JPS6263804A - Linear light projecting device - Google Patents

Linear light projecting device

Info

Publication number
JPS6263804A
JPS6263804A JP20393185A JP20393185A JPS6263804A JP S6263804 A JPS6263804 A JP S6263804A JP 20393185 A JP20393185 A JP 20393185A JP 20393185 A JP20393185 A JP 20393185A JP S6263804 A JPS6263804 A JP S6263804A
Authority
JP
Japan
Prior art keywords
light
plane
linear
light source
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20393185A
Other languages
Japanese (ja)
Other versions
JPH0554881B2 (en
Inventor
Takashi Yoshimi
隆 吉見
Masaki Oshima
大島 正毅
Yoshiaki Shirai
良明 白井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP20393185A priority Critical patent/JPS6263804A/en
Publication of JPS6263804A publication Critical patent/JPS6263804A/en
Publication of JPH0554881B2 publication Critical patent/JPH0554881B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

PURPOSE:To project a linear beam of light to an optional space by providing plural light sources for radiating plural linear beams of light which converge to one point on a plane and have width in the direction vertical to the plane, and a rotary plane mirror whose shaft vertical to the plane is a revolving shaft at the convergent point, on one plane. CONSTITUTION:On a periphery C centering around a shaft 4 on a plane vertical to a revolving shaft 4 of a rotary plane mirror 3, plural pieces of light source bodies 1 which have combined a semiconductor laser and a columnar lens are placed at an equal interval. In this state, a band-shaped linear light 2 having a prescribed length is radiated in the direction vertical to the plane containing the periphery C, toward the shaft 4 from light source body 1. Next, the linear light 2 is projected onto an object to be measured 5 by controlling the mirror 3 by a galvanomotor. The light source body 1 is flickered in accordance with a code generated by an electronic circuit, inputs an image from a TV camera 6 and calculates a distance of a point on the object 5 to be measured, and measures a shape of the object 5.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、複数の線条光を指向する空間に向けて同時
に走査し投影する装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a device that simultaneously scans and projects a plurality of linear lights toward a directed space.

〔従来の技術〕[Conventional technology]

従来、符号化された格子を投影する方式には次に示す2
種類の方式があった。第1の方式は、符号化した格子の
パターンをあらかじめ複数枚のスライドフィルム上に作
製しておき、それを交換しながら1台のスライド映写機
によって物体表面に投影する方式である。(M 、M 
1nou、 T 、 K anadeancl  T 
、S  akai:   “A   Method o
f  T  ime−CodedP arallel 
P 1anes of L ight for D e
pth Mea−suresient” 、 Tran
、 I E CE of J apan、 E64゜N
o、8. pp521−528)。
Conventionally, the following two methods have been used to project encoded grids.
There were different methods. The first method is to prepare encoded grid patterns on a plurality of slide films in advance, and project them onto the surface of an object using a single slide projector while exchanging them. (M, M
1nou, T, Kanadeancl T
, Sakai: “A Method o
f Time-CodedP arallel
P 1anes of Light for D e
pth Mea-suresient”, Tran
, I E CE of Japan, E64°N
o, 8. pp521-528).

第2の方式は、偏光等を利用した光シヤツタ素子(例え
ば(P b 、 L a)(Z’r 、 T i )0
3透明磁器)で投影する光のパターンを変丸で符号化格
子を投影する方法であろ(上田、松本:″時系列符精度
が低く投影地点にずれが生じる欠点をも匪仝いた。
The second method uses an optical shutter element (for example, (P b , L a ) (Z'r , T i )0
The method of projecting a coded lattice using irregular circles to project the light pattern on transparent porcelain (Ueda, Matsumoto: ``It also overcomes the drawbacks of low time-series marking accuracy and deviations in projection points.

一方、光シャ・ツタ素子を用いる方式では、爵)牌で線
条光の点滅が可能であり、位置ずれもない。
On the other hand, in the system using the optical shutter element, it is possible to flash the striped light on the tile, and there is no positional shift.

しかし、この方式は光シヤツタ素子を駆動するために数
百ボルトの電圧を必要とし、電源回路等が大きくなる。
However, this method requires a voltage of several hundred volts to drive the optical shutter element, which increases the size of the power supply circuit.

光源に関しては第5図に示すようにいずれの方式でも単
一の光源7から出た光を、スライドや光シヤツタ素子等
の遮蔽板8の透孔8aに透過させたものを線条光2とす
るため、必然的に光源7の放射した光束のうち大部分が
無駄になり、ごくわずかな部分だけが線条光2として投
影される。
As for the light source, as shown in Fig. 5, in either method, the light emitted from a single light source 7 is transmitted through a through hole 8a of a shielding plate 8 such as a slide or a light shutter element, and is called linear light 2. Therefore, most of the luminous flux emitted by the light source 7 is inevitably wasted, and only a small portion is projected as the linear light 2.

このため、投影された線条光2の強度を十分に大きくし
ようとすると、光源7は不必要に強力なもの(例えばI
KW程度のハロゲンランプのようなもの)を用意しなく
てはならず、この結果、光源7を駆動するための大容量
の電源装置や、無駄になったパワーから出た熱を冷却す
るための強力な冷却装置が必要になり、装置全体が大型
化してしまう。また、従来の光源7にはインコヒーレン
ト光源を用いていたため、十分に広い空間内で厚さtが
十分に薄い線条光2を得ることができなかっt:oこの
ため厚さtが広くなってそれを使った測定等に支障が生
じる。線条光2の厚さ【が大きくなると、計算の結果得
られた距離データが対応する物体上の点の位置の精度が
悪くなり、また、照射面積の増大ζζよって明るさが低
下してS/N比が悪化する。しか17、中古コヒーレン
ト光源Q−4F用は前述の高出力光源という理由から不
適当セーあ−る等の問題点があった。
Therefore, in order to make the intensity of the projected linear light 2 sufficiently large, the light source 7 must be unnecessarily strong (for example, I
As a result, a large-capacity power supply to drive the light source 7 and a large-capacity power supply to cool the heat generated from wasted power must be prepared. A powerful cooling device is required, which increases the size of the entire device. In addition, since an incoherent light source was used as the conventional light source 7, it was not possible to obtain the linear light 2 with a sufficiently thin thickness t in a sufficiently wide space. This may cause problems in measurements, etc. using it. As the thickness of the linear light 2 increases, the accuracy of the position of the point on the object to which the distance data obtained as a result of calculation corresponds becomes worse, and the brightness decreases due to the increase in the irradiation area ζζ. /N ratio deteriorates. However, the used coherent light source Q-4F had problems such as being unsuitable for the reason that it is a high output light source as mentioned above.

走査方式に関しては、従来の線条光2が1F−の1とき
の方式では線条光2を回転平面鏡によって走査していた
が、複数の線条光2を投影する場合には、従来は一般に
走査はせず、スライド上に測定空間全体のための格子を
作製したり、高密度の光シャッタ素子(例えば100本
〜256本)を用いてその本数分の空間分解能を得てい
た。従って、装置の空間分解能はスライドフィルムや光
シヤツタ素子等のハードウェアに依存し、融通性に乏し
かった。
Regarding the scanning method, in the conventional method when the linear light 2 is 1F-1, the linear light 2 is scanned by a rotating plane mirror, but when projecting a plurality of linear lights 2, conventionally Instead of scanning, a grid for the entire measurement space was created on the slide, or a high-density optical shutter element (for example, 100 to 256 elements) was used to obtain the spatial resolution corresponding to the number of shutter elements. Therefore, the spatial resolution of the device depends on hardware such as slide films and optical shutter elements, and flexibility is lacking.

この発明は上記の問題点を解決するためになされたもの
で、十分な光出力が得られ、必要に応じた走査の構成を
ソフトウェアで自由に得られる線条光投影装置を得るこ
とを目的とする。
This invention was made in order to solve the above-mentioned problems, and its purpose is to provide a linear light projection device that can obtain sufficient light output and can freely configure scanning configurations as needed using software. do.

〔問題点を解決するための手段〕[Means for solving problems]

この発明にかかる線条光投影装置は、一平面内にその平
面内の一点に向けてその平面に対して垂直な平面をなす
線条光を放射する複数の光源と、前記一点に置かれた回
転軸が、前記平面に対して垂直な回転平面鏡と、各線状
光の識別手段とを具備したものである。
A linear light projection device according to the present invention includes a plurality of light sources that emit linear light in a plane perpendicular to the plane toward one point within the plane, and a plurality of light sources placed at the one point. The device includes a rotating plane mirror whose rotating shaft is perpendicular to the plane, and means for identifying each linear light beam.

〔作用〕[Effect]

この発明においては、複数の光源から出た線条光が回転
平面鏡によって反射され、任意の方向に放射され、これ
が識別手段によりm別される。
In this invention, the linear lights emitted from a plurality of light sources are reflected by a rotating plane mirror and radiated in an arbitrary direction, and are classified into m by the identification means.

〔実施例〕〔Example〕

まず、発明の原理を第1図に示す。IA、1B。 First, the principle of the invention is shown in FIG. IA, 1B.

1C,・・・ばそれぞれ独立に紙面と平行な線条光2A
!−281,2C1を出射している光源で、紙面上にい
ずれも配置されており、かつ線条光2A!。
1C,... are each independently parallel to the paper surface 2A
! A light source that emits -281 and 2C1, both of which are arranged on the paper, and a linear light of 2A! .

2Bt、2c1はいずれも一本の線で示されているるが
、これは厚みが薄いことを示しており紙面とA、IB、
ICは回転軸4の軸上の一点Pに向けて線条光2 A 
+−2B i−2CIを放射する。その結果、すべての
線条光2A1,2B1,2ctは回転平面鏡3の回転軸
4上の一点Pに収束して反射し1.あたかも回転平面鏡
30回転軸4上に複数の線条光2 A +−2B t−
2Ctの光源IA、1N3.ICが存在するように投影
される。さらに、回転平面鏡3を回転させると、各線条
光2AI、28つ、2C1は回転平面鏡3の回転角に従
った方向に指向性をもって投影される。第1図では、光
源1Aからの線条光2 A 1が回転軸4を通って線条
光2A2へ、同様に1Bから282へ、1Cから2Cg
へと投影されることを示している。
2Bt and 2c1 are both indicated by a single line, but this indicates that they are thin, and the paper and A, IB,
The IC emits a linear light 2A toward a point P on the axis of rotation 4.
Emit +-2B i-2CI. As a result, all the linear lights 2A1, 2B1, 2ct are converged and reflected at one point P on the rotation axis 4 of the rotating plane mirror 3.1. As if a plurality of linear lights 2 A + - 2 B t-
2Ct light source IA, 1N3. It is projected that an IC exists. Furthermore, when the rotating plane mirror 3 is rotated, each of the linear lights 2AI, 28, and 2C1 are projected with directionality in a direction according to the rotation angle of the rotating plane mirror 3. In FIG. 1, the linear light 2A1 from the light source 1A passes through the rotation axis 4 to the linear light 2A2, and similarly from 1B to 282, and from 1C to 2Cg.
It shows that it is projected to.

第2図はこの発明の一実施例を示すもので、物体形状を
高速に計測するための装置にこの発明を適用しt:もの
である。その動作原理を次に示す。
FIG. 2 shows an embodiment of the present invention, in which the present invention is applied to a device for measuring the shape of an object at high speed. Its operating principle is shown below.

まず、回転平面鏡3の回転軸4を中心とする円周C上に
線条光2の光源体1 (光源IA、IB。
First, light sources 1 (light sources IA, IB) of linear light 2 are arranged on a circumference C centered on the rotation axis 4 of the rotating plane mirror 3.

IC,・・・・の総称であり、各光源は半導体レーザと
円柱レンズを組み合わせたもの)を等間隔に配置し、回
転平面鏡3をガルバノモータで制御して被測定物体5上
に線条光2を投影ずろ。このとき光学系の配置は光#I
 A、I B、I C,・・・・・の間隔を大きくして
回転平面鏡3の1回の回転角を小さくしている。半導体
レーザを用いた光源体1は電子回路で生成される符号に
従って点滅する。それぞれの角度でそれぞれの符号に対
して識別手段としてのTVカメラ6から画像を入力し、
画像中のNI線の位置から三角lWI量の原理に従って
被測定物体5上の点の距離を計算する(特公昭50−3
6374号公報参照)。しかるのち得られた距離データ
をもとに被測定物体5の形状を測定するものである。
A general term for IC, etc., where each light source is a combination of a semiconductor laser and a cylindrical lens) are arranged at equal intervals, and a rotating plane mirror 3 is controlled by a galvano motor to emit a linear light onto the object to be measured 5. Project 2. At this time, the arrangement of the optical system is light #I
The intervals between A, IB, IC, . . . are increased to reduce the angle of rotation of the rotating plane mirror 3 once. A light source 1 using a semiconductor laser blinks according to a code generated by an electronic circuit. Input images from a TV camera 6 as an identification means for each code at each angle,
The distance of a point on the object to be measured 5 is calculated from the position of the NI line in the image according to the principle of triangular IWI amount (Japanese Patent Publication No. 50-3
(See Publication No. 6374). Thereafter, the shape of the object to be measured 5 is measured based on the obtained distance data.

複数の線条光2を使うのは測定時間を短縮するためであ
り、画像内の輝線と線条光2の光源体1(M、Mino
u、  T、Kanade and  T、5akai
:  ”AMethod  of  T ime−Co
ded  Parallel  P 1anes  o
fL ight  for  D epth  Mes
urement”  、  T ran、 I ECE
  of  J apan、  E84)  No、。
The purpose of using a plurality of linear lights 2 is to shorten the measurement time, and the bright lines in the image and the light source 1 (M, Mino
u, T, Kanade and T, 5akai
: ”AMethod of Time-Co
ded Parallel P 1anes o
f Light for Depth Mes
urement”, T ran, I ECE
of Japan, E84) No.

8. 2pp521−528)。8. 2pp521-528).

第3図はこの発明の他の実施例を示すもので第2図に示
す実施例とほとんど同じものであるが、この実施例では
、光源IA、IB、iC,・・・・−同士を互いに近く
に置いて回転平面鏡3の回転角を大きくしている。第2
図の実施例においては線条光2を投影する空間全体の大
きさが両端に配置された光源1A、IB、IC,・−・
・の半導体レーザがなす角によって固定するが、測定の
細かさは回転角を小さくすることで自由に設定できる。
FIG. 3 shows another embodiment of the invention, which is almost the same as the embodiment shown in FIG. 2, but in this embodiment, the light sources IA, IB, iC, . . . The rotation angle of the rotating plane mirror 3 is increased by placing it nearby. Second
In the illustrated embodiment, the size of the entire space in which the linear light 2 is projected is the light sources 1A, IB, IC, etc. arranged at both ends.
It is fixed by the angle formed by the semiconductor laser, but the fineness of measurement can be freely set by reducing the rotation angle.

一方、第3図の実施例では逆に、測定の細かさは光源I
A、IB、IC,・・・−がなす角によって固定される
が、測定範囲の大きさは回転平面鏡3を動かす同数によ
って自由に取ることができる。このように、両者を比較
すると、どちらにも一長一短あり、測定対象によって使
い分けることができる。
On the other hand, in the embodiment shown in FIG.
Although it is fixed by the angles formed by A, IB, IC, . In this way, when comparing the two, both have advantages and disadvantages, and can be used depending on the object to be measured.

第4図は回転平面鏡3の入射角の範囲を示す説明図で、
回転平面鏡3の横の長さをw、4j3条光2しており、
また、線条光2の厚みtは非常に小さいので(数ミリメ
ートル以内)入射角θの範囲が広い。また、回転軸4上
に線条光2が収束しない場合、回転平面鏡3の回転とと
もに見掛は上光源体1が移動するため測定結果の処理に
必要な光源体1の計算が複雑であるが、回転軸4上に線
条光2が収束した場合にはちょうど回転軸4上に向きだ
けを変えろ線条光2の光源体1があるように線条光2が
出射するので、画像上の線条光2の位置を使った被測定
物5の表面の距離情報の計算が容易になる。
FIG. 4 is an explanatory diagram showing the range of incident angles of the rotating plane mirror 3.
The horizontal length of the rotating plane mirror 3 is w, 4j3 beams 2,
Furthermore, since the thickness t of the linear light 2 is very small (within several millimeters), the range of the incident angle θ is wide. In addition, if the linear light 2 does not converge on the rotation axis 4, the upper light source 1 will apparently move as the rotating plane mirror 3 rotates, which complicates the calculation of the light source 1 required for processing the measurement results. When the linear light 2 converges on the rotation axis 4, just change the direction onto the rotation axis 4.The linear light 2 will be emitted just as there is a light source 1 of the linear light 2, so the image will be It becomes easy to calculate the distance information on the surface of the object to be measured 5 using the position of the linear light 2.

なお、光源IA、IB、IC,・・ とじては、半導体
レーザの他、Ha −N eレーザ等を使用してもよい
。また、目的によっては、ランプの光をスリットを通し
てからレンズで結像させて線条光2としてもよい。
Note that for the light sources IA, IB, IC, etc., a Ha-Ne laser or the like may be used in addition to a semiconductor laser. Further, depending on the purpose, the light from the lamp may be passed through a slit and then imaged by a lens to form the linear light 2.

さらに、複数の線条光2の識別手段としては、光源IA
、IN3.IC,−・・−を時系列的に点滅させろ他、
スリ・ソトに色をつけたり、スリット幅を変えたり、光
の発振波長を変えたり、あるいはこれら−を併用したり
することで区別することができろ。
Furthermore, as a means for identifying the plurality of linear lights 2, the light source IA
, IN3. Make IC, -...- blink in chronological order, etc.
You can differentiate them by coloring the slits, changing the slit width, changing the oscillation wavelength of the light, or using a combination of these.

〔発明の効果〕〔Effect of the invention〕

以上説明したようにこの発明は、−・平面内にその平面
内の一点に向けてその平面に対して垂直な平面をなす線
条光を放射する複数の光源を設け、各線条光を前記一点
に置かれた回転軸が前記平面に対して垂直な回転平面鏡
によって反射させ、任意の方向に複数の格子を同時に投
影し、これを識別手段で識別するように構成したので、
各光源からの光出力を従来の方式のように覆い隠して投
影するのではな(、そのまま投影するため、パワーの損
失が少なく、従来は使うことができなかった低出力の光
源が使用可能である。この発明を用いると、例えば、一
つの線条光光源に対(7て約5mWの半導体レーザで十
分な光出力が得られる(前記の電子通信学会論文誌“時
系列符号化格子法とその装置化”では100本の線条光
光源にIKWのプロジェクタを用いている)。光源とし
て半導体レウェアに依存していて融通性に乏しかったが
、この発明では回転平面鏡を用いて走査しているため、
必要に応じた走査の構成をソフトウェアで自由に設定す
ることができる。また、単に回転平面鏡によって反射し
ているだけでは、回転平面鏡の採れことで解決している
As explained above, the present invention provides a plurality of light sources that emit linear light in a plane perpendicular to the plane toward one point within the plane, and directs each of the linear lights to the one point. The mirror is configured such that the rotation axis is perpendicular to the plane and reflects the light by a rotating plane mirror, simultaneously projecting a plurality of gratings in any direction, and identifying them with the identification means.
Rather than masking and projecting the light output from each light source as in the conventional method, there is less power loss and it is possible to use low-output light sources that could not be used in the past. By using this invention, for example, sufficient optical output can be obtained with a semiconductor laser of approximately 5 mW for one linear light source (as described in the above-mentioned Journal of the Institute of Electronics and Communication Engineers, "Time-series coded grating method"). ``In the deviceization'', an IKW projector is used as a 100-line light source.)It relies on semiconductor hardware as a light source and lacks flexibility, but in this invention, scanning is performed using a rotating plane mirror. For,
You can freely set the scanning configuration according to your needs using software. In addition, simply reflecting the light with a rotating plane mirror is solved by using a rotating plane mirror.

線条光の符号化という点に着目すると、りえらねた符号
に対して線条光の投影方向は独立しているため、スライ
ドを用いた方式の場合のような線条光の位置ずれはない
。まt=、光源の点滅t!けで異なる符号化格子が得ら
iするため、スライドを用いた方法等と比較するとはる
かに高速の動作が可能となる。
Focusing on the encoding of the striated light, the projection direction of the striated light is independent of the selected code, so the positional shift of the striated light as in the case of a method using a slide can be avoided. do not have. Mat=, light source blinking t! Since different encoding grids can be obtained depending on the number of steps, much faster operation is possible compared to methods using slides.

従って、この発明は、高速に非接触で物体形状の測定を
行う装置をはじめ、特定の空間に向け”C線条光を投影
ずろ光学系をもつ装置において極めて有用である。
Therefore, the present invention is extremely useful in devices that measure the shape of objects at high speed and in a non-contact manner, as well as devices that have an optical system that projects C-line light toward a specific space.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の原理を示す図、第2図シよこの発明
の一実施例を示す構成図、第3図はこの発明の他の実施
例を示す構成図、第4図は回転平面鏡の入射角の範囲を
示す説明図、第5図は従来の線条光投影方式の原理を示
す図である。 図中、1は光源体、I A、 I B、I C,は光源
、2は線条光、3は回転平面鏡、4は回転軸、5は被測
定物体、6はTVカメラである。 第1図 1:光源体 4、回転軸 第2図 第3図
Fig. 1 is a diagram showing the principle of this invention, Fig. 2 is a block diagram showing one embodiment of this invention, Fig. 3 is a block diagram showing another embodiment of this invention, and Fig. 4 is a rotating plane mirror. FIG. 5 is a diagram showing the principle of the conventional linear light projection method. In the figure, 1 is a light source, IA, IB, and IC are light sources, 2 is a linear light, 3 is a rotating plane mirror, 4 is a rotation axis, 5 is an object to be measured, and 6 is a TV camera. Figure 1 1: Light source 4, rotation axis Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 一平面内に、その平面内の一点に向けて前記平面に対し
て垂直な平面をなす線条光を放射する複数の光源と、前
記各線条光を反射させ任意の方向に複数の格子を同時に
投影するための前記一点に置かれた回転軸が前記平面に
対して垂直をなす回転平面鏡と、前記複数の光源からの
各線条光を識別する識別手段とを具備したことを特徴と
する線条光投影装置。
A plurality of light sources that emit linear light in a plane perpendicular to the plane toward a point within the plane, and a plurality of gratings simultaneously in any direction by reflecting each of the linear lights. A filament comprising a rotating plane mirror placed at the one point for projection and whose rotation axis is perpendicular to the plane, and identification means for identifying each filament light from the plurality of light sources. light projection device.
JP20393185A 1985-09-13 1985-09-13 Linear light projecting device Granted JPS6263804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20393185A JPS6263804A (en) 1985-09-13 1985-09-13 Linear light projecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20393185A JPS6263804A (en) 1985-09-13 1985-09-13 Linear light projecting device

Publications (2)

Publication Number Publication Date
JPS6263804A true JPS6263804A (en) 1987-03-20
JPH0554881B2 JPH0554881B2 (en) 1993-08-13

Family

ID=16482062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20393185A Granted JPS6263804A (en) 1985-09-13 1985-09-13 Linear light projecting device

Country Status (1)

Country Link
JP (1) JPS6263804A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6292263B1 (en) 1998-02-18 2001-09-18 Minolta Co., Ltd. Three-dimensional measuring apparatus
JP2010048662A (en) * 2008-08-21 2010-03-04 Dainippon Screen Mfg Co Ltd Visual system
JP2016217728A (en) * 2015-05-14 2016-12-22 富士電機株式会社 Inspection device and inspection method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6292263B1 (en) 1998-02-18 2001-09-18 Minolta Co., Ltd. Three-dimensional measuring apparatus
JP2010048662A (en) * 2008-08-21 2010-03-04 Dainippon Screen Mfg Co Ltd Visual system
JP2016217728A (en) * 2015-05-14 2016-12-22 富士電機株式会社 Inspection device and inspection method

Also Published As

Publication number Publication date
JPH0554881B2 (en) 1993-08-13

Similar Documents

Publication Publication Date Title
US10809056B2 (en) Structured light projector
US3573849A (en) Pattern generating apparatus
CN101118153B (en) Multi-range non-contact probe
US9151607B2 (en) Dimensional measurement through a combination of photogrammetry and optical scattering
US11467261B2 (en) Distance measuring device and moving object
JP2651093B2 (en) Shape detection method and device
EP0424359B1 (en) Device for emitting multislit lights
JP3855756B2 (en) 3D color shape detection device and 3D scanner
KR20020067605A (en) Phase profilometry system with telecentric projector
JP2002071328A (en) Determination method for surface shape
US10955233B2 (en) Thickness measuring apparatus
CN102043352B (en) Focusing and leveling detection device
JP2714152B2 (en) Object shape measurement method
JP2021025914A (en) Three-dimensional shape measuring device, three-dimensional shape measuring method, three-dimensional shape measuring program and computer-readable recording medium, and recorded equipment
US5018803A (en) Three-dimensional volumetric sensor
JPS5953483B2 (en) Mirror surface deformation distribution measuring device
JPS6263804A (en) Linear light projecting device
US4830443A (en) Three-dimensional volumetric sensor
JPH04244947A (en) Fluorescence image densitometer by flying spot system
TWI742473B (en) Structure light emitting module and image collecting device
CN118465903B (en) Grating ruler processing method, device and system
JP2015004670A (en) Substrate measurement device and substrate measurement method
JP2737271B2 (en) Surface three-dimensional shape measuring method and device
JPH0566114A (en) Thickness measuring device for transparent material
TW201927465A (en) Machine-tool with an optical measuring device for the three-dimensional registration between the tool-holder and the workpiece holder

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term