JPS626312A - Dc stabilized power unit - Google Patents

Dc stabilized power unit

Info

Publication number
JPS626312A
JPS626312A JP14470285A JP14470285A JPS626312A JP S626312 A JPS626312 A JP S626312A JP 14470285 A JP14470285 A JP 14470285A JP 14470285 A JP14470285 A JP 14470285A JP S626312 A JPS626312 A JP S626312A
Authority
JP
Japan
Prior art keywords
voltage
output voltage
output
stabilized
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14470285A
Other languages
Japanese (ja)
Inventor
Katsunori Hayashi
克典 林
Shigenori Yokoooji
横大路 重徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14470285A priority Critical patent/JPS626312A/en
Publication of JPS626312A publication Critical patent/JPS626312A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent a hunting phenomenon and to stabilize the output voltage concurrently with impression of the input voltage, by providing an automatic varying circuit for output voltage to a DC stabilized power unit. CONSTITUTION:When the non-stabilized DC voltage is impressed to the input terminals 1 and 2, a reference voltage generator 6 of a constant voltage regulator 5 works to generate the stabilized DC current voltage VB at a point B. This voltage VB is supplied to an error amplifier 7 together with the output voltage VF. Thus the DC voltage Vout of a fixed level is always produced between terminals 3 and 4 via a transistor 8. Here, an automatic varying circuit 11 for output voltage consists of resistances 13-16, 19 and 21 and capacitors 17 and 20. While a switch 18 is provided to an automatic varying terminal 12 for output voltage. Thus, the output voltage is automatically varied by the short circuit of the switch 18. Thus the stable reference voltage VBX is supplied to the amplifier 7 concurrently with application of the input voltage. In such a way, the stable output voltage Vout is obtained.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は直流安定化電源装置に係り、特に出力電圧を外
部信号により可変可能とした機能を有する電源装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a DC stabilized power supply device, and particularly to a power supply device having a function of making the output voltage variable by an external signal.

〔発明の背景〕[Background of the invention]

直流安定化電源装置の直流出力電圧を定常時の電圧値よ
り高電位値または、低電位値にステップ的に自動可変す
る方法として第3図により従来技術の回路構成を説明す
る。
A conventional circuit configuration will be described with reference to FIG. 3 as a method for automatically varying the DC output voltage of a DC stabilized power supply device stepwise from a normal voltage value to a higher potential value or a lower potential value.

図中1.2は入力端子であり、この入力端子に非安定化
直流電圧(VrN)が印加されると定電圧レギュレータ
5のA点にも電圧が印加されるため、基準電圧発生器6
が動作し、B点にはある安定化直流電圧(VB)が発生
する。さらにこの電圧は抵抗13(抵抗値R5)、抵抗
14(抵抗値R6)、抵抗15(抵抗値R7)、抵抗1
6(抵抗値Rs)により分圧され直流電圧VBXは誤差
増幅器7の非反転入力端子り点に印加される。それと同
時にトランジスタ8が駆動されF点にはある電圧(VF
)が発生する。この直流電圧vFは抵抗9(抵抗値Ra
 )と抵抗10(抵抗値R4’)により分割さVF・(
R4) れR4+13  なる電圧が誤差増幅器7の反転入力端
子(E点)に印加されており、常にD点の電圧と比較し
、端子3と端子4の間には常に一定BX の直流電圧[: VOUT−−Kv(R4+R3) ”
lが発生するように制御される。このような直流安定化
電源装置の出力電圧を可変する方法としては、出力電圧
CVOUT =里(R4+R3)’l K オイテ、V
RXを変化させる方法がとられる。すなわちVBXを高
くすれば出力電圧VOUTも高くなり、 VBXを低く
すれば出力電圧VOUTも小さくなる。この方法は抵抗
13 、14 、15 、16により定常時り点の直流
Vu・(R7+Rs) 電圧vBXハvBX=R5+R6+R7+R8テ与エラ
レる。この状態において抵抗13と抵抗16の両端に接
続された直流安定化電源装置外から容易に接続可能な出
力電圧可変端子12(端子G、H,I。
Reference numeral 1.2 in the figure is an input terminal, and when an unregulated DC voltage (VrN) is applied to this input terminal, a voltage is also applied to the point A of the constant voltage regulator 5, so the reference voltage generator 6
operates, and a certain stabilized DC voltage (VB) is generated at point B. Furthermore, this voltage is resistor 13 (resistance value R5), resistor 14 (resistance value R6), resistor 15 (resistance value R7), resistor 1
6 (resistance value Rs) and the DC voltage VBX is applied to the non-inverting input terminal of the error amplifier 7. At the same time, transistor 8 is driven and a certain voltage (VF
) occurs. This DC voltage vF is applied to the resistor 9 (resistance value Ra
) and resistor 10 (resistance value R4').
A voltage of R4+13 is applied to the inverting input terminal (point E) of the error amplifier 7, and is always compared with the voltage at point D, and a constant DC voltage of BX is always present between terminals 3 and 4. VOUT--Kv(R4+R3)"
It is controlled so that l occurs. As a method of varying the output voltage of such a DC stabilized power supply device, the output voltage CVOUT=R4+R3'l K Oite, V
A method is used to change RX. That is, if VBX is increased, the output voltage VOUT will also be increased, and if VBX is decreased, the output voltage VOUT will also be decreased. In this method, the resistors 13, 14, 15, and 16 provide the DC voltage Vu.(R7+Rs) voltage vBX=R5+R6+R7+R8 at the steady state point. In this state, the output voltage variable terminals 12 (terminals G, H, I) that can be easily connected from outside the DC stabilized power supply device are connected to both ends of the resistor 13 and the resistor 16.

J)の端子GとH間をスイッチ18かリレー接点を用い
て短絡すると、B点の直流電圧VBXは−vB・(R7
十R8) vBX= Rs + R7+ R8となり同時に出力電
圧votr’rBX もVOUT =]7(R4+ Ra )で与えられ高く
なる。
When terminals G and H of J) are short-circuited using switch 18 or relay contact, the DC voltage VBX at point B becomes -vB・(R7
10R8) vBX=Rs+R7+R8, and at the same time, the output voltage votr'rBX is also given by VOUT=]7(R4+Ra) and becomes high.

端子■と5間を短絡するとB点の直流電圧Vsx=VB
・(R7) R5+R6+R7で与えられ低くなる。すなわち抵抗9
.抵抗10.抵抗13.抵抗14を適切に選ぶことで所
望の電圧上昇および電圧降下が可能である。
When terminals ■ and 5 are shorted, DC voltage at point B Vsx = VB
-(R7) is given by R5+R6+R7 and becomes low. i.e. resistance 9
.. Resistance 10. Resistance 13. By appropriately selecting the resistor 14, a desired voltage increase and voltage drop can be achieved.

しかしながらこの方法は安価ではあるが、端子間をスイ
ッチなどで瞬時的に短絡する方法のため、出力電圧も瞬
時的に上昇または降下させるため、第3図で示される様
な動作時間遅れのあるフィードバックループを持つ直流
安定化電源装置では、その出力電圧には出力可変操作を
行う毎にハンチング現象が表れたり、出力電圧のハンチ
ング現象からくるフィードバックループ全体の発振現象
が表れる欠点があり、出力電圧のステップ的な可変範囲
を大きくすることに困難であるため、従来技術では第4
図に示す如くコンデンサ17(容量C)を直流電圧Vn
xの出力端子間に接続することで端子Gと端子H間を短
絡した場合は容tCへ充電電流が流れるため。
However, although this method is inexpensive, since the terminals are instantaneously short-circuited using a switch or the like, the output voltage also increases or decreases instantaneously, resulting in feedback with a delay in operation time as shown in Figure 3. A DC stabilized power supply with a loop has the drawback that a hunting phenomenon appears in the output voltage every time an output variable operation is performed, and an oscillation phenomenon of the entire feedback loop due to the hunting phenomenon of the output voltage appears. Because it is difficult to increase the stepwise variable range, the conventional technology
As shown in the figure, the capacitor 17 (capacitance C) is connected to a DC voltage Vn
If the terminal G and terminal H are shorted by connecting between the output terminals of x, charging current will flow to the capacitor tC.

スイッチ18によるステップ的な変化は緩和され。The step change caused by the switch 18 is relaxed.

に変化する。次にスイッチ18を短絡状態より開放状態
にしたとすると回路には抵抗13が存在することになり
電圧VBXは電圧VBUから電圧VBNへ変化する。し
かしここでも前述のコンデンサ17の容量Cへの充電電
流が放電されるため電圧VBUから電圧VBNへゆっく
りと変化し、最終的に電圧VBNへ達する。同様に端子
Iと端子5間VBDからVBNと変化し、出力電圧VO
UTもゆっくりとした変化で決定される。しかしながら
入力電圧VINの印加時については配慮されておらず。
Changes to Next, when the switch 18 is changed from the short-circuited state to the open state, the resistor 13 is present in the circuit, and the voltage VBX changes from the voltage VBU to the voltage VBN. However, since the charging current to the capacitance C of the capacitor 17 described above is discharged here, the voltage VBU changes slowly to the voltage VBN, and finally reaches the voltage VBN. Similarly, the output voltage VO changes from VBD to VBN between terminals I and 5.
UT is also determined by slow changes. However, no consideration is given to the time when the input voltage VIN is applied.

入力電圧vIN印加印加時流直流電圧Xは出力電圧のス
テップ的な変化の緩和のためのコンデンサ17により入
力電圧VINの入力時より遅れである直流電圧VBNに
なる。また、出力電圧VOUTはVBN(Ra +R4
) vOUT=R4であるため、出力電圧 voty’rも電圧VBNと同じく入力電圧VINより
遅れて定常状態となる。すなわち、出力電圧の自動可変
時のステップ的変化を緩和させるためのコンデンサ17
(容量C)が悪影響を及ぼし、入力電圧VIN印加後す
ぐに安定化された出力電圧VOUTが出力されないので
ある。さらに、出力電圧VOUTの自動可変時のステッ
プ的変化の緩和の度合いを強くするとき、コンデンサ1
7の容量Cが大きくなり、出力電圧VO[JTの安定化
はさらに遅くなる。前述を含めて出力電圧の早期安定化
が困難であった。
When the input voltage vIN is applied, the DC voltage X becomes the DC voltage VBN which lags behind the input voltage VIN due to the capacitor 17 for alleviating stepwise changes in the output voltage. Also, the output voltage VOUT is VBN(Ra +R4
) Since vOUT=R4, the output voltage voty'r also reaches a steady state with a delay from the input voltage VIN, like the voltage VBN. In other words, the capacitor 17 is used to alleviate stepwise changes when automatically varying the output voltage.
(capacitance C) has an adverse effect, and the stabilized output voltage VOUT is not outputted immediately after the input voltage VIN is applied. Furthermore, when increasing the degree of relaxation of step changes during automatic variation of output voltage VOUT, capacitor 1
The capacitance C of 7 becomes larger, and the stabilization of the output voltage VO [JT becomes even slower. Including the above, it was difficult to stabilize the output voltage quickly.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、従来技術の欠点であった入力電圧印加
時の出力電圧の安定化が遅くならず。
An object of the present invention is to avoid the delay in stabilizing the output voltage when an input voltage is applied, which was a drawback of the prior art.

入力電圧印加とはぼ同時に安定化された出力電圧なえら
れる出力電圧自動可変回路を提供することにある。
The object of the present invention is to provide an automatic output voltage variable circuit that can change the stabilized output voltage almost simultaneously with the application of the input voltage.

〔発明の概要〕[Summary of the invention]

従来技術の利点は、出力電圧の自動可変を行っても出力
にハンチング現象、装置に発振現象などの悪影響をあた
えずに可変できるが、欠点として入力電圧印加時、出力
電圧の安定化がおくれる場合がある。本発明は前述の利
点はそのまま利用し、入力電圧印加とほぼ同時に安定な
出力電圧を得るものである。
The advantage of the conventional technology is that even if the output voltage is automatically varied, it can be varied without causing any negative effects such as hunting phenomenon on the output or oscillation phenomenon on the device, but the disadvantage is that the output voltage is not stabilized when the input voltage is applied. There are cases. The present invention utilizes the above-mentioned advantages as they are, and obtains a stable output voltage almost simultaneously with the application of the input voltage.

〔発明の実施例〕[Embodiments of the invention]

第1図は1本発明の一実施例である出力電圧自動可変端
子を設けた直流安定化電源装置の回路を示す図である。
FIG. 1 is a diagram showing a circuit of a DC stabilized power supply device provided with an automatically variable output voltage terminal, which is an embodiment of the present invention.

回路構成および出力電圧の安定化動作は従来とほぼ同じ
であるため、従来と異なる点のみ述べることにする。第
1図で11は今回の発明にかかわる出力電圧自動可変回
路であり抵抗13.(抵抗値Rs)14.(抵抗値R7
’)15、(抵抗@R9)16 、 (抵抗値R1o)
19.(抵抗値Ru)21.(抵抗値R12)およびコ
ンデンサ17゜(容tcx )20 、 (容flc2
)より構成されている。
Since the circuit configuration and output voltage stabilization operation are almost the same as the conventional one, only the points that are different from the conventional one will be described. In FIG. 1, reference numeral 11 represents an automatic variable output voltage circuit according to the present invention, and a resistor 13. (Resistance value Rs)14. (Resistance value R7
') 15, (resistance @R9) 16, (resistance value R1o)
19. (Resistance value Ru)21. (resistance value R12) and capacitor 17° (capacity tcx) 20, (capacity flc2
).

12は出力電圧自動可変端子でこの端子のG−H67間
またはI−Jピッ間をスイッチ18で短絡することで出
力電圧を自動可変する。第2図の定常時に粘ける出力端
子3と4間の出力電圧る。ここで以下の説明のため凹ヒ
」ΩをVmNr。
Reference numeral 12 denotes an output voltage automatic variable terminal, and the output voltage is automatically varied by short-circuiting between G and H67 or between I and J pins of this terminal with a switch 18. The output voltage between output terminals 3 and 4 is sticky during steady state in FIG. Here, for the following explanation, the concave resistance Ω is expressed as VmNr.

Rs + R7 をVBDIと表す。Rs + R7 is expressed as VBDI.

この状態において出力電圧自動可変端子のG−Hピッ間
を短絡すると、コンデンサ17(容量C1)より抵抗1
9(抵抗値Ru )を経由して放電することによりスイ
ッチ18によるステップ的な変化は緩和され誤差増幅器
7の非反転入力端子(D点)への印加電圧VBXは電圧
VBN rより電圧VBUIへゆっくりとした変化で最
終的にVOUT :vBUI・(R3+R4) 、     K変化する。次にスイッチ18を短絡状態
より開放状態1(シたとすると抵抗15(抵抗値R9’
)を経由してコンデンサ17に充電電流が流れ、 VB
UIからVBN Iへゆっくりと変化し。
In this state, if you short-circuit between G and H pins of the output voltage automatic variable terminal, the capacitor 17 (capacitance C1) will be connected to the resistor 1.
9 (resistance value Ru), the stepwise change caused by the switch 18 is alleviated, and the voltage VBX applied to the non-inverting input terminal (point D) of the error amplifier 7 slowly changes from the voltage VBNr to the voltage VBUI. As a result of this change, VOUT:vBUI・(R3+R4),K will finally change. Next, if the switch 18 is changed from the short-circuited state to the open state 1 (resistance value R9'), the resistor 15 (resistance value R9'
) A charging current flows to the capacitor 17 via VB
Slowly changes from UI to VBN I.

最終1的にVBNIへ達する。また出力電圧自動可変端
子12のI−Jピッ間をスイッチ18により短絡し、そ
の後開放した場合も同様にコンデンサ20からの放電お
よび充電電流のため、VBXはVBNIからVBDIへ
、またVBDIからVBN rへゆっくりとVBX ・
(R3+R4) 変化する。−4−一一一で決まる電圧VOUTもゆっく
りと変化する。すなわち、スイッチ18の出力電圧自動
可変端子G−Hビン間の短絡で出ことができる。これら
の動作内容を時経歴的に表したものが第2図で、出力電
圧自動可変端子G−Hビン間およびI−Jピッ間を短絡
または開放したときの動作内容を示したもので、その変
化はステップ的な変化であってもVBXの変動はコンデ
ンサ17 、20の充放電曲線に比例した形で変化し、
そのVBXの変化に比例し、 VOUTの電圧の変化も
ゆるやかであることを示す。
Eventually you will reach VBNI. Also, when the I-J pins of the output voltage automatic variable terminal 12 are short-circuited by the switch 18 and then opened, VBX changes from VBNI to VBDI and from VBDI to VBN r due to the discharging and charging current from the capacitor 20. VBX slowly to
(R3+R4) Change. The voltage VOUT determined by -4-111 also changes slowly. That is, the output voltage can be output by a short circuit between the output voltage automatic variable terminals G and H bins of the switch 18. Figure 2 shows the contents of these operations over time, and shows the contents of operations when the output voltage automatic variable terminals G and H bins and I and J pins are short-circuited or opened. Even if the change is a step change, the fluctuation of VBX changes in proportion to the charge/discharge curve of capacitors 17 and 20,
This shows that the VOUT voltage changes gradually in proportion to the change in VBX.

また従来技術で前述の利点と併用して持つことのできな
かった入力電圧印加時の出力電圧の早期安定化もR5二
R7、R9= RloおよびC1:C2なる関係になる
ように設計し、各抵抗および各コンデンサの定数のバラ
ツキもほとんどないものとすれば、電圧VBXは入力電
圧の印加とほぼ同時に安定な誤差増幅器7の非反転入力
電圧、すなわちVBNを供給でき、さらに−ゝBNR3
+R41−より決定される出力電圧VOUTも入力電圧
VINの印加とほぼ同時に安定な出力電圧を得ることが
できる。
In addition, early stabilization of the output voltage when input voltage is applied, which was not possible in the conventional technology in combination with the above-mentioned advantages, is achieved by designing the relationship R52R7, R9=Rlo and C1:C2, and each Assuming that there is almost no variation in the constants of the resistor and each capacitor, the voltage VBX can supply the stable non-inverting input voltage of the error amplifier 7, that is, VBN, almost simultaneously with the application of the input voltage, and -BNR3
The output voltage VOUT determined by +R41- can also obtain a stable output voltage almost simultaneously with the application of the input voltage VIN.

さらに出力電圧VOUTの自動可変時のステップ的変化
の緩和の度合いを調整するには、コンデンサ17 、2
0の容量CI、C2または抵抗19 、21の抵抗値R
u 、 R12を変化させることで可能であり。
Furthermore, in order to adjust the degree of relaxation of step changes when automatically varying the output voltage VOUT, capacitors 17 and 2 are used.
0 capacitance CI, C2 or resistance value R of resistors 19 and 21
This is possible by changing u and R12.

定数変化に際しR5:R7、R9:R10、Ct = 
C2の関係を守りさえすれば安定な出力電圧VOUTを
入力電圧印加とほぼ同時に得ることができるという利点
がある。
When changing constants, R5:R7, R9:R10, Ct =
There is an advantage that as long as the relationship C2 is maintained, a stable output voltage VOUT can be obtained almost simultaneously with the application of the input voltage.

:発明の効果〕 以上の様な本発明を採用することにより、スイッチなど
の簡単な信号変換素子を使用して出力電圧自動可変を行
っても、出力にノ・ンチング現象、装置に発振現象など
悪影響が表れず、かつ入力電圧印加とほぼ同時に安定な
出力電圧を得ることができる出力電圧自動可変機能付直
流安定化電源装置を提供することができる。
:Effects of the Invention] By adopting the present invention as described above, even if the output voltage is automatically varied using a simple signal conversion element such as a switch, there will be no knocking phenomenon in the output, oscillation phenomenon in the device, etc. It is possible to provide a DC stabilized power supply device with an automatic output voltage variable function that does not exhibit any adverse effects and can obtain a stable output voltage almost simultaneously with input voltage application.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の回路図、第2図は動作内容
の説明図、第3図、第4図は従来技術による回路図であ
る。 6・・・基醜電圧発生器、 7・・・誤差増幅器。 8・・・直列制御トランジスタ。 11・・・出力可変回路、12・・・出力電圧可変端子
、〆
FIG. 1 is a circuit diagram of an embodiment of the present invention, FIG. 2 is an explanatory diagram of the operation contents, and FIGS. 3 and 4 are circuit diagrams according to the prior art. 6... Basic voltage generator, 7... Error amplifier. 8...Series control transistor. 11...Variable output circuit, 12...Variable output voltage terminal,

Claims (1)

【特許請求の範囲】[Claims] 1、基準電圧と出力電圧の差を誤差増幅器で検知し、そ
の差に応じて出力電圧を制御し安定化する定電圧レギュ
レータを含む直流安定化電源装置において、前記基準電
圧を2個の抵抗で分割し、該抵抗で分割した電圧を目的
の基準電圧として使用し、該抵抗の各々に抵抗とコンデ
ンサの直列接続よりなる回路を並列接続し、各々のコン
デンサ両端を抵抗を通して短絡することで目的の基準電
圧を可変し、出力電圧を可変させることを特徴とする直
流安定化電源装置。
1. In a DC stabilized power supply device that includes a constant voltage regulator that detects the difference between a reference voltage and an output voltage using an error amplifier, and controls and stabilizes the output voltage according to the difference, the reference voltage is controlled by two resistors. The voltage divided by the resistor is used as the target reference voltage, and a circuit consisting of a series connection of a resistor and a capacitor is connected in parallel to each of the resistors, and both ends of each capacitor are short-circuited through the resistor to obtain the target voltage. A DC stabilized power supply device characterized by varying the reference voltage and varying the output voltage.
JP14470285A 1985-07-03 1985-07-03 Dc stabilized power unit Pending JPS626312A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14470285A JPS626312A (en) 1985-07-03 1985-07-03 Dc stabilized power unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14470285A JPS626312A (en) 1985-07-03 1985-07-03 Dc stabilized power unit

Publications (1)

Publication Number Publication Date
JPS626312A true JPS626312A (en) 1987-01-13

Family

ID=15368291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14470285A Pending JPS626312A (en) 1985-07-03 1985-07-03 Dc stabilized power unit

Country Status (1)

Country Link
JP (1) JPS626312A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007327144A (en) * 2006-06-06 2007-12-20 Harada Sangyo Kk Overalls

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007327144A (en) * 2006-06-06 2007-12-20 Harada Sangyo Kk Overalls

Similar Documents

Publication Publication Date Title
US6885177B2 (en) Switching regulator and slope correcting circuit
JP3963794B2 (en) DC / DC converter
US6946821B2 (en) Voltage regulator with enhanced stability
TWI449290B (en) Phase current sharing network, current mode multiphase switching regulator and method for sharing current among phases thereof
US11418113B2 (en) Inductor current emulator circuit and inductor current emulation method
TW200934073A (en) Switching regulator with balanced control configuration with filtering and referencing to eliminate compensation
JP2004088956A (en) Power circuit
US5959853A (en) Closed-loop switched capacitor network power supply
US9374007B2 (en) DC/DC converter
KR20100027370A (en) Stability compensating circuit and a dc-dc converter having the same
JP2765844B2 (en) Voltage regulator for generator
US4403279A (en) Vehicular plural voltage system
JPS626312A (en) Dc stabilized power unit
JPS60142411A (en) Constant voltage power supply circuit
JP3776612B2 (en) Semiconductor integrated circuit
JPH06273476A (en) Voltage application current measurement circuit
SU1589377A1 (en) Power amplifyer
JPH0749538Y2 (en) Electronic load device
JPH0418255Y2 (en)
JPS6117368B2 (en)
JPS6119141B2 (en)
JPS622547Y2 (en)
JPS60110021A (en) Voltage stabilizing circuit provided with low voltage detecting circuit
JP6528611B2 (en) Control circuit and switching power supply
JPS6023733Y2 (en) Power supply voltage monitoring circuit