でのX線入射窓の総合の透過率は、アル
ミニウム合金0 、5 mm厚の97%と、炭素繊維強
化樹脂2mm厚の95%の積の92%となり、従来のア
ルミニウム合金だけの4閣■厚の透過率78%に比べて
、14%も減衰が少なくなっている。また、容器本体6
0としてのX線入射窓部61での気密性については、ア
ルミニウム合金の゛)一体物で作っているので、容器内
のキセノンガスが外部へ漏れ出し、内圧が低下すること
はない。
Therefore, the overall transmittance of the X-ray entrance window in this example is 92% of the product of 97% of the aluminum alloy with a thickness of 0 and 5 mm and 95% of the carbon fiber reinforced resin with a thickness of 2 mm. The attenuation is 14% lower than the transmittance of 78% for the four-layered lens. In addition, the container body 6
Regarding the airtightness at the X-ray entrance window 61, since it is made of a single piece of aluminum alloy, the xenon gas inside the container will not leak to the outside and the internal pressure will not drop.

第2図(a)、(b)に他の実施例の電離箱形放射線検
出器の容器本体を示す。
FIGS. 2(a) and 2(b) show a container body of an ionization chamber-type radiation detector according to another embodiment.

第2図(a)、(b)において、容器本体7゜は、前記
第1図の実施例の容器本体60とほぼ似た形状であり、
アルミニウム合金等からなっている。X線入射窓部61
も0.51厚と薄くしているが、窓の上下の幅を各2m
mずつ、第1図の実施例より広くとっている。
In FIGS. 2(a) and 2(b), the container body 7° has a shape substantially similar to the container body 60 of the embodiment shown in FIG.
Made of aluminum alloy, etc. X-ray entrance window 61
The width of the top and bottom of the window is 2m each.
m, which is wider than the embodiment shown in FIG.

炭素繊維強化樹脂72は、2mm厚であり、第2図(b
)に示す形状とし、容器本体70のX線入射窓部71と
嵌合するように、あらかじめ成形しておく。炭素繊維強
化樹脂72の繊維方向性と配列も、前記実施例と同様で
ある。炭素繊維強化樹脂72の成形時、加圧時の応力集
中を避けるため、角に丸みを持たせるようにする。容器
本体70の機械加工では、これと同一の丸みとなるよう
、エンドミルのコーナーの丸みのあるもので、加工し、
隙間ができないようにする。容器本体70と炭素繊維強
化樹脂72の接着は、前述した方法と同様にして行う。
The carbon fiber reinforced resin 72 has a thickness of 2 mm, as shown in FIG.
), and is preformed so as to fit into the X-ray entrance window 71 of the container body 70. The fiber orientation and arrangement of the carbon fiber reinforced resin 72 are also the same as in the previous embodiment. When molding the carbon fiber reinforced resin 72, the corners are rounded to avoid stress concentration during pressurization. In machining the container body 70, use an end mill with rounded corners to achieve the same roundness.
Make sure there are no gaps. The container body 70 and the carbon fiber reinforced resin 72 are bonded together in the same manner as described above.

容器本体70をこのような構造とすることにより、気密
性を保ちつつ、X線透過率の優れた電離箱形放射線検出
器を実現できる。
By making the container body 70 have such a structure, it is possible to realize an ionization box-type radiation detector with excellent X-ray transmittance while maintaining airtightness.

さらに、図示しないが、第1図(a)、(b)と、第2
図(a)、(b)の複合構造も可能である。このときは
、アルミニウム合金製X線入射窓部(0、5mm厚)の
内側と外側に各々1mm厚の炭素繊維強化樹脂で、サン
ドウィッチ構造とすることにより、他の実施例と同じよ
うにX線入射窓部のX線透過率を保ち、補強するもので
ある。この構造は、容器本体が3点の部品で構成(他は
2点)されるが、アルミニウム合金を補強する方法とし
ては、強度的に最も優れている。
Furthermore, although not shown, FIGS. 1(a) and (b) and the second
Composite structures as shown in Figures (a) and (b) are also possible. At this time, by creating a sandwich structure with 1 mm thick carbon fiber reinforced resin on the inside and outside of the aluminum alloy X-ray entrance window (0 and 5 mm thick), X-ray This is to maintain and strengthen the X-ray transmittance of the entrance window. In this structure, the container body is made up of three parts (the other parts are two parts), but it is the most superior method for reinforcing aluminum alloy in terms of strength.

以上、本発明を実施例にもとすき具体的に説明したが、
本発明は、前記実施例に限定されるものではな・く、そ
の要旨を逸脱しない範囲において種々変更可能であるこ
とは言うまでもない。
The present invention has been specifically explained above using examples, but
It goes without saying that the present invention is not limited to the embodiments described above, and can be modified in various ways without departing from the spirit thereof.

例えば、容器本体のX線入射窓部を0.5mm厚、炭素
繊維強化樹脂を211II11厚としたが、本発明は、
これにこだわらず、他の厚みの組み合せにも適用し得る
ことは勿論である。
For example, the X-ray entrance window of the container body was made to have a thickness of 0.5 mm, and the carbon fiber reinforced resin was made to have a thickness of 211II11, but the present invention
Of course, the present invention is not limited to this, and can be applied to other thickness combinations.

〔効果〕 以上説明したように、本発明によれば、容器本体が、ア
ルミニウム合金製の電離箱形放射線検出器に比較して、
X線利用効率の高い電離箱形放射線検出器を実現できる
[Effects] As explained above, according to the present invention, the container body has
An ionization chamber-type radiation detector with high X-ray utilization efficiency can be realized.

これにより、同じ線量のX線入力に対して大きな出力電
流が得られ、電離箱形放射線検出器のSN比が向上する
ため、濃度分解能に優れたX線01画像が得られる。
As a result, a large output current can be obtained for the same dose of X-ray input, and the S/N ratio of the ionization chamber radiation detector is improved, so that an X-ray 01 image with excellent concentration resolution can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、(b)は、本発明の一実施例の電離箱形
放射線検出器の容器本体の構成を示す図であり、(a)
はその断面図、(b)はその斜視図。 第2図(a)、(b)は、本発明の他の実施例の電離箱
形放射線検出器の容器本体の構成を示す図であり、(a
)はその断面図、(b)はその斜視図図、 第3図は、電離箱形放射線検出器の従来例の全11一 体の斜視図、 第4図は、第3図の電離箱形放射線検出器の断面図、 第5図は、第3図の電離箱形放射線検出器の加圧時の容
器の変形を示す断面図、 第6図は、素材の厚みとX線透過率の関係を示す図であ
る。 図中、60.70−・・容器本体、61.71−X線入
射窓部、62.72・・・補強用炭素繊維強化樹脂であ
る。
FIGS. 1(a) and 1(b) are diagrams showing the configuration of a container body of an ionization chamber-type radiation detector according to an embodiment of the present invention;
is its sectional view, and (b) is its perspective view. FIGS. 2(a) and 2(b) are diagrams showing the structure of the container body of an ionization chamber-type radiation detector according to another embodiment of the present invention;
) is its cross-sectional view, (b) is its perspective view, Figure 3 is a perspective view of all 11 units of the conventional ionization chamber type radiation detector, and Figure 4 is the ionization chamber type radiation detector of Figure 3. A cross-sectional view of the detector; Figure 5 is a cross-sectional view showing the deformation of the container during pressurization of the ionization chamber radiation detector shown in Figure 3; Figure 6 shows the relationship between material thickness and X-ray transmittance. FIG. In the figure, 60.70--container body, 61.71-X-ray entrance window section, 62.72--carbon fiber reinforced resin for reinforcement.

Claims (5)

【特許請求の範囲】[Claims] (1)放射線入射窓が形成された箱形の容器本体に蓋を
被せて密閉空間を形成し、該密閉空間内に電極板アセン
ブリーを収納してなる電離箱形放射線検出器において、
前記容器本体と放射線入射窓部を加工しやすく、機械的
に強固な金属で一体に構成し、該放射線入射窓部を薄く
形成し、その放射線入射窓部を炭素繊維強化樹脂で補強
してなることを特徴とする電離箱形放射線検出器。
(1) In an ionization box-type radiation detector in which a lid is placed on a box-shaped container body in which a radiation entrance window is formed to form a sealed space, and an electrode plate assembly is housed within the sealed space,
The container body and the radiation entrance window are integrally made of mechanically strong metal that is easy to process, the radiation entrance window is formed thin, and the radiation entrance window is reinforced with carbon fiber reinforced resin. An ionization chamber type radiation detector characterized by:
(2)前記容器本体を、アルミニウム合金で構成したこ
とを特徴とする特許請求の範囲第1項記載の電離箱形放
射線検出器。
(2) The ionization box-type radiation detector according to claim 1, wherein the container body is made of an aluminum alloy.
(3)前記放射線入射窓部を、その内側から炭素繊維強
化樹脂で補強した構造であることを特徴とする特許請求
の範囲第1項記載の電離箱形放射線検出器。
(3) The ionization box-type radiation detector according to claim 1, wherein the radiation entrance window portion is reinforced with carbon fiber reinforced resin from the inside thereof.
(4)前記放射線入射窓部を、その外側から炭素繊維強
化樹脂で補強した構造であることを特徴とする特許請求
の範囲第1項記載の電離箱形放射線検出器。
(4) The ionization box-type radiation detector according to claim 1, wherein the radiation entrance window portion is reinforced from the outside with carbon fiber reinforced resin.
(5)前記放射線入射窓部を、その内側と外側の両側か
ら炭素繊維強化樹脂でサンドウィッチにして補強した構
造であることを特徴とする特許請求の範囲第1項記載の
電離箱形放射線検出器。
(5) The ionization box-type radiation detector according to claim 1, characterized in that the radiation entrance window portion is reinforced by sandwiching it with carbon fiber reinforced resin from both the inside and outside thereof. .
JP20496785A 1985-09-17 1985-09-17 Ionization chamber type radiation detector Pending JPS6264041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20496785A JPS6264041A (en) 1985-09-17 1985-09-17 Ionization chamber type radiation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20496785A JPS6264041A (en) 1985-09-17 1985-09-17 Ionization chamber type radiation detector

Publications (1)

Publication Number Publication Date
JPS6264041A true JPS6264041A (en) 1987-03-20

Family

ID=16499262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20496785A Pending JPS6264041A (en) 1985-09-17 1985-09-17 Ionization chamber type radiation detector

Country Status (1)

Country Link
JP (1) JPS6264041A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005257598A (en) * 2004-03-15 2005-09-22 Kawasaki Heavy Ind Ltd X-ray ion chamber detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005257598A (en) * 2004-03-15 2005-09-22 Kawasaki Heavy Ind Ltd X-ray ion chamber detector
JP4498779B2 (en) * 2004-03-15 2010-07-07 川崎重工業株式会社 X-ray ion chamber detector and X-ray detector

Similar Documents

Publication Publication Date Title
US10823861B2 (en) Large-area detector apparatus for photosensor, radiation detector, and medical pet scanner applications
JP2012073186A (en) Electronic cassette for radiography
US3975639A (en) Particle localization detector
JPS6264041A (en) Ionization chamber type radiation detector
CN207781529U (en) Multifocal X-ray tube and multiple focal spot x-ray source
CA2117325C (en) Gas proportional scintillation counter for ionizing radiation with medium and large size radiation windows and/or detection volumes
CN111678464B (en) Design and preparation process for thickness measurement source of industrial instrument
JPH0769462B2 (en) Radiation shielding structure
EP0127074B1 (en) Radiation detector
US4870473A (en) X-ray image intensifier having a support ring that prevents implosion
JPS5816742B2 (en) image intensifier
EP1120795A1 (en) Laminated lightweight radiation shielding materials
US4855587A (en) X-ray image intensifier tube with carbon-reinforced plastic foil entrance window
US7263169B2 (en) X-ray computed tomography apparatus with beam-gating diaphragm
JPH06111758A (en) Ionization chamber type x-ray sensor
Lindqvist et al. Inner Bremsstrahlung from A 37
JPH05299044A (en) Image intensifier
JPS6013300A (en) Window for electron ray
JPS6224174A (en) Radiation detector
JP4498779B2 (en) X-ray ion chamber detector and X-ray detector
US12025760B2 (en) Radiation imaging apparatus and radiation imaging system
JP7199944B2 (en) radiography equipment
CN116604488A (en) Large-size crystal block screen attaching method
JPS58128642A (en) Vacuum tube
Wilkerson et al. SIGHT: a balloon hard X-ray telescope