JPS626376B2 - - Google Patents

Info

Publication number
JPS626376B2
JPS626376B2 JP18030181A JP18030181A JPS626376B2 JP S626376 B2 JPS626376 B2 JP S626376B2 JP 18030181 A JP18030181 A JP 18030181A JP 18030181 A JP18030181 A JP 18030181A JP S626376 B2 JPS626376 B2 JP S626376B2
Authority
JP
Japan
Prior art keywords
circuit
control voltage
distortion compensation
feedback
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18030181A
Other languages
Japanese (ja)
Other versions
JPS5883445A (en
Inventor
Yoshio Oogushi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP56180301A priority Critical patent/JPS5883445A/en
Publication of JPS5883445A publication Critical patent/JPS5883445A/en
Publication of JPS626376B2 publication Critical patent/JPS626376B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/502LED transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/58Compensation for non-linear transmitter output

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Nonlinear Science (AREA)
  • Led Devices (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Optical Communication System (AREA)

Description

【発明の詳細な説明】 本発明は光通信装置に用いられる光送信装置の
歪補償回路の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a distortion compensation circuit for an optical transmitter used in an optical communication device.

発光ダイオードや半導体レーザなどの光源用デ
バイスを用いてアナログ信号伝送用光送信装置を
構成する場合、光源用デバイスの発生する歪が大
きくてそのままでは良好なアナログ信号伝送特性
を得ることはむづかしい。そこでこの歪特性を補
償するために負帰還法、フイードフオワード法、
およびプリデイストーシヨン法等が用いられてい
るが、負帰還法は帰還ループの伝達時間による制
限からその取り扱える周波数範囲が狭く、またフ
イードフオワード法は回路が複雑になるという欠
点があるため、最近では3番目のプリデイストー
シヨン法が比較的よく用いられている。これは光
源の発生する歪をプリデイストーシヨン回路と呼
ばれる非線形回路で発生した歪で打ち消すように
構成したものである。しかしながらこの方式にお
いては、あとに詳しく説明するが、正確な補償を
するには回路規模が大きくなり、非線形特性の調
整が調整箇所が多い上調整方法が難かしく、又歪
補償特性の温度特性を良くすることが難かしかつ
た。
When constructing an optical transmitter for analog signal transmission using a light source device such as a light emitting diode or a semiconductor laser, it is difficult to obtain good analog signal transmission characteristics due to the large distortion generated by the light source device. Therefore, in order to compensate for this distortion characteristic, negative feedback method, feed forward method, etc.
and pre-distortion methods are used, but the negative feedback method has a narrow frequency range that can be handled due to limitations due to the feedback loop propagation time, and the feed forward method has the drawback of complicating the circuit. Recently, the third predistortion method has been relatively commonly used. This is constructed so that the distortion generated by the light source is canceled out by the distortion generated by a nonlinear circuit called a predistortion circuit. However, in this method, as will be explained in detail later, the circuit scale is large for accurate compensation, the adjustment method for nonlinear characteristics is difficult as there are many adjustment points, and the temperature characteristics of the distortion compensation characteristics are difficult to adjust. It was difficult to improve.

したがつて本発明の目的は回路規模が大となら
ず、調整が簡単で、而も周囲温度の変化に対して
安定な特性を有する歪補償回路を得ようとするも
のである。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a distortion compensation circuit that does not increase in circuit scale, is easy to adjust, and has stable characteristics against changes in ambient temperature.

本発明によれば発光ダイオード、半導体レーザ
などの光源デバイスで電気信号を光信号に変換す
る際に該光源デバイスで発生する歪成分を補償す
るための歪補償回路において、前記電気信号を入
力信号とし、前記光源デバイスを駆動するための
信号を出力信号とし、さらに帰還量で増幅度が決
まるように構成されている帰還形増幅器と、前記
帰還量を与える回路中に、制御電圧の変化による
ドレイン・ソース間抵抗の変化が前記帰還量の変
化となるように配置された電界効果トランジスタ
と、前記制御電圧を与える制御電圧発生回路とを
有することを特徴とする歪補償回路が得られる。
According to the present invention, in a distortion compensation circuit for compensating for distortion components generated in a light source device such as a light emitting diode or a semiconductor laser when an electric signal is converted into an optical signal, the electric signal is used as an input signal. , a feedback amplifier configured such that the output signal is a signal for driving the light source device, and the amplification degree is determined by the amount of feedback; A distortion compensation circuit is obtained, comprising a field effect transistor arranged such that a change in the source-to-source resistance corresponds to a change in the amount of feedback, and a control voltage generation circuit that provides the control voltage.

次に図面を参照して詳細に説明する。 Next, a detailed description will be given with reference to the drawings.

第1図は従来の歪補償回路の構成を示した図で
ある。第1図の従来の歪補償回路は、発光ダイオ
ード(LED)1と、信号Sを入力して動作する
トランジスタ2と、発光ダイオード1の発生する
歪を補償する非線形回路3とを有しており、而し
てこの非線形回路3はこの場合3個の可変抵抗4
と、3個のダイオード5と、3個のバイアス電源
6と、固定抵抗7とから成つている。Bは発光ダ
イオード1のバイアス電源である。
FIG. 1 is a diagram showing the configuration of a conventional distortion compensation circuit. The conventional distortion compensation circuit shown in FIG. 1 includes a light emitting diode (LED) 1, a transistor 2 that operates by inputting a signal S, and a nonlinear circuit 3 that compensates for the distortion generated by the light emitting diode 1. , and this nonlinear circuit 3 has three variable resistors 4 in this case.
, three diodes 5, three bias power supplies 6, and a fixed resistor 7. B is a bias power supply for the light emitting diode 1.

上記の構成において、非線形回路3の非線形等
性は可変抵抗4およびバイアス電源6のそれぞれ
の値を調整することにより、ある程度希望する特
性にすることができるが、この非線形回路が折れ
線近似とよばれる近似方法をとつているために、
正確な歪補償には可変抵抗、ダイオード、バイア
ス電源からなる直列回路をなるべく多くして折れ
線の数を増やす必要がある。また、品種毎に、さ
らには同一品種でも単体毎に異なる非線形特性を
もつ光源デバイスにこの回路を適用するために
は、光源デバイスを取換える度にこの非線形特性
をいずれも3つある可変抵抗4の抵抗値とバイア
ス電源6の電圧を変えて調整しなおす必要があ
る。
In the above configuration, the nonlinearity of the nonlinear circuit 3 can be achieved to some extent by adjusting the values of the variable resistor 4 and the bias power supply 6, and this nonlinear circuit is called a polygonal line approximation. Because we use an approximation method,
For accurate distortion compensation, it is necessary to increase the number of polygonal lines by increasing the number of series circuits consisting of variable resistors, diodes, and bias power supplies. In addition, in order to apply this circuit to light source devices that have different nonlinear characteristics for each type of light source device, or even for each unit of the same type, it is necessary to It is necessary to readjust by changing the resistance value of and the voltage of the bias power supply 6.

上記のようなことから従来の回路では、先に簡
単に説明したが、次のような欠点があつた。すな
わち正確な補償をするには回路規模が大きくな
り、又非線形特性の調整をするための調整箇所が
多くて調整方法がむづかしく、更に、LEDの歪
特性が温度で変化するので、補償回路の非線形特
性を温度によつて正確に変化させることが調整箇
所が多過ぎるために困難であつて、歪補償特性の
温度特性を良くすることがむづかしかつたのであ
る。
Due to the above reasons, the conventional circuit has the following drawbacks, as briefly explained above. In other words, accurate compensation requires a large circuit, there are many adjustment points to adjust nonlinear characteristics, and the adjustment method is difficult.Furthermore, the distortion characteristics of LEDs change with temperature, so compensation circuits are required. It has been difficult to accurately change the nonlinear characteristics of the distortion compensation characteristics with temperature because there are too many adjustment points, and it has been difficult to improve the temperature characteristics of the distortion compensation characteristics.

第2図は本発明第1の実施例の回路構成をあら
わした図である。入力信号Sは増幅器11で増幅
され、抵抗12を通してLED13に加えられ
る。LED13は抵抗14を通してバイアス電流
Bが加えられている。増幅器11の出力端子から
抵抗値がR1の抵抗(これをR1であらわす、以下
同様)の接続された負側の入力端子へは、一方は
抵抗R2を通し他方は抵抗R3と電界効果トランジ
スタ(FET)15の直列回路を通して信号が帰
還されているため、この段での増幅度Aは、負帰
還増幅器の増幅度の計算方法により、 A=1+R(R+r)/R(R+R
+r) となる。ただしrはFET15のドレイン・ソー
ス間抵抗値である。ところでFETのドレイン・
ソース間抵抗rはゲートに加えられた制御電圧V
cによつてほぼ決定するが、ソース・ドレイン間
電圧によつても多少変化する。すなわち、FET
15を抵抗値rの抵抗体と見たとき、端子電圧に
より抵抗値が変化する。これは抵抗R3とFET1
5の直列回路の電流、電圧特性が非線形性をもつ
ていることを意味する。したがつて前述した第2
図の中の帰還増幅器の増幅度も、前記の増幅度の
式にしたがつて非線形を示すことになる。
FIG. 2 is a diagram showing the circuit configuration of the first embodiment of the present invention. Input signal S is amplified by amplifier 11 and applied to LED 13 through resistor 12. A bias current B is applied to the LED 13 through a resistor 14. From the output terminal of the amplifier 11 to the negative input terminal connected to a resistor with a resistance value R 1 (represented by R 1 , the same applies hereinafter), one side is connected through a resistor R 2 and the other is connected to a resistor R 3 and an electric field. Since the signal is fed back through the series circuit of effect transistors (FETs) 15, the amplification degree A at this stage is calculated as follows: A=1+R 2 (R 3 +r)/R 1 (R 2 +R 3
+r). However, r is the resistance value between the drain and source of the FET 15. By the way, the drain of FET
The source-to-source resistance r is the control voltage V applied to the gate.
Although it is mostly determined by c , it also changes somewhat depending on the source-drain voltage. That is, FET
When 15 is viewed as a resistor with a resistance value r, the resistance value changes depending on the terminal voltage. This is resistor R3 and FET1
This means that the current and voltage characteristics of the series circuit No. 5 have nonlinearity. Therefore, the second
The amplification degree of the feedback amplifier in the figure also shows nonlinearity according to the amplification degree equation described above.

第3図は上記の帰還増幅器にビデオ信号VSを
通し、その信号レベルと歪補償(DG)特性を信
号VSのレベルを0(黒に相当)から実用上の最
大値(白に相当)まで変えて測定した結果を示
す。図から分るように、FET15の非線形性の
ために右上がりのDG特性が実現されている。な
お、このDG特性は制御電圧Vcの値で変えること
ができ、Vc=5Vの非線形特性のない状態からVc
=2VのDG特性が4%となる状態まで、広い範囲
をカバーできる。このため、本実施例の回路は右
下がりのDG特性をもつ多くの品種の光源デバイ
スの歪補償回路として有効である。
Figure 3 shows how the video signal VS is passed through the feedback amplifier mentioned above, and its signal level and distortion compensation (DG) characteristics are changed from 0 (corresponding to black) to the maximum practical value (corresponding to white). The results are shown below. As can be seen from the figure, the upward-sloping DG characteristic is realized due to the nonlinearity of the FET 15. Note that this DG characteristic can be changed by changing the value of the control voltage V c , from a state with no nonlinear characteristics at V c = 5V to V c
It can cover a wide range up to the state where the DG characteristic of =2V is 4%. Therefore, the circuit of this embodiment is effective as a distortion compensation circuit for many types of light source devices having downward-sloping DG characteristics.

第4図は本発明第2の実施例の構成を示した図
であり、第2図と同じ部品には同じ参照数字を付
してある。図から分るように、第2図で増幅器1
1の出力端子と入力端子間に挿入されていた
FET15と抵抗R3の直列回路が、この場合入力
端子と接地を接続する枝路にFET15と抵抗R4
の直列回路として挿入されている。ただし抵抗
R3と抵抗R4の抵抗値は必ずしも等しくはない。
この構成における負帰還増幅器が非線形特性を示
す理由は、第2図の場合と同じく、負帰還量が非
線形性をもつことに起因する。ただし、非線形回
路の挿入位置のちがいにより、第2図と第3図で
はちようど逆極性の非線形特性を示す。これを第
3図に示したDG特性で比較すると、第2図のDG
特性が右上りなのに対し、第4図のDG特性は右
下がりになつている。このため、この実施例の回
路はDG特性が右上がりを示す光源デバイスの歪
補償に有効である。
FIG. 4 is a diagram showing the configuration of a second embodiment of the present invention, and the same parts as in FIG. 2 are given the same reference numerals. As can be seen from the figure, in Fig. 2, amplifier 1
It was inserted between the output terminal and input terminal of 1.
In this case, a series circuit of FET15 and resistor R3 is connected to the branch connecting the input terminal and ground .
are inserted as a series circuit. However, resistance
The resistance values of R 3 and resistor R 4 are not necessarily equal.
The reason why the negative feedback amplifier in this configuration exhibits nonlinear characteristics is that the amount of negative feedback has nonlinearity, as in the case of FIG. However, due to the difference in the insertion position of the nonlinear circuit, the nonlinear characteristics of opposite polarities are shown in FIGS. 2 and 3. Comparing this with the DG characteristics shown in Figure 3, the DG characteristics in Figure 2
While the characteristic slopes upward to the right, the DG characteristic in Figure 4 slopes downward to the right. Therefore, the circuit of this embodiment is effective for distortion compensation of a light source device whose DG characteristics are upward-sloping.

第5図は本発明第3の実施例の構成をあらわし
た図である。第1、第2の実施例では帰還量に非
線形性を持たせるために抵抗R1あるいは抵抗R2
に並列に非線形回路を接続したが、この第3の実
施例ではこれを抵抗R5と抵抗R6とFET15の直
列回路による分圧回路により行つている。なお、
本実施例の回路はDG特性の傾きが第2の実施例
の場合と同じく右下りの特性を示すことから、右
上りのDG特性をもつ光源デバイスの歪補償に有
効である。
FIG. 5 is a diagram showing the configuration of a third embodiment of the present invention. In the first and second embodiments, the resistor R 1 or the resistor R 2 is used to provide nonlinearity to the amount of feedback.
A non-linear circuit is connected in parallel to , but in this third embodiment, this is done by a voltage dividing circuit consisting of a series circuit of resistor R 5 , resistor R 6 and FET 15 . In addition,
Since the circuit of this embodiment exhibits a downward slope of the DG characteristic as in the second embodiment, it is effective for distortion compensation of a light source device having an upward slope of the DG characteristic.

前述した第1から第3の実施例では、帰還増幅
器の帰還回路にFETを用いて非線形性をもたせ
ることによりLEDと反対の歪特性を作つている
が、これは従来の回路に比較して回路構成が簡単
であり、又調整箇所が少く、而も多品種の光源デ
バイスの歪補償に適用する際もFETのゲート電
圧を変えるだけで済むので簡単である。
In the first to third embodiments described above, a FET is used in the feedback circuit of the feedback amplifier to provide nonlinearity, thereby creating distortion characteristics opposite to those of the LED. The configuration is simple, there are only a few adjustment points, and it is easy to apply it to distortion compensation for a wide variety of light source devices because all you need to do is change the gate voltage of the FET.

またLEDの歪特性は一般に温度によつて変化
するが、本発明の回路ではFETの制御電圧を変
えることにより簡単にDG特性を変化することが
できるため、この電圧を温度に応じて変化させる
ことにより広い温度範囲にわたる歪補償が実現で
きる。
Furthermore, the distortion characteristics of LEDs generally change depending on temperature, but in the circuit of the present invention, the DG characteristics can be easily changed by changing the control voltage of the FET, so it is possible to change this voltage according to temperature. This allows distortion compensation to be achieved over a wide temperature range.

第6図はこのための制御電圧発生回路の1例を
示す図である。これは、電圧Bを抵抗16とサー
ミスタ17で分割し、増幅器18で増幅して制御
電圧Vcを得るものである。すなわちサーミスタ
の温度特性を適当に選ぶことにより、制御電圧V
cをDGの値が所望の大きさになるように変化させ
ることができる。
FIG. 6 is a diagram showing an example of a control voltage generating circuit for this purpose. This divides the voltage B by a resistor 16 and a thermistor 17, and amplifies it by an amplifier 18 to obtain a control voltage Vc . In other words, by appropriately selecting the temperature characteristics of the thermistor, the control voltage V
c can be changed so that the value of DG becomes a desired value.

以上述べたように本発明は構成が簡単で且つ調
整しやすい歪補償回路であり、さらに、温度特性
のすぐれた歪補償回路を提供する。このため、た
とえばビデオ信号等のアナログ信号用光送信装置
を小形化でき、多品種の光源デバイスに対応でき
る歪補償回路をもつ光送信装置を構成でき、更に
温度特性のすぐれた、低歪特性の光送信装置を提
供することができる。
As described above, the present invention provides a distortion compensation circuit with a simple configuration and easy adjustment, and furthermore, provides a distortion compensation circuit with excellent temperature characteristics. For this reason, it is possible to downsize optical transmitters for analog signals such as video signals, configure optical transmitters with distortion compensation circuits that can be used with a wide variety of light source devices, and also have excellent temperature characteristics and low distortion characteristics. An optical transmitter can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の歪補償回路の構成をあらわした
図、第2図は本発明の第1の実施例の構成をあら
わした図、第3図は第1の実施例の歪補償特性を
示した図、第4図および第5図は本発明の第2お
よび第3の実施例の構成をそれぞれあらわした
図、第6図は歪補償回路に用いられるFETの制
御電圧を発生する回路の構成の一例を示した図で
ある。 記号の説明:11は増幅器、12は抵抗、13
はLED、15はFET、17はサーミスタ、18
は増幅器、R1〜R6は抵抗(値)、rはFET15の
ドレイン・ソース間抵抗、Vcは制御電圧制御電
圧をそれぞれあらわしている。
FIG. 1 shows the configuration of a conventional distortion compensation circuit, FIG. 2 shows the configuration of the first embodiment of the present invention, and FIG. 3 shows the distortion compensation characteristics of the first embodiment. 4 and 5 are diagrams showing the configurations of the second and third embodiments of the present invention, respectively, and FIG. 6 is the configuration of a circuit that generates a control voltage for an FET used in a distortion compensation circuit. It is a figure showing an example. Symbol explanation: 11 is amplifier, 12 is resistor, 13
is LED, 15 is FET, 17 is thermistor, 18
is an amplifier, R 1 to R 6 are resistances (values), r is a resistance between the drain and source of the FET 15, and V c is a control voltage.

Claims (1)

【特許請求の範囲】 1 発光ダイオード、半導体レーザなどの光源デ
バイスで電気信号を光信号に変換する際に該光源
デバイスで発生する歪成分を補償するための歪補
償回路において、前記電気信号を入力信号とし、
前記光源デバイスを駆動するための信号を出力信
号とし、さらに帰還量で増幅度が決まるように構
成されている帰還形増幅器と、前記帰還量を与え
る回路中に、制御電圧の変化によるドレイン・ソ
ース間抵抗の変化が前記帰還量の変化となるよう
に配置された電界効果トランジスタと、 前記制御電圧を与える制御電圧発生回路とを有
することを特徴とする歪補償回路。 2 前記制御電圧が周囲温度と共に変化するよう
な制御電圧であることを特徴とする特許請求の範
囲第1項の歪補償回路。
[Claims] 1. In a distortion compensation circuit for compensating for distortion components generated in a light source device such as a light emitting diode or a semiconductor laser when an electric signal is converted into an optical signal by the light source device, the electric signal is input. As a signal,
A feedback amplifier is configured such that the output signal is a signal for driving the light source device, and the amplification degree is determined by the amount of feedback, and a circuit for providing the amount of feedback includes a drain-source amplifier configured to change the control voltage by changing the control voltage. A distortion compensation circuit comprising: a field effect transistor arranged so that a change in inter-resistance causes a change in the amount of feedback; and a control voltage generation circuit that provides the control voltage. 2. The distortion compensation circuit according to claim 1, wherein the control voltage is a control voltage that changes with ambient temperature.
JP56180301A 1981-11-12 1981-11-12 Distortion compensating circuit Granted JPS5883445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56180301A JPS5883445A (en) 1981-11-12 1981-11-12 Distortion compensating circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56180301A JPS5883445A (en) 1981-11-12 1981-11-12 Distortion compensating circuit

Publications (2)

Publication Number Publication Date
JPS5883445A JPS5883445A (en) 1983-05-19
JPS626376B2 true JPS626376B2 (en) 1987-02-10

Family

ID=16080804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56180301A Granted JPS5883445A (en) 1981-11-12 1981-11-12 Distortion compensating circuit

Country Status (1)

Country Link
JP (1) JPS5883445A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8301484A (en) * 1983-04-27 1984-11-16 Philips Nv OPTICAL TRANSMITTER.
JPS60150845U (en) * 1984-03-17 1985-10-07 ソニー株式会社 Nonlinear distortion compensation circuit for light emitting diode for optical communication
JPS62272631A (en) * 1986-05-20 1987-11-26 Fujitsu Ltd Distortion generation circuit

Also Published As

Publication number Publication date
JPS5883445A (en) 1983-05-19

Similar Documents

Publication Publication Date Title
US4207538A (en) Temperature compensation circuit
US6329868B1 (en) Circuit for compensating curvature and temperature function of a bipolar transistor
US5343164A (en) Operational amplifier circuit with slew rate enhancement
NL193076C (en) Amplifier control chain.
JP7283063B2 (en) amplifier circuit
GB2202402A (en) Improving linearity of digital to analog converter
US7262650B2 (en) Amplitude adjusting circuit
US5815038A (en) Distortion compensation circuit
US4580294A (en) Optical transmitter
EP0791876B1 (en) Current mirror circuit and signal processing circuit
JPS626376B2 (en)
CA2224727C (en) Laser drive circuit
KR900005872B1 (en) Amplifier
US5391933A (en) Driver circuit for generating pulses
US3223937A (en) Multi-channel expression control for electrical musical instruments
US4689678A (en) Gradation distortion compensation by FET pre-emphasis circuit operating in FET saturation region
US3715675A (en) Variable resistor device using a field transistor
EP0778998B1 (en) A linearizer for linearizing a non-linear component controlled by control voltage
US4481480A (en) Feedback amplifier having a voltage-controlled compensation circuit
US4725790A (en) Broadband DC level shift circuit with feedback
US6377118B1 (en) Linearizer for power amplifier
US5764098A (en) Bias circuit
US4365209A (en) Impedance transducer
KR100794774B1 (en) Temperature compensating circuit
WO1991015898A1 (en) Fet amplifying circuits and methods of operation