JPS6263854A - Ultrasonic inspecting device - Google Patents

Ultrasonic inspecting device

Info

Publication number
JPS6263854A
JPS6263854A JP60203702A JP20370285A JPS6263854A JP S6263854 A JPS6263854 A JP S6263854A JP 60203702 A JP60203702 A JP 60203702A JP 20370285 A JP20370285 A JP 20370285A JP S6263854 A JPS6263854 A JP S6263854A
Authority
JP
Japan
Prior art keywords
solution
cell
measurement solution
measuring
measuring solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60203702A
Other languages
Japanese (ja)
Inventor
Nobuaki Iehisa
信明 家久
Masami Kawabuchi
川淵 正己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60203702A priority Critical patent/JPS6263854A/en
Publication of JPS6263854A publication Critical patent/JPS6263854A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make disassembling work of a measuring system unnecessary and to execute efficiently an inspection by executing works such as discharge and cleaning of measuring solution in a measuring solution block cell of a measuring solution cell, and the supply of measuring solution, etc., by driving a liquid feed pump. CONSTITUTION:A measuring solution cell 2 is formed by an irradiation ultrasonic propagation medium 9 so that a leaked surface acoustic wave is propagated, and also by using a material having the same acoustic impedance as that of this irradiation ultrasonic propagation medium 9, or its similar one. Also, a measuring solution block cell 2 for filling, measuring solution 16 to be compared with reference solution 10 is opened to the outside and provided, and a liquid feed pump 13 is made to communicate to this measuring solution block cell 2. Accordingly, when exchanging the measuring solution 16, works such as discharge, cleaning, supply, etc. of the measuring solution 16 from the measuring solution block cell 2 after inspection can be executed without touching a measuring system.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、超音波を利用して溶液及び溶液中に含まれる
微粒子の弾性的特性や形状、寸法等を測定することによ
り溶液や溶液中微粒子の特徴を検査する超音波検査装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention utilizes ultrasonic waves to measure elastic properties, shapes, dimensions, etc. of solutions and fine particles contained in solutions. The present invention relates to an ultrasonic inspection device for inspecting characteristics.

従来の技術 最近、超音波を利用して溶液の弾性的特性を測定し、溶
液や溶液中に含まれる微粒子の特徴を検査する方法が提
案され、溶液の種類及び濃度等を測定する方法として利
用されるようになって来た。
Conventional technology Recently, a method has been proposed that uses ultrasound to measure the elastic properties of a solution and inspect the characteristics of the solution and the particles contained in the solution.This method is used as a method to measure the type and concentration of the solution. It has come to be.

例えばジャーナルオブケミカルフィジノクス; J C
hem Phys (RGarnsey and RJ
 Boevol 50 No 12 P 5222,1
969)及び電子通信学会技報(塩用祥子他、VS84
−5 、1984>に記載されているように、測定溶液
中を伝搬する超音波の伝搬速度を正確に測定し、その伝
搬速度から溶液の特徴を検査する。
For example, Journal of Chemical Physics; J.C.
hem Phys (RGarnsey and RJ
Boevol 50 No 12 P 5222,1
969) and Technical Report of the Institute of Electronics and Communication Engineers (Shoko Shioyo et al., VS84)
-5, 1984>, the propagation speed of ultrasonic waves propagating in a measurement solution is accurately measured, and the characteristics of the solution are examined from the propagation speed.

以下、第3図及び第4図を参照して従来の超音波検査装
置について説明する。第3図は平面図、第4図は第3図
のIV−IV矢視断面図である1、第3図及び第4図に
おいて、101は圧電基板、102は測定溶液セル、1
03は参照溶液セルで、各セル102.103はシリコ
ンラバー製の周壁104と圧電基板101との間にOリ
ングよりなるシール材105が介在され、周壁104上
にガラス製の反射板106が設けられている。測定溶液
セル102内には測定溶液107が満たされ、参照溶液
セル103内には参照溶液10Bが満たされている。1
09は圧電基板101上で測定溶液側と参照溶液側に設
けられた送信用IDT (IntorDigital 
 Transducer)、110は送信用IDT]、
09を励振するだめの発振器、111は送信用IDTl
l0の反対側において圧電基板+01上で測定溶液側と
参照溶液側に設けられた受信用IDT、112は測定溶
液側出力信号、113は参照溶液側出力信号、114は
測定溶液側出力信号112と参照溶液側出力信号113
の位相検出装置、115は位相検出装置114より得ら
れる位相差信号である。
Hereinafter, a conventional ultrasonic inspection apparatus will be explained with reference to FIGS. 3 and 4. 3 is a plan view, and FIG. 4 is a sectional view taken along the line IV-IV in FIG.
03 is a reference solution cell, and each cell 102 and 103 has a sealing material 105 made of an O-ring interposed between a peripheral wall 104 made of silicon rubber and a piezoelectric substrate 101, and a reflection plate 106 made of glass is provided on the peripheral wall 104. It is being The measurement solution cell 102 is filled with a measurement solution 107, and the reference solution cell 103 is filled with a reference solution 10B. 1
09 is a transmitting IDT (IntorDigital) provided on the measurement solution side and reference solution side on the piezoelectric substrate 101.
Transducer), 110 is a transmission IDT],
An oscillator for exciting 09, 111 is a transmitting IDTl
On the opposite side of l0, reception IDTs are provided on the measurement solution side and the reference solution side on the piezoelectric substrate +01, 112 is the measurement solution side output signal, 113 is the reference solution side output signal, and 114 is the measurement solution side output signal 112. Reference solution side output signal 113
The phase detection device 115 is a phase difference signal obtained from the phase detection device 114.

次に上記従来例の動作について説明する。各送信用ID
T+09を発振器110により連続波で同時に励振する
と、各送信用IDTl09から弾性表面波Aが発生し、
圧電基板1O10表面近傍を伝搬する。このときシリコ
ンラバーM周壁1o4とOリングであるシール材105
により弾性表面波Aが外部−2伝搬するのを規制するこ
とができる。
Next, the operation of the above conventional example will be explained. ID for each transmission
When T+09 is simultaneously excited with continuous waves by the oscillator 110, surface acoustic waves A are generated from each transmitting IDTl09,
It propagates near the surface of the piezoelectric substrate 1O10. At this time, the silicon rubber M peripheral wall 1o4 and the sealing material 105 which is an O-ring
This makes it possible to restrict the propagation of the surface acoustic wave A to the outside -2.

弾性表面波Aはシール材105の部分を通過すると、圧
電基板101と接して負荷され、各セル102.103
に満たされた測定溶液107、参照溶液108中に洩れ
弾性表面波と12で放射され、溶液107.108中を
伝搬する液中超音波A1、A2となる。液中超音波AI
、A2はガラス製反射板106によ)反射され、測定溶
液107側、参照溶液108側の受信用II)TllN
に到達し、受信電圧出力信号1m2.113が発生する
。ここで、液中超音波A1、A2の伝搬路は測定溶液1
07側、参照溶液108側共に等i〜いので、測定溶液
107と参照溶液+08の超音波伝搬速度に差がちれば
、測定溶液107側、参照溶液108側の受信用IDT
IIIに到達する各々の液中超音波A1、A2に時間差
が生じる。従って各受信用IDTII+から発生する出
力信号112.113間に位相差が生じる。この位相差
を位相検出装置114により検出すれば、測定溶液10
7と参照溶液108との超音波伝搬速度差を求めること
ができる。而して参照溶液108の絶対超音波伝搬速度
が既知であるので、測定溶液107の絶対超音波伝搬速
度を知ることができ、この伝搬速度から測定溶液107
の濃度や測定溶液中の微粒子の濃度、形状及び材質等の
特徴を検査することができる。
When the surface acoustic wave A passes through the sealing material 105, it comes into contact with the piezoelectric substrate 101 and is loaded, causing each cell 102, 103
The leakage surface acoustic waves 12 are radiated into the measurement solution 107 and the reference solution 108 filled with water, and become in-liquid ultrasonic waves A1 and A2 that propagate in the solutions 107 and 108. Liquid ultrasound AI
, A2) are reflected by the glass reflection plate 106, and are received by the measuring solution 107 side and the reference solution 108 side II) TllN
, and a received voltage output signal 1m2.113 is generated. Here, the propagation path of the in-liquid ultrasonic waves A1 and A2 is the measurement solution 1
Since both the 07 side and the reference solution 108 side are equal, if there is a difference in the ultrasonic propagation speed between the measurement solution 107 and the reference solution +08, the reception IDT on the measurement solution 107 side and the reference solution 108 side
A time difference occurs between the in-liquid ultrasonic waves A1 and A2 that reach III. Therefore, a phase difference occurs between the output signals 112 and 113 generated from each receiving IDTII+. If this phase difference is detected by the phase detection device 114, the measurement solution 10
7 and the reference solution 108 can be determined. Since the absolute ultrasonic propagation velocity of the reference solution 108 is known, the absolute ultrasonic propagation velocity of the measurement solution 107 can be known, and from this propagation velocity the measurement solution 107
It is possible to inspect characteristics such as the concentration of microparticles in the measurement solution, the concentration of particles in the measurement solution, their shape and material.

発明が解決しようとする問題薇 しかし、上記従来例の構成では、測定溶液107を交換
する場合、測定溶液セル102中の測定溶液+07の排
出、測定溶液セル102の洗浄、及び新たな測定溶液1
07の注入等の作業を行う場合、超音波の伝搬路を規定
するガラス製反射板106を取り外す等、液中超音波A
1、A2の伝搬路を規制する測定系の一部を分解しなけ
ればならなかった。このように測定溶液107を交換す
る度に測定系を調整し直さなければならず、測定作業に
多大な時間と労力とを要し2、効率的な検査を行うこと
ができない等の問題点かあっグこ。
Problems to be Solved by the Invention However, in the configuration of the conventional example described above, when replacing the measurement solution 107, it is necessary to drain the measurement solution +07 in the measurement solution cell 102, clean the measurement solution cell 102, and add a new measurement solution 1.
When performing work such as injection of ultrasonic wave A in liquid, remove the glass reflection plate 106 that defines the ultrasonic propagation path.
1. Part of the measurement system that regulates the propagation path of A2 had to be disassembled. In this way, each time the measurement solution 107 is replaced, the measurement system must be readjusted, which requires a great deal of time and effort for the measurement work, and there are other problems such as the inability to perform efficient inspections. Ah gukko.

そこで、本発明は、従来構成の以上のような問題点を解
決するもので、測定溶液の交換を容易に、しかも短時間
に行うことができ、効率よく検査することができるよう
にした超音波検査装置を提供しようとするものである。
Therefore, the present invention solves the above-mentioned problems of the conventional configuration.The present invention is an ultrasonic technology that enables the measurement solution to be exchanged easily and in a short time, and enables efficient inspection. The purpose is to provide an inspection device.

問題点を解決するための手段 そして上記問題点を解決する/とめの本発明の技術的な
手段は、洩れ弾性表面波が伝搬するように照射超音波伝
搬・媒体を封入する空間、この照射超音波伝搬媒体と同
じ、若しくはそれに近い音響インピーダンスを有する材
料により形成され、8照溶液と比較するだめの測定溶液
を満たす測定溶液区画セルを有し、この測定溶液区画セ
ルの流入に1と流出口が外部に開放された測定溶液セル
と、上記測定溶液区画セルの流入口に連通された送液ポ
ンプを備えたものである。
Means for solving the problems and the technical means of the present invention for solving the above-mentioned problems are as follows: A space for enclosing an irradiated ultrasonic wave propagation/medium so that leaky surface acoustic waves propagate; It has a measurement solution compartment cell made of a material having an acoustic impedance equal to or close to that of the sound wave propagation medium and filled with a measurement solution to be compared with the 8-irradiation solution, and an inlet and an outlet of the measurement solution compartment cell. The measuring solution cell is equipped with a measuring solution cell that is open to the outside, and a liquid feeding pump that is connected to an inlet of the measuring solution compartment cell.

作用 本発明は−」二記構成により、測定溶液セルの測定溶液
区画セル中の測定溶液の排出、測定溶液区画セルの洗浄
、及び測定溶液区画セルへの新たな測定溶液の供給等の
作業を送液ポンプの、駆動により行うことができ、従っ
て測定系を分解する必要がなく、測定溶液の交換を容易
に、しかも短時間に行うことができ、効率よく検査する
ことができる。
Effects of the present invention The present invention has the configuration described in the following two sections to perform operations such as discharging the measurement solution in the measurement solution compartment cell of the measurement solution cell, cleaning the measurement solution compartment cell, and supplying new measurement solution to the measurement solution compartment cell. This can be carried out by driving a liquid pump, so there is no need to disassemble the measurement system, and the measurement solution can be exchanged easily and in a short time, allowing for efficient testing.

実施例 以下、図面を参照しながら本発明の実施例について説明
する。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例における超音波検査装置を示
す平面図、第2図は第1図の■−■矢視断面図である。
FIG. 1 is a plan view showing an ultrasonic inspection apparatus according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along the line -■ in FIG.

第1図及び第2図【おいて、■は圧電基板、2は測定溶
液セル、3は参照溶液セルで、各セル2.3はシリコン
ラバー製の周壁4と圧電基板1との間にOリングよりな
るシール材5が介在され、周壁4上にガラス製の反射板
6が設けられている。測定溶液セル2は反射板6の内面
に沿って測定溶液区画セルフが貫通され、流入口と流出
口が外部に開放されている。この測定溶液区画セルフは
外径1朋、内径0.86mmの管状に形成され、ポリメ
チルベンゾンをベースとしたポリオレフィンの他、ヌ゛
フロン、ポリカーボネート、ポリエチレン、ポリプロピ
レン、ポリスチレン、エポキシ樹脂等、後述する照射超
音波伝搬媒体9と同じ、若しくはそれに近い音響インピ
ーダンスを有する材料により形成されている。測定溶液
セル2内における測定溶液区画セルフと分離された空間
8は純水である照射超音波伝搬媒体9で満たされ、参照
溶液セル3内は純水である参照溶液10で満たされてい
る。11は測定溶液区画セルフの流入口に連結された送
液管、12は測定溶液区画セルフの流出口に連結された
排液管で、これら送液管II及び排液管12は測定溶液
区画セルフと同一材料により形成され、若しくはその他
、ゴム、金属等により形成されている。、13は送液管
11の途中に設けられた送液ポンプ、14は送液管11
の端部が挿入された測定溶液槽、15は排液管Ifの端
部が挿入された排液槽で、送液ポンプ13の駆動によシ
測定溶液槽14内の測定溶液I6が送液管11を経て測
定溶液区画セルフに供給され、測定溶液区画セルフが測
定溶液16で満たされるようになっている。17は圧電
基板1上で測定溶液槽14内と参照溶液lO側に設けら
れた送信用IDT、18は送信用IDT17を励磁する
ための発振器、19は送信用IDT17の反対側におい
て圧電基板1上で測定溶液I6側と参照溶液10側に設
けられた受信用IDT、20は測定溶液側出力信号、2
Iは参照溶液側出力信号、22は測定溶液側出力信号2
0と参照溶液側出力信号21の位相検出装置、23は位
相検出装置22より得られる位相差信号である。
In FIGS. 1 and 2, ■ is a piezoelectric substrate, 2 is a measurement solution cell, and 3 is a reference solution cell. A sealing material 5 made of a ring is interposed, and a reflection plate 6 made of glass is provided on the peripheral wall 4. In the measurement solution cell 2, a measurement solution compartment self is penetrated along the inner surface of the reflection plate 6, and an inlet and an outlet are opened to the outside. This measurement solution compartment self is formed into a tubular shape with an outer diameter of 1 mm and an inner diameter of 0.86 mm, and contains polyolefins based on polymethylbenzone, as well as NFC, polycarbonate, polyethylene, polypropylene, polystyrene, epoxy resin, etc. It is formed of a material having an acoustic impedance that is the same as or close to that of the irradiated ultrasound propagation medium 9. A space 8 in the measurement solution cell 2 that is separated from the measurement solution compartment self is filled with an irradiation ultrasound propagation medium 9 that is pure water, and the reference solution cell 3 is filled with a reference solution 10 that is pure water. 11 is a liquid feeding pipe connected to the inlet of the measuring solution compartment self, 12 is a draining pipe connected to the outflow port of the measuring solution compartment self, and these liquid feeding pipe II and the draining pipe 12 are connected to the measuring solution compartment self. It is made of the same material as, or made of other materials such as rubber or metal. , 13 is a liquid feeding pump provided in the middle of the liquid feeding pipe 11, and 14 is a liquid feeding pipe 11.
15 is a drain tank into which the end of the drain pipe If is inserted, and when the liquid pump 13 is driven, the measurement solution I6 in the measurement solution tank 14 is fed. The measuring solution compartment self is supplied via the tube 11 so that the measuring solution compartment self is filled with the measuring solution 16 . 17 is a transmitting IDT provided on the piezoelectric substrate 1 in the measuring solution tank 14 and the reference solution lO side; 18 is an oscillator for exciting the transmitting IDT 17; and 19 is a transmitting IDT provided on the piezoelectric substrate 1 on the opposite side of the transmitting IDT 17. 20 is a receiving IDT provided on the measurement solution I6 side and the reference solution 10 side, 20 is an output signal on the measurement solution side, 2
I is the reference solution side output signal, 22 is the measurement solution side output signal 2
0 and a phase detection device for the reference solution side output signal 21, and 23 is a phase difference signal obtained from the phase detection device 22.

次に上記実施例の動作について説明する。先ず、上記の
ようにポンプ13を、駆動し、測定溶液槽14内の測定
溶液16を送液管11を経て測定溶液区画セルフに供給
し、測定溶液区画セルフを測定溶液16により満たす。
Next, the operation of the above embodiment will be explained. First, the pump 13 is driven as described above, and the measuring solution 16 in the measuring solution tank 14 is supplied to the measuring solution compartment self through the liquid feeding pipe 11, so that the measuring solution compartment self is filled with the measuring solution 16.

次に各送信用IDT16を発振器17により所定の周波
数の連続波で同時に励振すると、各送信用IDT16か
ら弾性表面波Aが発生し、圧電基板1の表面近傍を伝搬
する。
Next, when each transmitting IDT 16 is simultaneously excited with a continuous wave of a predetermined frequency by the oscillator 17, a surface acoustic wave A is generated from each transmitting IDT 16 and propagates near the surface of the piezoelectric substrate 1.

このときシリコンラバー製周壁4とOリングであるシー
ル材5により弾性表面波Aが外部へ伝搬づるのを規制す
ることができる。弾性表面波Aは/−ル材5の部分を通
過すると、圧電基板1と接して負荷され、各セル2.3
に満たされた照射超音波伝搬媒体9、参照病10中に洩
れ弾性表面波として放射され、照射超音波伝搬媒体9、
参照溶液IO中を伝搬する液中超音波A1、A2となる
At this time, propagation of the surface acoustic waves A to the outside can be restricted by the silicon rubber peripheral wall 4 and the sealing material 5, which is an O-ring. When the surface acoustic wave A passes through the layer material 5, it comes into contact with the piezoelectric substrate 1 and is loaded, causing each cell 2.3 to
The irradiated ultrasonic propagation medium 9 filled with
The in-liquid ultrasound waves A1 and A2 propagate in the reference solution IO.

ここで、測定溶液セル2側では、集東された液中超音波
AIが測定溶液I6に測定溶液区画セルフを介して照射
される。測定溶液I6を伝搬・シ、A−液中超音波A1
はガラス製反射板6により反射さ杓、測定溶液側の受信
用XDT19に到達し、出力信号20が発生する。参照
溶液側では、液中超音波A2が参照溶液10中を伝搬し
、ガラス製反射板6により反射され、参照溶液側の受信
用ID′r19に到達し1、出力信号21が発生する。
Here, on the measurement solution cell 2 side, the focused in-liquid ultrasound AI is irradiated onto the measurement solution I6 via the measurement solution compartment self. Propagate measurement solution I6, A-Ultrasonic wave in liquid A1
is reflected by the glass reflector 6 and reaches the receiving XDT 19 on the measurement solution side, generating an output signal 20. On the reference solution side, the in-liquid ultrasonic wave A2 propagates through the reference solution 10, is reflected by the glass reflection plate 6, reaches the receiving ID'r 19 on the reference solution side, and an output signal 21 is generated.

−9ニジて液中超音波A1、A2の伝搬路は測″iii
溶液側、参照溶液側共に等しいので、測定溶液16と参
照溶液10との超音波伝搬速度の差は、上記出力1シ号
20,21の位相差を位相検出装置22により検出する
ことにより求めることができ、従って測定溶液16の濃
度や測定溶液中の微粒子の濃度、形状及び材質等の特徴
を検査することができる。
-9 The propagation paths of ultrasonic waves A1 and A2 in liquid are measured
Since both the solution side and the reference solution side are equal, the difference in ultrasonic propagation speed between the measurement solution 16 and the reference solution 10 can be found by detecting the phase difference between the output 1 signals 20 and 21 using the phase detection device 22. Therefore, characteristics such as the concentration of the measurement solution 16 and the concentration, shape, and material of the fine particles in the measurement solution can be inspected.

検査後、送液ポンプI3の駆動により洗浄液を送液管1
1より測定溶液区画セルフに供給し、排液管12より排
出することにより測定溶液区画セルフの洗浄を行うこと
ができる。洗浄後、上記と同様に新たな測定溶液16を
測定溶液区画セルフ内に供給することによりその特徴を
検査することができる。
After the inspection, the cleaning liquid is sent to the liquid feed pipe 1 by driving the liquid feed pump I3.
By supplying the measuring solution to the measuring solution compartment self from 1 and discharging it from the drain pipe 12, the measuring solution compartment self can be cleaned. After cleaning, fresh measuring solution 16 can be fed into the measuring solution compartment self to test its characteristics in the same manner as described above.

なお、以上の説明では、測定溶液区画セルフの中の測定
溶液16を静止状態で測定した場合について説明したが
、測定溶液16は送液ポンプ13を駆動し、順次新たな
測定溶液16を流しながら測定しても良い。
In the above explanation, the case where the measurement solution 16 in the measurement solution compartment self was measured in a stationary state was explained, but the measurement solution 16 is measured while driving the liquid feeding pump 13 and sequentially flowing new measurement solution 16. You can also measure it.

発明の効果 以上のように本発明によれば、測定溶液セルは洩れ弾性
表面波が伝搬するように照射超音波媒体を封入すると共
に、この照射超音波伝搬媒体と同じ、若しくはそれに近
い音響インピーダンスを有する材料により形成し6参照
溶液と比較するだめの測定溶液を満たす測定溶液区画セ
ルを外部に開放して設け、この測定溶液区画セルに送液
ポンプを連通させている。従って測定溶液の交換に際し
、検査後の測定溶液の測定溶液区画セルからの排出、測
定溶液区画セルの洗浄、及び新たな測定溶液の測定溶液
区画セルへの供給等の作業を測定系に触れることなく行
うことができ、その調整l−直し2作業を必要とぜず、
測定溶液の交換を容易に、しかも短時間で行うことがで
き、効率よく検査を行うことができる。
Effects of the Invention As described above, according to the present invention, the measurement solution cell encapsulates an irradiated ultrasonic medium so that leaky surface acoustic waves propagate, and has an acoustic impedance that is the same as or close to that of the irradiated ultrasonic propagation medium. A measuring solution compartment cell made of a material having a 6-reference solution and filled with a measurement solution to be compared is provided open to the outside, and a liquid feeding pump is communicated with the measuring solution compartment cell. Therefore, when replacing the measurement solution, operations such as draining the measurement solution from the measurement solution compartment cell after inspection, cleaning the measurement solution compartment cell, and supplying a new measurement solution to the measurement solution compartment cell should not be done by touching the measurement system. It can be done without any adjustment and no need for two adjustments.
The measurement solution can be exchanged easily and in a short time, and the test can be carried out efficiently.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の一実施例における超音波検
査装置を示し、第1図は平面図、第2図は第1図の■−
■矢視断面図、第3図及び第4図は従来の超音波検査装
置を示し、第3図は平面図、第4図は第3図のIV−I
V矢矢視斬新面図ある。 ■・・・圧電基板、2・・・測定溶液セル、3・・・参
照溶液セル、6・・・ガラス製反射板、7・・・測定溶
液区画セル、9・・・照射超音波伝搬媒体、10・・・
参照溶液、11・・・送液管、12・・・排液管、13
・・・送液ポンプ、14・・・測定溶液槽、16・・・
測定溶液、17・・・送信用IDT、18・・・発振器
、19・・・受信用IDT、22・・・位相検出装置。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第2
1 and 2 show an ultrasonic inspection apparatus according to an embodiment of the present invention, FIG. 1 is a plan view, and FIG. 2 is a
■A sectional view taken in the direction of arrows, Figures 3 and 4 show a conventional ultrasonic inspection device, Figure 3 is a plan view, and Figure 4 is IV-I in Figure 3.
There is a novel view of V. ■... Piezoelectric substrate, 2... Measurement solution cell, 3... Reference solution cell, 6... Glass reflector, 7... Measurement solution compartment cell, 9... Irradiation ultrasound propagation medium , 10...
Reference solution, 11... Liquid sending pipe, 12... Draining pipe, 13
...Liquid pump, 14...Measurement solution tank, 16...
Measurement solution, 17... IDT for transmission, 18... Oscillator, 19... IDT for reception, 22... Phase detection device. Name of agent: Patent attorney Toshio Nakao and 1 other person 2nd
figure

Claims (2)

【特許請求の範囲】[Claims] (1)洩れ弾性表面波が伝搬するように照射超音波伝搬
媒体を封入する空間、この照射超音波伝搬媒体と同じ、
若しくはそれに近い音響インピーダンスを有する材料に
より形成され、参照溶液と比較するための測定溶液を満
たす測定溶液区画セルを有し、この測定溶液区画セルの
流入口と流出口が外部に開放された測定溶液セルと、上
記測定溶液区画セルの流入口に連通された送液ポンプを
備えていることを特徴とする超音波検査装置。
(1) A space that encapsulates the irradiated ultrasound propagation medium so that the leaky surface acoustic waves propagate, the same as the irradiated ultrasound propagation medium;
or a material having an acoustic impedance close to that, and has a measurement solution compartment cell filled with a measurement solution for comparison with a reference solution, and the measurement solution compartment cell has an inlet and an outlet opened to the outside. An ultrasonic inspection device comprising: a cell; and a liquid feeding pump connected to an inlet of the measurement solution compartment cell.
(2)測定溶液区画セルが管状で、テフロン、ポリカー
ボネート、ポリエチレン、ポリプロピレン、ポリスチレ
ン、エポキシ樹脂、ポリメチルペンテンをベースとした
ポリオレフィンにより形成された特許請求の範囲第1項
記載の超音波検査装置。
(2) The ultrasonic testing device according to claim 1, wherein the measurement solution compartment cell is tubular and made of polyolefin based on Teflon, polycarbonate, polyethylene, polypropylene, polystyrene, epoxy resin, or polymethylpentene.
JP60203702A 1985-09-13 1985-09-13 Ultrasonic inspecting device Pending JPS6263854A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60203702A JPS6263854A (en) 1985-09-13 1985-09-13 Ultrasonic inspecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60203702A JPS6263854A (en) 1985-09-13 1985-09-13 Ultrasonic inspecting device

Publications (1)

Publication Number Publication Date
JPS6263854A true JPS6263854A (en) 1987-03-20

Family

ID=16478433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60203702A Pending JPS6263854A (en) 1985-09-13 1985-09-13 Ultrasonic inspecting device

Country Status (1)

Country Link
JP (1) JPS6263854A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006258766A (en) * 2005-03-18 2006-09-28 Japan Radio Co Ltd Elastic wave sensor
JP2008256485A (en) * 2007-04-04 2008-10-23 Ebara Corp Device for detecting gas component
CN108120771A (en) * 2017-12-26 2018-06-05 北京有色金属研究总院 Reference block and preparation method for ultrasound detection microstructure of composite uniformity

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006258766A (en) * 2005-03-18 2006-09-28 Japan Radio Co Ltd Elastic wave sensor
JP2008256485A (en) * 2007-04-04 2008-10-23 Ebara Corp Device for detecting gas component
CN108120771A (en) * 2017-12-26 2018-06-05 北京有色金属研究总院 Reference block and preparation method for ultrasound detection microstructure of composite uniformity

Similar Documents

Publication Publication Date Title
JP2002520584A (en) Induction mode flow measurement system
CN202974353U (en) System and device for providing uniform fluid temperature in ultrasonic flowmeter
US2751783A (en) Apparatus for coupling ultrasonic waves
KR100706561B1 (en) Method and device for operating a microacoustic sensor array
CN106153132B (en) Lamb wave-based non-contact fluid flow measurement system and method
JPS6263854A (en) Ultrasonic inspecting device
CN106461436B (en) Ultrasonic flowmeter
Andle et al. An acoustic plate mode immunosensor
Goto et al. Point-of-care SH-SAW biosensor
Eren Accuracy in real time ultrasonic applications and transit-time flow meters
JPH06117894A (en) Ultrasonic flowmeter
Cheeke et al. Observation of flexural Lamb waves (A mode) on water-filled cylindrical shells
US20150355004A1 (en) Ultrasonic flowmeter and ultrasonic flowmeter attaching method
KR100966543B1 (en) Ultrasonic evaluation system for internal deposit layer in a pipe
JP3709559B2 (en) Dry contact high frequency ultrasonic transmission method and apparatus therefor, and dry contact high frequency ultrasonic inspection method and apparatus therefor
CN112903047B (en) Clamping type ultrasonic flow sensor
US11745177B2 (en) Ultrasound lysing of whole blood
US11221244B2 (en) Clamp-on circumferential resonance ultrasonic flowmeter for collectively exciting and receiving circumferential modes of a pipe
JPH08117711A (en) Cleaning device
JPH11183235A (en) Method and device for detecting gas layer in pipe using ultrasonic wave
Goto et al. Numerical analysis of liquid-phase SH-SAW biosensor on quartz
Nagy et al. A novel technique for interface wave generation
JPH07229876A (en) Identification of gas in conduit by sonic wave
RU2040789C1 (en) Method of measurement of physical parameters of substance
JPH0259661A (en) Ultrasonic probe