JPS626276Y2 - - Google Patents
Info
- Publication number
- JPS626276Y2 JPS626276Y2 JP1982077897U JP7789782U JPS626276Y2 JP S626276 Y2 JPS626276 Y2 JP S626276Y2 JP 1982077897 U JP1982077897 U JP 1982077897U JP 7789782 U JP7789782 U JP 7789782U JP S626276 Y2 JPS626276 Y2 JP S626276Y2
- Authority
- JP
- Japan
- Prior art keywords
- chamber
- valve
- diaphragm
- passage
- negative pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 241000234435 Lilium Species 0.000 claims description 8
- 230000001105 regulatory effect Effects 0.000 claims description 8
- 238000011144 upstream manufacturing Methods 0.000 claims description 6
- 239000000446 fuel Substances 0.000 description 42
- 230000007423 decrease Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000006200 vaporizer Substances 0.000 description 1
Landscapes
- Control Of The Air-Fuel Ratio Of Carburetors (AREA)
Description
【考案の詳細な説明】 この考案は内燃機関用気化器の改良に関する。[Detailed explanation of the idea] This invention relates to an improvement in a carburetor for an internal combustion engine.
ベンチユリからその下流のスロツトルバルブを
経て吸気管に至る空気路と、フロート室からメイ
ンジエツトを経てベンチユリに開口するノズルに
至る主燃料通路(メイン通路)と、フロート室か
らスロージエツトを経てスロツトルバルブが所定
開度の時にスロツトルバルブの下流側になる部分
に開口するスローポートに至る低速燃料通路(ス
ロー通路)とをもつ従来の気化器は、吸入空気量
が大きくて吸気管負圧が小さいときには空燃比が
リーン(過薄)になる傾向があり、吸気管負圧が
大きいときには吸入空気量が小さい低負荷時でも
空燃比がリツチになる傾向があり、加速時のドラ
イバビリテイや低負荷時の燃費の面より好ましく
ない特性であつた。 There is an air passage from the bench lily to the intake pipe via the throttle valve downstream of it, a main fuel passage (main passage) from the float chamber to the main jet to the nozzle opening into the bench lily, and a throttle valve from the float chamber via the slow jet. Conventional carburetors have a low-speed fuel passage (slow passage) leading to a slow port that opens on the downstream side of the throttle valve at a predetermined opening, but when the intake air amount is large and the intake pipe negative pressure is small, The air-fuel ratio tends to be lean (too lean), and when the intake pipe negative pressure is large, the air-fuel ratio tends to become rich even at low loads when the amount of intake air is small, which affects drivability during acceleration and at low loads. This was a less favorable characteristic than in terms of fuel efficiency.
この考案は、上記にかんがみ、低負荷時には空
燃比をリーンにし、加速時にはリツチにして燃費
とドライバビリテイの改善を両立させた気化器を
提案するのが目的である。 In view of the above, the purpose of this invention is to propose a carburetor that improves both fuel efficiency and drivability by keeping the air-fuel ratio lean during low loads and rich during acceleration.
従来の気化器は、低速燃料通路の開口部、即ち
燃料の出口であるスローポートが全体としてスロ
ツトルバルブの下流側に偏つて位置している。そ
のため吸入空気量に対する空燃比(A/F)の線
図が水平にならない。その理由は吸入空気量が一
定の場合でも低速燃料通路(スロー通路)にかか
る吸気管負圧が大きいときにはスロー通路燃料
(スロー流量)が多くなつて空燃比がリツチにな
り、逆に吸気管負圧が小さい時には、スロー流量
が少なくなつて空燃比がリーンになるためであ
る。 In conventional carburetors, the opening of the low-speed fuel passage, that is, the slow port, which is the fuel outlet, is generally located downstream of the throttle valve. Therefore, the diagram of the air-fuel ratio (A/F) with respect to the intake air amount is not horizontal. The reason for this is that even when the amount of intake air is constant, when the intake pipe negative pressure applied to the low-speed fuel passage (slow passage) is large, the slow passage fuel (slow flow rate) increases and the air-fuel ratio becomes rich; This is because when the pressure is low, the slow flow rate decreases and the air-fuel ratio becomes lean.
通常の気化器では、スロツトルバルブが低開度
の時、即ち吸入空気量が小さい時、スローポート
がスロツトルバルブの下流側と上流側にまたがつ
て位置し、スロツトルバルブが所定以上開いた時
にはスローポートが常にスロツトルバルブの下流
側に位置するようになつており、吸入空気量に対
するスロー通路負圧の特性は第1図に示すよう
に、所定空気量以上では吸気管負圧によりスロー
通路負圧が異なる。 In a normal carburetor, when the throttle valve is at a low opening, that is, when the amount of intake air is small, the slow port is located astride the downstream and upstream sides of the throttle valve, and the throttle valve opens more than a predetermined amount. The slow port is always located on the downstream side of the throttle valve, and as shown in Figure 1, the characteristics of the slow passage negative pressure with respect to the intake air amount are such that when the amount of air exceeds a predetermined amount, the intake pipe negative pressure The slow passage negative pressure is different.
メイン通路の燃料流量は吸入空気量に応じて流
出するから吸入空気量が一定値を越えると比例し
て大きくなるというようにほゞ同じ傾向で変化す
るが、スロー通路の燃料流量はスロー通路の負圧
に応じて流出するから第2図に明らかなように吸
気管負圧360mmHgの時の方が−120mmHgの時より
多く流出する。 The fuel flow rate in the main passage flows out according to the amount of intake air, so when the amount of intake air exceeds a certain value, it increases proportionally. Since it flows out in accordance with the negative pressure, as is clear from Figure 2, more air flows out when the intake pipe negative pressure is 360 mmHg than when it is -120 mmHg.
スロー通路とメイン通路の両燃料流量を総合す
ると第3図の特性となる。吸気管負圧が−360mm
Hgの時の空燃比一定になるように第3図の総合
燃料流量の特性を設計すると、−120mmHgでの総
合燃料流量は第3図のように所定空気量以上で空
燃比一定時の燃料流量より少なくなる。 When the fuel flow rates in both the slow passage and the main passage are combined, the characteristics shown in FIG. 3 are obtained. Intake pipe negative pressure is -360mm
If the characteristics of the total fuel flow rate in Figure 3 are designed so that the air-fuel ratio is constant when Hg is applied, the total fuel flow rate at -120mmHg will be the fuel flow rate when the air-fuel ratio is constant at a predetermined amount of air or more, as shown in Figure 3. less.
従つて、第4図のように、所定空気量以上では
吸気管負圧が小さくなる程空燃比(A/F)がリ
ーンになる。又吸気管負圧の大きい領域ではリツ
チになる傾向が生じる。そのため、ドライバビリ
テイ・燃費が悪化するという不具合を生じる。特
に吸入空気量が、第1図から第4図のB′で、吸気
管負圧が−360mmHgのC′点にある場合から、加速
するためにスロツトルを開き、吸入空気量A′、
吸気管負圧が−120mmHgにすると、気化器から供
給された燃料が一部吸気管に付着してリーンにな
るのと、運転条件がC′点からD′点に移るために
空燃比がリーンになるのと重なつてエンジンに供
給される空燃比がリーンになり、車両ドライバビ
リテイが悪化し、排気ガス中のNOX成分が多く
排出される。 Therefore, as shown in FIG. 4, when the amount of air exceeds a predetermined amount, the air-fuel ratio (A/F) becomes leaner as the intake pipe negative pressure becomes smaller. Also, in areas where the intake pipe negative pressure is large, there is a tendency for the intake pipe to become rich. This causes problems such as deterioration of drivability and fuel efficiency. In particular, when the intake air amount is B' in Figures 1 to 4 and the intake pipe negative pressure is -360 mmHg at point C', the throttle is opened to accelerate, and the intake air amount A',
When the intake pipe negative pressure becomes -120 mmHg, some of the fuel supplied from the carburetor adheres to the intake pipe and becomes lean, and the air-fuel ratio becomes lean because the operating conditions shift from point C' to point D'. At the same time as this, the air-fuel ratio supplied to the engine becomes leaner, deteriorating vehicle drivability and emitting more NOx components in the exhaust gas.
逆に減速するために、運転条件がD′点から
C′点に移ると気化器の供給する空燃比がリツチ
になるのと、吸気管負圧が上つて、吸気管内の燃
料が蒸発して燃料の供給量が増大するのが重なつ
て減速時空燃比がリツチになつてHCが多く排出
されるという不具合がある。 Conversely, in order to decelerate, the operating conditions change from point D′.
As we move to point C', the air-fuel ratio supplied by the carburetor becomes rich, the negative pressure in the intake pipe rises, the fuel in the intake pipe evaporates, and the amount of fuel supplied increases. The problem is that the fuel ratio becomes rich and more HC is emitted.
この考案はこのような不具合を解消するもの
で、ベンチユリからその下流のスロツトルバルブ
を経て吸気管に至る空気通路と、フロート室から
メインジエツトを経てベンチユリに開口するノズ
ルに至るメイン通路と、フロート室からスロージ
エツトを経てスロツトルバルブが所定開度の時に
スロツトルバルブの下流側になる部分に開口する
スローポートに至るスロー通路とをもつ気化器に
おいて、面積の小さい第1のダイアフラム9に面
する調圧室19と、第1のダイアフラム9とこれ
より面積の大きい第2のダイアフラム10とには
さまれた負圧室20と、第2のダイアフラム10
に面する大気室21とを順に隣接して配置したレ
ギユレータ8を設け、第1のダイアフラム9と第
2のダイアフラム10の中央部をバルブ16に連
結し、このバルブ16とこれに協働するシート1
7で構成される圧力制御弁18を介して大気室2
1をスロー通路3に連通するとともに、大気室2
1を連通路24を介してスロツトルバルブ上流の
開口25に連通し、さらに、調圧室19をスロー
通路3に、負圧室20を吸気管7の開口27に連
通し、バルブ16を常時閉じる側へ付勢するばね
22を設け、バルブ16は調圧室19又は負圧室
20の負圧が大きくなるとシート17から離れる
方向に移動するように定めたことを特徴とする二
重ダイアフラムレギユレータ付気化器である。 This idea eliminates these problems, and includes an air passage from the bench lily to the intake pipe via the downstream throttle valve, a main passage from the float chamber to the nozzle opening into the bench lily via the main jet, and a main passage from the float chamber to the nozzle opening into the bench lily. In a carburetor having a slow passage from the slow jet to the slow port that opens on the downstream side of the throttle valve when the throttle valve is at a predetermined opening degree, there is a slow passage facing the first diaphragm 9 having a small area. A pressure chamber 19, a negative pressure chamber 20 sandwiched between the first diaphragm 9 and a second diaphragm 10 having a larger area, and the second diaphragm 10.
A regulator 8 is provided in which atmospheric chambers 21 facing the air are arranged adjacent to each other in order, and the center portions of the first diaphragm 9 and the second diaphragm 10 are connected to a valve 16, and the valve 16 and a seat cooperating therewith are connected to each other. 1
Atmospheric chamber 2 via pressure control valve 18 consisting of
1 to the slow passage 3, and the atmospheric chamber 2
1 is communicated with the opening 25 upstream of the throttle valve via the communication passage 24, furthermore, the pressure regulating chamber 19 is communicated with the slow passage 3, the negative pressure chamber 20 is communicated with the opening 27 of the intake pipe 7, and the valve 16 is kept open at all times. A double diaphragm leg is provided with a spring 22 that biases it toward the closing side, and the valve 16 is set to move away from the seat 17 when the negative pressure in the pressure regulating chamber 19 or the negative pressure chamber 20 increases. It is a vaporizer with a urator.
以下図面の実施例に基づいて説明する。 The following description will be made based on the embodiments shown in the drawings.
第5図において、気化器1はスローポート2に
連通するスロー通路3を備えている。4はアイド
ルポート、5はスロツトルバルブ、7は吸気管
で、スロー通路3は図示されてないスロージエツ
トを介してフロート室に連通している。又、スロ
ーポート2はスロツトルバルブ5の開度が小さい
時スロツトルバルブ5の先端付近にあり、かつ、
スロツトルバルブ5が所定以上の開度になると常
時スロツトルバルブの下流側になる所に位置す
る。又、図示されていないメイン通路は一端がフ
ロート室に開口し、他端が気化器のベンチユリ部
に開口する主ノズルに連通し、フロート室に近い
部分にメインジエツトを備えている。8はレギユ
レータで、面積の小さい小径のダイアフラム9と
面積の大きい大径のダイアフラム10の周縁を気
密的に挾持するアツパカバー11、センタカバー
12及びロワーカバー13を有し、両ダイアフラ
ム9と10はその中心部が部材14,15及びバ
ルブ16で挾持されている。つまり部材14,1
5とバルブ16は両ダイアフラムを挾んで一体的
に固着されている。バルブ16はその下面がロワ
ーカバー13に形成されたシート17と協働して
圧力制御弁18を構成する。アツパカバー11と
ダイアフラム9は調圧室19を、センタカバー1
2と両ダイヤフラム9,10は負圧室20を、ロ
ワーカバー13とダイヤフラム10は大気室21
をそれぞれ形成する。ばね22はバルブ16を下
方に付勢する。スロー通路3は連通路23を介し
て調圧室19に、又連通路23′と圧力制御弁1
8を介して大気室21に連通している。大気室2
1は別の連通路24を介してスロツトルバルブ5
の上流開口25に連通している。負圧室20は連
通路26介して吸気管7の開口27に連通してい
る。従つて調圧室19にはスロー通路負圧が、負
圧室20には吸気管負圧が、大気室21にはスロ
ツトルバルブ5の上流開口25の圧力と圧力制御
弁18を介してのスロー通路負圧とがそれぞれ印
加される。 In FIG. 5, the carburetor 1 includes a slow passage 3 communicating with a slow port 2. As shown in FIG. 4 is an idle port, 5 is a throttle valve, 7 is an intake pipe, and the slow passage 3 communicates with the float chamber via a slow jet (not shown). Further, the slow port 2 is located near the tip of the throttle valve 5 when the opening degree of the throttle valve 5 is small, and
When the throttle valve 5 reaches a predetermined opening degree or more, it is always located on the downstream side of the throttle valve. Further, a main passage (not shown) opens into the float chamber at one end, communicates with a main nozzle which opens into the bench lily portion of the carburetor at the other end, and is provided with a main jet in a portion close to the float chamber. A regulator 8 has an upper cover 11, a center cover 12, and a lower cover 13 that airtightly sandwich the peripheries of a small-diameter diaphragm 9 with a small area and a large-diameter diaphragm 10 with a large area, and both diaphragms 9 and 10 are located at the center. portion is held between members 14, 15 and valve 16. In other words, member 14,1
5 and the valve 16 are integrally fixed across both diaphragms. The lower surface of the valve 16 cooperates with a seat 17 formed on the lower cover 13 to form a pressure control valve 18 . The atsupah cover 11 and the diaphragm 9 control the pressure regulation chamber 19, and the center cover 1
2 and both diaphragms 9 and 10 form a negative pressure chamber 20, and the lower cover 13 and diaphragm 10 form an atmospheric chamber 21.
form each. Spring 22 biases valve 16 downwardly. The slow passage 3 is connected to the pressure regulating chamber 19 via the communication passage 23, and to the pressure control valve 1 through the communication passage 23'.
It communicates with the atmospheric chamber 21 via 8. Atmospheric chamber 2
1 is connected to the throttle valve 5 via another communication path 24.
It communicates with the upstream opening 25 of. The negative pressure chamber 20 communicates with an opening 27 of the intake pipe 7 via a communication passage 26 . Therefore, the slow passage negative pressure is in the pressure regulating chamber 19, the intake pipe negative pressure is in the negative pressure chamber 20, and the pressure in the upstream opening 25 of the throttle valve 5 and the pressure in the upstream opening 25 of the throttle valve 5 is in the atmospheric chamber 21 via the pressure control valve 18. A slow passage negative pressure is applied respectively.
このように構成してあるので、吸気管7の負圧
が常用の中間圧にあるとき、スロー通路3の負圧
が大きいと、調圧室19の負圧がばね21に抗し
てバルブ16を上方に移動させて圧力制御弁18
の開度を増し、開口25からの圧力が大気室21
と連通路23′を経てスロー通路3に伝えられて
その圧力を上昇させる。そしてスロー通路3の負
圧が小さくなると調圧室19の負圧も小さくな
り、バルブ16はばね21の力で下方に移動し、
圧力制御弁18の開度を減少させてスロー通路3
の負圧を大きくする方向に操作する。このように
して調圧室19はスロー通路3の圧力を所定の圧
力に設定する。この調圧室19の働きを理解し易
くするため、仮りに負圧室20の圧力を一定の値
に固定した場合を想定すると、吸気管負圧の一定
値以上ではスロー通路にかゝる負圧を前記所定の
圧力に調節して、吸気管負圧に依らず空燃比を一
定値に維持するように調圧室は働く。実際には負
圧室20には吸気管負圧がかかつているため第5
図の気化器はさらに次のように働く。吸入空気量
が第6図から第9図のAのとき、負圧室20に伝
わる吸気管7内の負圧が小さく−120mmHgだとバ
ルブ16にかゝる力は、径の大きい第2のダイア
フラムの上下差圧により上方に押す力より、径の
小さい第1のダイアフラムの上下差圧により下方
に押す力とばね22により下方に押す力の方が強
くなり、バルブ16がシート17に押し付けられ
て圧力制御弁18の開度が小さくなり、ブリード
が、レギユレータ8を経てスロー通路3に入りに
くくなり、スロー通路3の負圧が大きくなつてス
ロー燃料流量が増加し、空燃比がリツチになる。 With this configuration, when the negative pressure in the intake pipe 7 is at the normal intermediate pressure, if the negative pressure in the slow passage 3 is large, the negative pressure in the pressure adjusting chamber 19 moves the valve 16 upward against the spring 21, and the pressure control valve 18
The pressure from the opening 25 is increased to the atmospheric chamber 21.
The negative pressure in the slow passage 3 decreases as the negative pressure in the pressure adjusting chamber 19 decreases, and the valve 16 moves downward by the force of the spring 21.
The opening of the pressure control valve 18 is reduced to open the slow passage 3.
In this way, the pressure adjusting chamber 19 sets the pressure in the slow passage 3 to a predetermined pressure. To make it easier to understand the function of this pressure adjusting chamber 19, let us assume that the pressure in the negative pressure chamber 20 is fixed at a constant value. When the intake pipe negative pressure exceeds a certain value, the pressure adjusting chamber adjusts the negative pressure applied to the slow passage to the predetermined pressure, and works to maintain the air-fuel ratio at a constant value regardless of the intake pipe negative pressure. In reality, the intake pipe negative pressure is applied to the negative pressure chamber 20, so the fifth
The carburetor in the figure further works as follows: When the intake air amount is A in Fig. 6 to Fig. 9, if the negative pressure in the intake pipe 7 transmitted to the negative pressure chamber 20 is small, at -120mmHg, the force acting on the valve 16 is greater than the upward force caused by the pressure difference between the top and bottom of the second diaphragm with a larger diameter, by the downward force caused by the pressure difference between the top and bottom of the first diaphragm with a smaller diameter and the downward force caused by the spring 22, so that the valve 16 is pressed against the seat 17, the opening of the pressure control valve 18 becomes smaller, and it becomes difficult for the bleed to enter the slow passage 3 via the regulator 8, the negative pressure in the slow passage 3 becomes larger, the slow fuel flow rate increases, and the air-fuel ratio becomes rich.
逆に吸入空気量がAのまゝ吸気管7内の負圧が
大きく−360mmHgになると、バルブ16にかゝる
力は径の大きい第2のダイアフラムの上下差圧に
より上方に押す力の方が、径の小さい第1のダイ
アフラムの上下差圧により下方に押す力とばね2
2により下方に押す力より強くなり、バルブ16
がシート17から離されて圧力制御弁18の開度
が大きくなり、ブリードがレギユレータ8を経て
スロー通路3に入りやすくなり、スロー通路の負
圧が小さくなつてスロー燃料流量が減少し空燃比
がリーンになる。 On the other hand, when the intake air amount remains at A and the negative pressure inside the intake pipe 7 becomes -360 mmHg, the force applied to the valve 16 is pushed upward by the pressure difference between the upper and lower sides of the second diaphragm, which has a larger diameter. However, the force pushing downward due to the pressure difference between the upper and lower sides of the first diaphragm with a small diameter and the spring 2
2, the force pushing downward becomes stronger, and the valve 16
is separated from the seat 17, the opening degree of the pressure control valve 18 increases, and bleed easily enters the slow passage 3 through the regulator 8, the negative pressure in the slow passage becomes smaller, the slow fuel flow rate decreases, and the air-fuel ratio increases. Become Lean.
以上のように作用するので、その効果は、吸入
空気量が第6図から第9図のBで、吸気管負圧が
−360mmHgのC点から加速するためスロツトルバ
ルブを開き、吸入空気量がA、吸気管負圧が−
120mmHgのD点にする燃料は一部は吸気管に付着
するが、気化器の供給する空燃比はリツチになる
のでエンジンの空燃比がリーンになるのが小さく
なり、ドライバビリテイが良くなり、排気ガスの
NOXの発生量も少なくできる。逆に、減速する
ため、D点からC点に移ると吸気管内に付着して
いた燃料が蒸発してエンジン内に入るが、気化器
の供給する空燃比がリーンになるので、減速時の
HCの発生が少なくなる効果がある。また、車両
の吸気管負圧が、定常走行状態の−360mmHgにあ
る場合には加速状態の−120mmHgにある場合より
空燃比がリーンになるので、燃費の改善を実現で
きる。 As it works as described above, the effect is that when the intake air amount is B in Figures 6 to 9, the throttle valve is opened to accelerate from point C where the intake pipe negative pressure is -360 mmHg, and the intake air amount is is A, and the intake pipe negative pressure is -
Some of the fuel that is set at the D point of 120mmHg will adhere to the intake pipe, but the air-fuel ratio supplied by the carburetor will be richer, so the engine's air-fuel ratio will be less lean, improving drivability. of exhaust gas
The amount of NOX generated can also be reduced. Conversely, when moving from point D to point C to decelerate, the fuel adhering to the intake pipe evaporates and enters the engine, but the air-fuel ratio supplied by the carburetor becomes lean, so the
It has the effect of reducing the occurrence of HC. Furthermore, when the negative pressure in the intake pipe of the vehicle is -360 mmHg in a steady running state, the air-fuel ratio becomes leaner than when it is -120 mmHg in an accelerating state, so it is possible to improve fuel efficiency.
第1図乃第4図は従来の気化器の特性線図、第
5図はこの考案の一実施例の断面図、第6図乃至
第9図はこの考案の気化器の特性線図である。
1……気化器、2……スローポート、3……ス
ロー通路、4……アイドルポート、5……スロツ
トルバルブ、7……吸気管、8……レギユレー
タ、9……第1のダイアフラム、10……第2の
ダイアフラム、16……バルブ、17……シート
部、18……圧力制御弁、19……調圧室、20
……負圧室、21……大気室、22……ばね、2
3,23′……連通路、24,26……連通路、
25,27……開口。
Figures 1 to 4 are characteristic diagrams of a conventional carburetor, Figure 5 is a sectional view of an embodiment of this invention, and Figures 6 to 9 are characteristic diagrams of a carburetor of this invention. . DESCRIPTION OF SYMBOLS 1... Carburetor, 2... Slow port, 3... Slow passage, 4... Idle port, 5... Throttle valve, 7... Intake pipe, 8... Regulator, 9... First diaphragm, DESCRIPTION OF SYMBOLS 10... Second diaphragm, 16... Valve, 17... Seat part, 18... Pressure control valve, 19... Pressure regulation chamber, 20
... Negative pressure chamber, 21 ... Atmospheric chamber, 22 ... Spring, 2
3, 23'... Communication path, 24, 26... Communication path,
25, 27...opening.
Claims (1)
経て吸気管に至る空気通路と、フロート室からメ
インジエツトを経てベンチユリに開口するノズル
に至るメイン通路と、フロート室からスロージエ
ツトを経てスロツトルバルブが所定開度の時にス
ロツトルバルブの下流側になる部分に開口するス
ローポートに至るスロー通路とをもつ気化器にお
いて、面積の小さい第1のダイアフラム9に面す
る調圧室19と、第1のダイアフラム9とこれよ
り面積の大きい第2のダイアフラム10とにはさ
まれた負圧室20と、第2のダイアフラム10に
面する大気室21とを順に隣接して配置したレギ
ユレータ8を設け、第1のダイアフラム9と第2
のダイアフラム10の中央部をバルブ16に連結
し、このバルブ16とこれに協働するシート17
で構成される圧力制御弁18を介して大気室21
をスロー通路3に連通するとともに、大気室21
を連通路24を介してスロツトルバルブ上流の開
口25に連通し、さらに、調圧室19をスロー通
路3に、負圧室20を吸気管7の開口27に連通
し、バルブ16を常時閉じる側へ付勢するばね2
2を設け、バルブ16は調圧室19又は負圧室2
0の負圧が大きくなるとシート17から離れる方
向に移動するように定めたことを特徴とする二重
ダイアフラムレギユレータ付気化器。 The air passage from the bench lily to the intake pipe via the throttle valve downstream of it, the main passage from the float chamber to the nozzle opening into the bench lily via the main jet, and the air passage from the float chamber via the slow jet to the intake pipe when the throttle valve is at a predetermined opening. In a carburetor that has a slow passage leading to a slow port that opens on the downstream side of the throttle valve, there is a pressure regulating chamber 19 facing the first diaphragm 9 having a small area, and a pressure regulating chamber 19 facing the first diaphragm 9 which has a small area. A regulator 8 is provided in which a negative pressure chamber 20 sandwiched between a second diaphragm 10 having a large area and an atmospheric chamber 21 facing the second diaphragm 10 are arranged adjacent to each other in order, and the first diaphragm 9 and Second
A central portion of the diaphragm 10 is connected to a valve 16, and a seat 17 cooperating with the valve 16 is connected to the valve 16.
Atmospheric chamber 21 via pressure control valve 18 consisting of
is connected to the slow passage 3, and the atmospheric chamber 21
communicates with the opening 25 upstream of the throttle valve via the communication passage 24, further communicates the pressure regulating chamber 19 with the slow passage 3, the negative pressure chamber 20 with the opening 27 of the intake pipe 7, and closes the valve 16 at all times. Spring 2 that biases toward the side
2, the valve 16 is connected to the pressure regulating chamber 19 or the negative pressure chamber 2.
A carburetor with a double diaphragm regulator, characterized in that it moves in a direction away from a seat 17 as the negative pressure at zero increases.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7789782U JPS58180360U (en) | 1982-05-27 | 1982-05-27 | Carburetor with double diaphragm regulator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7789782U JPS58180360U (en) | 1982-05-27 | 1982-05-27 | Carburetor with double diaphragm regulator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58180360U JPS58180360U (en) | 1983-12-02 |
JPS626276Y2 true JPS626276Y2 (en) | 1987-02-13 |
Family
ID=30087144
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7789782U Granted JPS58180360U (en) | 1982-05-27 | 1982-05-27 | Carburetor with double diaphragm regulator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58180360U (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5523344A (en) * | 1978-08-07 | 1980-02-19 | Hitachi Ltd | Rotor stress forecast turbine control system |
-
1982
- 1982-05-27 JP JP7789782U patent/JPS58180360U/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5523344A (en) * | 1978-08-07 | 1980-02-19 | Hitachi Ltd | Rotor stress forecast turbine control system |
Also Published As
Publication number | Publication date |
---|---|
JPS58180360U (en) | 1983-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS626276Y2 (en) | ||
US4558680A (en) | System for controlling the air-fuel ratio supplied to a supercharged engine | |
JPS5827085Y2 (en) | Exhaust recirculation control device | |
JPS6232323B2 (en) | ||
JPS6339404Y2 (en) | ||
JPS6111481Y2 (en) | ||
JPS6235875Y2 (en) | ||
JPS5810579B2 (en) | Koudohoshiyousouchi | |
JPS6042209Y2 (en) | Exhaust recirculation control device | |
JPS6041217B2 (en) | Enrichment device for internal combustion engine carburetor | |
JPS599074Y2 (en) | Pressure-responsive devices in internal combustion engines | |
JPS6136768Y2 (en) | ||
JPS6124684Y2 (en) | ||
JPH0128295Y2 (en) | ||
JPS6319549Y2 (en) | ||
JPS6014910Y2 (en) | engine carburetor | |
JPS6120292Y2 (en) | ||
JPS59699B2 (en) | Koudohoshiyousouchi | |
JPS6158659B2 (en) | ||
JPS6157941B2 (en) | ||
JPS5913343Y2 (en) | Vehicle internal combustion engine | |
JPS5856365Y2 (en) | Air-fuel ratio control device for internal combustion engines | |
JPS6337492Y2 (en) | ||
JPS6034763Y2 (en) | vaporizer main nozzle | |
JPH0235145B2 (en) |