JPS626375B2 - - Google Patents

Info

Publication number
JPS626375B2
JPS626375B2 JP56183301A JP18330181A JPS626375B2 JP S626375 B2 JPS626375 B2 JP S626375B2 JP 56183301 A JP56183301 A JP 56183301A JP 18330181 A JP18330181 A JP 18330181A JP S626375 B2 JPS626375 B2 JP S626375B2
Authority
JP
Japan
Prior art keywords
optical
optical fiber
light
wavelength
transmission line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56183301A
Other languages
Japanese (ja)
Other versions
JPS5884550A (en
Inventor
Koichi Minemura
Kunihiko Washio
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP56183301A priority Critical patent/JPS5884550A/en
Publication of JPS5884550A publication Critical patent/JPS5884550A/en
Publication of JPS626375B2 publication Critical patent/JPS626375B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2589Bidirectional transmission

Description

【発明の詳細な説明】 この発明は光フアイバ双方向伝送システム、特
に従来に比べて伝送路距離が長く出来る光フアイ
バ双方向伝送システムに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical fiber bidirectional transmission system, and more particularly to an optical fiber bidirectional transmission system that allows a longer transmission path distance than conventional optical fiber bidirectional transmission systems.

一本の光フアイバ伝送路の両端にそれぞれ接続
された光送受信機の出力光信号を光フアイバ伝送
路中を双方向に伝送させる光フアイバ双方向伝送
システムは、伝送路の経済化がはかれる等の特長
から短距離から長距離に到る種々の用途が考えら
れている。従来の光フアイバ双方向伝送システム
では、主として光源に発光ダイオードや半導体レ
ーザを用いていたがこれら光源を用いた場合の送
信光レベルは最大でもせいぜい約+5dBm(約3
mW)であつたために、伝送路距離は十分には長
く出来ないという欠点があつた。
An optical fiber bidirectional transmission system, in which the output optical signals of optical transceivers connected to both ends of a single optical fiber transmission line are transmitted bidirectionally through the optical fiber transmission line, is capable of making the transmission line more economical, etc. Due to its features, various uses ranging from short distances to long distances are being considered. Conventional optical fiber bidirectional transmission systems mainly use light-emitting diodes or semiconductor lasers as light sources, but the maximum transmitted light level when using these light sources is approximately +5 dBm (approximately 3 dBm).
mW), the transmission line distance could not be made sufficiently long.

また、光源に高出力のNd:YAGレーザを用い
れば、光フアイバ伝送路内に約+30dBm(約
1W)の信号レベルを入力させることが可能なた
め、長距離伝送が可能であり、例えば波長1.32μ
mのNd:YAGレーザを用いた32Mb/sの信号の
単一方向100Km伝送の可能性が確認されている。
しかし、Nd:YAGレーザの発振波長のうちで、
光フアイバ長距離伝送に適した光フアイバの低損
失低分散波長領域にあるのは約1.32μmと約1.34
μmの波長だけで、波長が近接している。
In addition, if a high-power Nd:YAG laser is used as a light source, approximately +30 dBm (approx.
Since it is possible to input a signal level of 1W), long-distance transmission is possible; for example, at a wavelength of 1.32μ
The possibility of unidirectional 100 km transmission of a 32 Mb/s signal using a Nd:YAG laser has been confirmed.
However, among the oscillation wavelengths of Nd:YAG laser,
The low-loss, low-dispersion wavelength range of optical fiber suitable for long-distance fiber transmission is approximately 1.32μm and approximately 1.34μm.
The wavelengths are only micrometers, and the wavelengths are close to each other.

ところで、光フアイバ双方向伝送システムで長
距離伝送を達成するには、光双方向分波回路の低
損失化をはかることと近端漏洩減衰量を高めるこ
とが重要で、従来はそのために波長多重方式によ
つて双方向伝送を実現していた。しかし、Nd:
YAGレーザの発振波長の約1.32μmと約1.34μm
とでは波長が近接しすぎていて、光双方向分波回
路の損失が大きく、また近端漏洩減衰量が小さい
ために、伝送路距離が十分には長く出来ないとい
う欠点があつた。
By the way, in order to achieve long-distance transmission with an optical fiber bidirectional transmission system, it is important to reduce the loss of the optical bidirectional demultiplexer circuit and increase the near-end leakage attenuation. Two-way transmission was achieved through this method. But Nd:
YAG laser oscillation wavelength of approximately 1.32μm and approximately 1.34μm
However, because the wavelengths are too close to each other, the loss of the optical bidirectional demultiplexing circuit is large, and the near-end leakage attenuation is small, the transmission line distance cannot be made sufficiently long.

この発明の目的は、従来よりも伝送路距離が長
く出来る光フアイバ双方向伝送システムを提供す
ることにある。
An object of the present invention is to provide an optical fiber bidirectional transmission system that allows a longer transmission line distance than conventional systems.

この発明によれば、第1の光送受信機と、第2
の光送受信機と、光フアイバ伝送路とを備え、前
記第1の光送受信機の送信信号光を励起光として
前記第2の光送受信機から伝送されてきた信号光
が前記光フアイバ伝送路中で光フアイバ誘導散乱
増幅作用により光増幅されることを特徴とする光
フアイバ双方向伝送システムが得られる。
According to this invention, the first optical transceiver and the second optical transceiver
an optical transceiver and an optical fiber transmission line, and the signal light transmitted from the second optical transceiver is pumped using the transmitted signal light of the first optical transceiver as excitation light. An optical fiber bidirectional transmission system is obtained in which light is amplified by the optical fiber stimulated scattering amplification effect.

光フアイバ中の誘導散乱を用いた光増幅につい
ては、例えばエレクトロニクスレターズ
(Electronics Letters)、1980年8月14日発行の
第16巻、第658頁から第660頁に記載の、この発明
の発明者の一人である鷲尾、他による論文に詳述
されている。この論文では、励起光に波長が
1.319μm、光レベルが30W以上のNd:YAGレー
ザの光、信号光に波長が1.338μmまたは1.335μ
m、光レベルが0.26mW〜6.2mWのNd:YAGレ
ーザの光を用い、励起光と信号光とを長さ30mの
単一モードフアイバ中を同方向に伝搬させること
により、光フアイバ誘導散乱増幅で信号光を
30dB以上光増幅させている。上記論文では、励
起光の光レベルが30W以上と高いが、光フアイバ
誘導散乱増幅作用が起こる距離(増幅距離)が長
い場合や、被増幅光の光レベルが低い場合には、
約1W程度の励起光レベルで容易に30dB以上の小
信号光増幅利得が可能である。さらに、上記論文
では、励起光を被増幅光の伝搬方向と同じ方向に
伝搬させているが、増幅距離が長ければ逆の方向
に伝搬させても約1W程度の励起光レベルで30dB
以上の小信号光増幅利得が可能である。さらに、
励起光と被増幅光の伝搬方向が逆のこの場合に、
励起光も被変調光とすれば、光フアイバ双方向伝
送が可能になる。この光フアイバ双方向伝送で
は、光フアイバ伝送路で光フアイバ誘導散乱増幅
作用が起こるために、光増幅のための十分な増幅
距離が確保出来る。
Regarding optical amplification using stimulated scattering in optical fibers, see, for example, Electronics Letters, Volume 16, August 14, 1980, pages 658 to 660, by the inventor of this invention. It is detailed in a paper by Washio, one of the authors, et al. In this paper, the wavelength of the excitation light is
1.319μm, Nd:YAG laser light with optical level of 30W or more, signal light with wavelength of 1.338μm or 1.335μ
Optical fiber stimulated scattering amplification is achieved by propagating the pump light and signal light in the same direction through a 30 m long single mode fiber using Nd:YAG laser light with an optical level of 0.26 mW to 6.2 mW. signal light with
Light is amplified by more than 30dB. In the above paper, the optical level of the excitation light is high at 30 W or more, but if the distance at which the optical fiber stimulated scattering amplification effect occurs (amplification distance) is long or the optical level of the amplified light is low,
A small signal optical amplification gain of 30 dB or more is easily possible with a pumping light level of about 1 W. Furthermore, in the above paper, the pumping light is propagated in the same direction as the propagation direction of the amplified light, but if the amplification distance is long, even if the pumping light is propagated in the opposite direction, the pumping light level of about 1W will be 30dB.
The above small signal optical amplification gain is possible. moreover,
In this case, where the propagation directions of the pump light and the amplified light are opposite,
If the excitation light is also modulated light, bidirectional optical fiber transmission becomes possible. In this optical fiber bidirectional transmission, a sufficient amplification distance for optical amplification can be secured because the optical fiber stimulated scattering amplification effect occurs in the optical fiber transmission line.

なお、高増幅利得が得られる被増幅光周波数ν
sと励起光周波数νpとの周波数差(νp−ν
s)の最大値は、光フアイバに零分散波長が約
1.3μmの単一モードフアイバ、励起光に波長が
約1.32μmの光を使用した場合には約2000cm-1
(波長差では約0.27μmに相当)で、比較的大き
い。この値は、光フアイバの分散特性や励起光の
波長を変化させることにより、100cm-1程度から
3000cm-1程度まで比較的広範囲に自由に変えるこ
とが出来る。そのため、光フアイバ誘導散乱増幅
作用による光増幅と、波長多重による光フアイバ
双方向伝送が可能なシステムが構成出来る。
Note that the amplified optical frequency ν at which a high amplification gain can be obtained is
Frequency difference between s and excitation light frequency νp (νp−ν
The maximum value of s) is when the optical fiber has a zero dispersion wavelength of approximately
Approximately 2000cm -1 when using a 1.3μm single mode fiber and a light with a wavelength of approximately 1.32μm as the excitation light
(equivalent to a wavelength difference of approximately 0.27 μm), which is relatively large. This value can be varied from around 100 cm -1 by changing the dispersion characteristics of the optical fiber and the wavelength of the excitation light.
It can be freely changed over a relatively wide range up to about 3000cm -1 . Therefore, a system capable of optical amplification by optical fiber stimulated scattering amplification and bidirectional optical fiber transmission by wavelength multiplexing can be constructed.

この発明の光フアイバ双方向伝送システムでは
第1の光送受信機の光源には約+30dBm以上の
高出力レベルの光源を用い、この光を外部光変調
器で高速変調して送信光信号とすることが出来
る。そのために、送信光レベルは従来のシステム
に比べて約30dB以上高く出来る。一方、第2の
光送受信機の光源には従来と同様に半導体レーザ
が使用可能である。半導体レーザの出力光である
信号光は光フアイバ伝送路中で前記第1の光送受
信機の出力の高レベルの光で励起された光フアイ
バ誘導散乱増幅作用で約30dBの光増幅を受けて
第1の光送受信機の光受信機に達する。
In the optical fiber bidirectional transmission system of the present invention, a light source with a high output level of about +30 dBm or more is used as the light source of the first optical transceiver, and this light is modulated at high speed by an external optical modulator to become a transmitted optical signal. I can do it. Therefore, the transmitted light level can be increased by about 30 dB or more compared to conventional systems. On the other hand, a semiconductor laser can be used as the light source of the second optical transceiver as in the conventional case. The signal light, which is the output light of the semiconductor laser, is amplified by about 30 dB in the optical fiber transmission line by the optical fiber stimulated scattering amplification effect excited by the high-level light output from the first optical transceiver. 1 reaches the optical receiver of the optical transceiver.

そのために、この発明の光フアイバ双方向伝送
システムでは、両方向ともに許容伝送路損失が従
来に比べて約26dB以上高くとれ、その分だけ伝
送路距離は長く出来る。例えば、損失が約
0.6dB/Kmの光フアイバを伝送路に使用し、伝送
路距離が光フアイバの損失制限の場合には、伝送
路距離は40Km以上長く出来ることになる。
Therefore, in the optical fiber bidirectional transmission system of the present invention, the permissible transmission line loss in both directions can be increased by about 26 dB or more compared to the conventional system, and the transmission line distance can be increased by that much. For example, if the loss is about
If a 0.6 dB/Km optical fiber is used for the transmission line and the transmission line distance is within the loss limit of the optical fiber, the transmission line distance can be increased by 40 km or more.

また、この発明の光フアイバ双方向伝送システ
ムでは、2つの光送受信機のうちの一方には、光
源として半導体レーザが使用可能で、半導体レー
ザでは種々の波長のものが開発されているので、
波長が光フアイバ伝送路の低損失波長域にあり、
しかも約1.3μmの波長のNd:YAGレーザと波長
多重双方向伝送が可能な程度以上の波長差(約
0.05μm以上)を有する第2の光送受信機の光源
は容易に入手出来る。また、第1、第2の光送受
信機の光源の波長差が大きく出来るから近端漏洩
減衰量の高い高性能な光双方向分波回路の入手も
容易で、双方伝送に伴なう許容伝送路損失の低下
は非常に小さく出来る。
Furthermore, in the optical fiber bidirectional transmission system of the present invention, a semiconductor laser can be used as a light source in one of the two optical transceivers, and semiconductor lasers with various wavelengths have been developed.
The wavelength is in the low-loss wavelength range of optical fiber transmission lines,
Furthermore, the wavelength difference (approximately
A light source for a second optical transceiver having a diameter of 0.05 μm or more is readily available. In addition, since the wavelength difference between the light sources of the first and second optical transceivers can be large, it is easy to obtain high-performance optical bidirectional demultiplexing circuits with high near-end leakage attenuation, and the permissible transmission associated with bidirectional transmission can be easily obtained. The reduction in path loss can be made very small.

次にこの発明を実施例により図面を参照して説
明する。
Next, the present invention will be described by way of examples with reference to the drawings.

第1図はこの発明の一実施例の構成を示すブロ
ツク図である。第1の光送受信機1には第1の光
送信機2、第1の光受信機3、第1の光双方向分
波回路4が設けられている。第1の電気信号入力
端子5にはビツトレイトが100Mb/s、DMI
(Differential Mark Inversion)符号パルスで変
調された2値のパルス信号が入力している。この
パルス信号は第1の光送信機2の駆動回路7で
10Vp−pの信号に増幅されたのち、光変調器8
に導びかれている。この光変調器には、Nd:
YAGレーザ9の出力光である波長が1.32μm、
出力光レベルが+35dBmのレーザ光が導びかれ
ており、前記パルス信号で変調されたのち光フア
イバで第1の光双方向分波回路4に送られてい
る。この第1の光双方向分波回路4は干渉膜フイ
ルタとレンズで構成されており、光変調器8から
の1.32μmの波長の光を1dBの低損失で光フアイ
バ伝送路10に送出している。光フアイバ伝送路
10に送出されている光パルス信号のパルスピー
クレベルは+30dBmである。第1の双方向分波
回路4は、第1の光送信機2からの1.32μmの波
長の光を光フアイバ伝送路10には低損失で導び
くが、この光が第1の光受信機3に漏れ込む場合
には90dB以上の損失を受けるようになつてい
る。
FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention. The first optical transceiver 1 is provided with a first optical transmitter 2 , a first optical receiver 3 , and a first optical bidirectional branching circuit 4 . The first electrical signal input terminal 5 has a bit rate of 100 Mb/s, DMI
(Differential Mark Inversion) A binary pulse signal modulated with a code pulse is input. This pulse signal is sent to the drive circuit 7 of the first optical transmitter 2.
After being amplified to a 10Vp-p signal, the optical modulator 8
is guided by. This optical modulator contains Nd:
The wavelength of the output light of YAG laser 9 is 1.32μm,
A laser beam with an output light level of +35 dBm is guided, modulated by the pulse signal, and then sent to the first optical bidirectional branching circuit 4 through an optical fiber. This first optical bidirectional demultiplexing circuit 4 is composed of an interference film filter and a lens, and sends the light with a wavelength of 1.32 μm from the optical modulator 8 to the optical fiber transmission line 10 with a low loss of 1 dB. There is. The pulse peak level of the optical pulse signal sent to the optical fiber transmission line 10 is +30 dBm. The first bidirectional demultiplexing circuit 4 guides the light with a wavelength of 1.32 μm from the first optical transmitter 2 to the optical fiber transmission line 10 with low loss. 3, it will suffer a loss of 90dB or more.

光フアイバ伝送路10はコア径が10μm、フア
イバ外径が125μm、零分散波長が約1.3μmでシ
リカを材料とする単一モードフアイバで構成され
ている。波長が1.32μmの前記光パルス信号は光
フアイバ伝送路10を伝搬したのち、第2の光送
受信機11の第2の光双方向分波回路12に入
り、光フアイバで第2の光受信機13に導びかれ
ている。第2の光受信機13では、受信した光パ
ルス信号を検波、増幅し、もとの電気信号に復調
したのち、第2の電気信号出力端子16より送り
出している。
The optical fiber transmission line 10 is composed of a single mode fiber made of silica and has a core diameter of 10 μm, a fiber outer diameter of 125 μm, and a zero dispersion wavelength of about 1.3 μm. The optical pulse signal having a wavelength of 1.32 μm propagates through the optical fiber transmission line 10, enters the second optical bidirectional demultiplexing circuit 12 of the second optical transceiver 11, and is transmitted to the second optical receiver via the optical fiber. I am guided by 13. The second optical receiver 13 detects and amplifies the received optical pulse signal, demodulates it to the original electrical signal, and then sends it out from the second electrical signal output terminal 16.

一方、第2の光送受信機11に設けられている
第2の電気信号入力端子15には、ビツトレイト
が97Mb/s、デユーテイフアクタが約50%のパ
ルス符号変調された2値のパルス信号が入力して
いる。このパルス信号は第2の光送信機14に設
けられているInGaAsP半導体レーザにより波長
が1.55μmの光パルス信号に変換されたのち、光
フアイバで第2の光双方向分波回路12に導びか
れたのち、光フアイバ伝送路10に0dBmの光パ
ルスピークレベルで送出されている。第2の光双
方向分波回路12は、第1の光双方向分波回路4
と同様に干渉膜フイルタとレンズで構成されてお
り、第2の光送信機14からの1.55μmの波長の
光を光フアイバ伝送路10には1dBの低損失で導
びくが、この光が第2の光受信機13に漏れ込む
場合には60dB以上の損失を受けるようになつて
いる。
On the other hand, a second electrical signal input terminal 15 provided in the second optical transceiver 11 receives a pulse code modulated binary pulse signal with a bit rate of 97 Mb/s and a duty factor of approximately 50%. is inputting. This pulse signal is converted into an optical pulse signal with a wavelength of 1.55 μm by an InGaAsP semiconductor laser provided in the second optical transmitter 14, and then guided to the second optical bidirectional demultiplexing circuit 12 through an optical fiber. After that, the optical pulse is transmitted to the optical fiber transmission line 10 at a peak optical pulse level of 0 dBm. The second optical bidirectional demultiplexing circuit 12 is connected to the first optical bidirectional demultiplexing circuit 4.
Similarly, it is composed of an interference film filter and a lens, and guides the light with a wavelength of 1.55 μm from the second optical transmitter 14 to the optical fiber transmission line 10 with a low loss of 1 dB. When the light leaks into the optical receiver 13 of No. 2, it suffers a loss of 60 dB or more.

第2の光送受信機11より光フアイバ伝送路1
0に送出された波長1.55μmの光パルス信号は光
フアイバ伝送路10を伝搬して第1の光送受信機
1に達し、第1の光双方向分波回路4を通つて光
フアイバで第1の光受信機3に導びかれている。
この第1の光受信機3では、受信した光パルス信
号を検波、増幅し、もとのパルス信号に復調した
のち、第1の電気信号出力端子6より送り出して
いる。
From the second optical transceiver 11 to the optical fiber transmission line 1
The optical pulse signal with a wavelength of 1.55 μm transmitted through the optical fiber transmission line 10 reaches the first optical transceiver 1, passes through the first optical bidirectional demultiplexing circuit 4, and is transmitted through the optical fiber to the first optical transceiver 1. is guided to an optical receiver 3.
This first optical receiver 3 detects and amplifies the received optical pulse signal, demodulates it to the original pulse signal, and then sends it out from the first electrical signal output terminal 6.

第1、第2の光受信機3,13で、符号誤り率
が10-9以下になる光受信レベルの最小値は、パル
スピーク値で−37dBm以下になつている。な
お、この値を光フアイバ伝送路10の出力端での
値に換算すると−36dBm以下になる。ところ
で、第1の光送受信機1から送出されている1.32
μmの波長の光パルス信号のパルスピークレベル
は+30dBmなので、この光パルス信号に対する
許容送受信部間損失は66dBという大きな値にな
る。
In the first and second optical receivers 3 and 13, the minimum value of the optical reception level at which the bit error rate is 10 -9 or less is -37 dBm or less as a pulse peak value. Note that when this value is converted into a value at the output end of the optical fiber transmission line 10, it becomes -36 dBm or less. By the way, 1.32 transmitted from the first optical transceiver 1
Since the pulse peak level of an optical pulse signal with a wavelength of μm is +30 dBm, the allowable loss between the transmitting and receiving sections for this optical pulse signal is a large value of 66 dB.

一方、第2の光送受信機11から送出されてい
る1.55μmの波長の光パルス信号は光フアイバ伝
送路10を伝搬中、第1の光送受信機1から送出
されている1.32μmの波長の信号光を励起光とし
た光フアイバ誘導散乱増幅作用により、この光パ
ルス信号が第1の光送受信機1に達するときには
約30dBの光増幅を受ける。そのために、第2の
光送受信機11から送出されている1.55μmの波
長の光パルス信号のパルスピーク値0dBmだが、
光フアイバ誘導散乱増幅による光増幅利得約
30dBを考慮すると、この光パルス信号に対する
許容送受信部間損失は、1.32μmの波長の光パル
ス信号に対すると同等の約66dBになる。
On the other hand, while the optical pulse signal with a wavelength of 1.55 μm transmitted from the second optical transceiver 11 is propagating through the optical fiber transmission line 10, the signal with a wavelength of 1.32 μm transmitted from the first optical transceiver 1 Due to the optical fiber stimulated scattering amplification effect using light as excitation light, when this optical pulse signal reaches the first optical transceiver 1, it undergoes optical amplification of about 30 dB. Therefore, the pulse peak value of the optical pulse signal with a wavelength of 1.55 μm transmitted from the second optical transceiver 11 is 0 dBm,
Optical amplification gain by optical fiber stimulated scattering amplification: approx.
Considering 30 dB, the allowable loss between the transmitter and receiver for this optical pulse signal is approximately 66 dB, which is equivalent to that for an optical pulse signal with a wavelength of 1.32 μm.

なお、第1の光送信機2の出力の光パルス信号
が第1の光受信機3に漏れ込むレベルや、第2の
光送信機14の出力の光パルス信号が第2の光受
信機13に漏れ込むレベルは、光パルスピーク値
で−60dBm以下で、信号光レベルよりも20dB以
上も小さいから符号誤り率をほとんど劣化させな
い。
Note that the level at which the optical pulse signal output from the first optical transmitter 2 leaks into the first optical receiver 3 and the level at which the optical pulse signal output from the second optical transmitter 14 leaks to the second optical receiver 13 The level leaking into the optical pulse is -60 dBm or less at the peak value of the optical pulse, which is more than 20 dB lower than the signal light level, so it hardly deteriorates the code error rate.

また、励起光として働く1.32μmの波長の光
は、被増幅光である1.55μmの波長の光パルス信
号とは逆方向に伝搬しているし、またDMI符号で
変調された光パルス信号なのでパルスの“1”や
“0”の連続時間が約10ms以下と小さく、しか
もマーク率が一定であるので、光フアイバ誘導散
乱増幅は数10ms以上の時間ではほぼ平均的に生
じる。
In addition, the light with a wavelength of 1.32 μm that acts as excitation light is propagating in the opposite direction to the optical pulse signal with a wavelength of 1.55 μm, which is the light to be amplified, and since it is an optical pulse signal modulated with a DMI code, it is pulsed. Since the continuous time of "1" or "0" is as short as about 10 ms or less, and the mark rate is constant, optical fiber stimulated scattering amplification occurs almost on average over a period of several tens of ms or more.

光フアイバ誘導散乱増作用が起こる増幅距離は
数10msの伝搬時間に相当する距離(約5m)よ
りも十分に長いから、光増幅利得が第1の電気信
号入力端子5に入力する信号の符号の変化によつ
て変るということはほとんどない。また、長距離
光フアイバ伝送システムでは、光フアイバ伝送路
10を伝搬してきた信号光はその出射端の近くで
は微弱なレベルに減少している。そのために、光
フアイバ出射端の近くで光フアイバ誘導散乱増幅
作用による約30dBの光増幅が行なわれても、励
起光である1.32μmの波長の光から被増幅光であ
る1.55μmの波長の光へのエネルギーの移動はわ
ずかで、これによる励起光である1.32μmの波長
の光のレベル低下はほとんど問題にならない。な
お、励起光として働く波長1.32μmの信号光は光
フアイバ伝送路10を伝搬していくと光フアイバ
の損失によりレベルが低下していくから、光フア
イバ誘導散乱増幅作用は第1の光送受信機1の近
くでは起こるが、第2の光送受信機11に近い方
では起こらない。
Since the amplification distance at which the optical fiber stimulated scattering enhancement effect occurs is sufficiently longer than the distance (approximately 5 m) corresponding to a propagation time of several tens of ms, the optical amplification gain is equal to the sign of the signal input to the first electrical signal input terminal 5. It rarely changes with change. Furthermore, in a long-distance optical fiber transmission system, the signal light propagated through the optical fiber transmission line 10 is reduced to a weak level near its output end. Therefore, even if approximately 30 dB of optical amplification is performed near the output end of the optical fiber due to the optical fiber stimulated scattering amplification effect, the excitation light with a wavelength of 1.32 μm will be replaced by the amplified light with a wavelength of 1.55 μm. The energy transfer to is small, and the resulting drop in the level of the excitation light with a wavelength of 1.32 μm is hardly a problem. Note that as the signal light with a wavelength of 1.32 μm, which acts as excitation light, propagates through the optical fiber transmission line 10, its level decreases due to loss in the optical fiber, so the optical fiber stimulated scattering amplification effect is the same as that of the first optical transceiver. 1, but not near the second optical transceiver 11.

従来の光フアイバ双方向伝送システムでは、第
1、第2の光送信機2,14の光源に半導体レー
ザや発光ダイオードを使用していたが、ビツトレ
イトが前記実施例と同等の100Mb/sの場合、許
容送受信部間損失は約40dB以下であつた。従つ
て、前記実施例では従来に比べて約26dBの許容
伝送路損失の改善が出来ている。光フアイバ伝送
路10に損失が0.6dB/Km以下のものを使用すれ
ば、前記実施例では伝送路距離は従来に比べて40
Km以上長く出来る。
In the conventional optical fiber bidirectional transmission system, a semiconductor laser or a light emitting diode is used as the light source of the first and second optical transmitters 2 and 14, but when the bit rate is 100 Mb/s, which is the same as in the above embodiment, The allowable loss between the transmitting and receiving sections was approximately 40 dB or less. Therefore, in the embodiment, the permissible transmission line loss can be improved by about 26 dB compared to the conventional example. If an optical fiber transmission line 10 with a loss of 0.6 dB/Km or less is used, the transmission line distance in the above embodiment is 40
You can go longer than Km.

また、前記実施例では1.32μmの波長の信号光
を、光フアイバ誘導散乱増幅を起こさせる励起光
にも使用しているので、励起用の光源を特別に使
用しないでよいという特長もある。
Further, in the above embodiment, since the signal light having a wavelength of 1.32 μm is also used as the excitation light for causing optical fiber stimulated scattering amplification, there is also the advantage that there is no need to use a special light source for excitation.

なお、前記実施例で第1の電気信号入力端子5
に信号が入力されないときには、Nd:YAGレー
ザ9の出力光は光変調器8で変調を受けずに低損
失でこの光変調器8を通過するように、光変調器
8のバイアスレベルを設定しておいてもよい。こ
のようにすれば、第1の電気信号入力端子5に信
号が入力されないときにも、第1の光送受信機1
からは光が送出されて光フアイバ誘導散乱増幅が
可能なので、時分割の双方向伝送が可能になる。
Note that in the above embodiment, the first electrical signal input terminal 5
The bias level of the optical modulator 8 is set so that when no signal is input to the optical modulator 8, the output light of the Nd:YAG laser 9 passes through the optical modulator 8 with low loss without being modulated by the optical modulator 8. You can leave it there. In this way, even when no signal is input to the first electrical signal input terminal 5, the first optical transceiver 1
Since light is transmitted from the optical fiber and can be amplified by stimulated scattering through optical fibers, time-division bidirectional transmission becomes possible.

また、前記実施例で第1の光送信機2のNd:
YAGレーザ9の波長は1.32μm、第2の光送信
機14の出力光の波長は1.55μmであるとした
が、第1の光送受信機1の送出光により第2の光
送受信機11から伝送されてきた光信号が光フア
イバ伝送路10の中で光フアイバ誘導散乱増幅さ
れると共に、波長多重双方向伝送が可能な限り、
他の波長であつてもよい。
Further, in the above embodiment, Nd of the first optical transmitter 2:
The wavelength of the YAG laser 9 is 1.32 μm, and the wavelength of the output light of the second optical transmitter 14 is 1.55 μm. The optical signal that has been transmitted is amplified by fiber-stimulated scattering in the optical fiber transmission line 10, and as long as wavelength multiplexing bidirectional transmission is possible,
Other wavelengths may also be used.

なお、第1の電気信号入力端子5に入力してい
る信号はDMI符号パルスで変調された2値のパル
ス信号であるとしたが、CMI符号やバイフエーズ
符号等の一般的な1B2Bタイプの符号でもよい
し、また一般的にmBnBタイプの符号でもよい。
第2の電気信号入力端子15に入力する信号に
は、前記のような信号を用いてもよいし、また多
値のパルス信号でもよいし、アナログ信号でもよ
い。
Although the signal input to the first electrical signal input terminal 5 is a binary pulse signal modulated with DMI code pulses, it may also be a general 1B2B type code such as a CMI code or biphase code. It may also be an mBnB type code in general.
The signal input to the second electrical signal input terminal 15 may be a signal such as that described above, a multivalued pulse signal, or an analog signal.

この発明によれば以上説明したように、従来よ
りも伝送路距離が長くできる光フアイバ双方向伝
送システムが得られる。
According to the present invention, as described above, it is possible to obtain an optical fiber bidirectional transmission system in which the transmission path distance can be longer than that of the conventional system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の構成を示すブロ
ツク図である。 1,11……光送受信機、2,14……光送信
機、3,13……光受信機、4,12……光双方
向分波回路、5,15……電気信号入力端子、
6,16……電気信号出力端子、7……駆動回
路、8……光変調器、9……Nd:YAGレーザ、
10……光フアイバ伝送路。
FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention. 1, 11... Optical transceiver, 2, 14... Optical transmitter, 3, 13... Optical receiver, 4, 12... Optical bidirectional branching circuit, 5, 15... Electric signal input terminal,
6, 16... Electric signal output terminal, 7... Drive circuit, 8... Optical modulator, 9... Nd:YAG laser,
10...Optical fiber transmission line.

Claims (1)

【特許請求の範囲】[Claims] 1 第1の光送受信機と、第2の光送受信機と、
光フアイバ伝送路とを備え、前記第1の光送受信
機の送信信号光を励起光として前記第2の光送受
信機から伝送されてきた信号光が前記光フアイバ
伝送路中で光フアイバ誘導散乱増幅作用により光
増幅されることを特徴とする光フアイバ双方向伝
送システム。
1 a first optical transceiver, a second optical transceiver,
an optical fiber transmission line, the signal light transmitted from the second optical transceiver using the transmission signal light of the first optical transceiver as excitation light is optical fiber stimulated scattering amplification in the optical fiber transmission line. An optical fiber bidirectional transmission system characterized by optical amplification through action.
JP56183301A 1981-11-16 1981-11-16 Optical fiber bidirectional transmission system Granted JPS5884550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56183301A JPS5884550A (en) 1981-11-16 1981-11-16 Optical fiber bidirectional transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56183301A JPS5884550A (en) 1981-11-16 1981-11-16 Optical fiber bidirectional transmission system

Publications (2)

Publication Number Publication Date
JPS5884550A JPS5884550A (en) 1983-05-20
JPS626375B2 true JPS626375B2 (en) 1987-02-10

Family

ID=16133269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56183301A Granted JPS5884550A (en) 1981-11-16 1981-11-16 Optical fiber bidirectional transmission system

Country Status (1)

Country Link
JP (1) JPS5884550A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63179633A (en) * 1987-01-21 1988-07-23 Nippon Telegr & Teleph Corp <Ntt> Optical communication system
JPH01130638A (en) * 1987-11-16 1989-05-23 Nec Corp Frequency multiplex optical two-way transmitter
DE3827228A1 (en) * 1988-08-11 1990-02-15 Standard Elektrik Lorenz Ag TRANSMITTER / RECEIVER FOR A BIDIRECTIONAL COHERENT-OPTICAL TRANSMISSION SYSTEM
JP3831227B2 (en) 2001-10-30 2006-10-11 三菱電機株式会社 Single core bidirectional transmission equipment
JP3923343B2 (en) 2002-03-15 2007-05-30 三菱電機株式会社 Single fiber bidirectional optical transmission system
JP6026832B2 (en) * 2012-09-25 2016-11-16 日本電信電話株式会社 Optical communication system

Also Published As

Publication number Publication date
JPS5884550A (en) 1983-05-20

Similar Documents

Publication Publication Date Title
JP3036876B2 (en) Optical transmitter
US6263139B1 (en) Optical transmission system with group velocity dispersion compensation
JP2718770B2 (en) Transceiver for bidirectional coherent optical transmission system
US4963832A (en) Erbium-doped fiber amplifier coupling device
Korotky et al. 4-Gb/s transmission experiment over 117 km of optical fiber using a Ti: LiNbO 3 external modulator
EP0944191A1 (en) Method for optical fiber communication, and device and system for use in carrying out the method
US5546414A (en) Mode-locked fiber ring laser
JPS6258558B2 (en)
JPH03139617A (en) Optical signal transmission system
JP2816303B2 (en) Optical waveguide laser device
GB2175766A (en) Fibre optic communication systems
Hagimoto et al. An optical bit-rate flexible transmission system with 5-Tb/s-km capacity employing multiple in-line erbium-doped fiber amplifiers
US5285306A (en) Optical communication system with a fiber optic amplifier
JPS626375B2 (en)
JPH09197452A (en) Optical fiber communication system
US6130775A (en) Bidirectional optical fiber amplifier
JPS6175326A (en) In-fiber optical amplifying and transmitting device
US6721088B2 (en) Single-source multiple-order raman amplifier for optical transmission systems
US8538218B2 (en) Unrepeatered long haul optical fiber transmission systems
Aida et al. Design and performance of a long-span IM/DD optical transmission system using remotely pumped optical amplifiers
US5235604A (en) Optical amplifier using semiconductor laser as multiplexer
US6671466B1 (en) Distortion compensation in optically amplified lightwave communication systems
US6091542A (en) Optical fiber amplifier for amplifying signal lights propagating in two opposite directions
CN109995525B (en) Signal transmission method, device and system for quantum key distribution system
KR100446541B1 (en) Dispersion-compensated raman optical fiber amplifier