JPS6262450B2 - - Google Patents

Info

Publication number
JPS6262450B2
JPS6262450B2 JP9042081A JP9042081A JPS6262450B2 JP S6262450 B2 JPS6262450 B2 JP S6262450B2 JP 9042081 A JP9042081 A JP 9042081A JP 9042081 A JP9042081 A JP 9042081A JP S6262450 B2 JPS6262450 B2 JP S6262450B2
Authority
JP
Japan
Prior art keywords
silica
separator
web
powder
based powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9042081A
Other languages
Japanese (ja)
Other versions
JPS57206018A (en
Inventor
Kunyuki Nakayama
Shiro Nakayama
Katsuhei Kumakura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Cable Works Ltd
Original Assignee
Fujikura Cable Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Cable Works Ltd filed Critical Fujikura Cable Works Ltd
Priority to JP9042081A priority Critical patent/JPS57206018A/en
Publication of JPS57206018A publication Critical patent/JPS57206018A/en
Publication of JPS6262450B2 publication Critical patent/JPS6262450B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Cell Separators (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は電解コンデンサ用セパレータの製造
法に関するものである。 従来、電解コンデンサのセパレータには多孔性
の紙が用いられているが、この場合次のような問
題点がある。 ピンホールが多く、そのためコンデンサの電
極間短絡事故が多い。 紙の孔の孔径が大きく、コンデンサの洩れ電
流が多い。 電解液に対する耐薬品性が不十分で、電解液
を含浸させると機械的強度が低下する。 このような問題点を解決するために、セパレー
タをセルロース系プラスチツクの薄膜で形成する
ことが考えられたが、満足な結果を得ることはで
きなかつた。 この発明は上記事情に鑑みてなされたもので、
ピンホールがなく、孔の孔径が適切で、電解液に
対する耐薬品性に優れる電解コンデンサのセパレ
ータを製造することのできる電解コンデンサ用セ
パレータの製造法を提供することを目的とし、最
大粒子径が30μm以下のシリカ系粉末を30〜
80wt%の割合で分散媒に分散した分散液を合成
繊維からなるウエツプに含浸、塗布し、これを乾
燥させることを特徴とするものである。 以下、この発明を詳しく説明する。 この発明に用いられるシリカ系粉末としては、
SiO2を主成分とする鉱物質粉末で、シリカ粉
末、珪石粉、活性白土などが挙げられる。これら
粉末はその最大粒径が30μm以下のものが用いら
れ、洩れ電流や電解液のイオン移動の点から30μ
mを最大粒径とする粒度分布を有する粉末が望ま
しく、粒度分布のないものは異る粒度の粉末を混
合して用いる必要がある。シリカ系粉末の最大粒
径が30μmを越えると粒子が大きくなりセパレー
タから脱落してピンホールとなりやすく、また孔
径が大きくなつて不都合を生ずる。なお、シリカ
系粉末として活性白土を用いる場合には、数回の
酸洗い処理を行つて不純物を除去したものを用い
る必要がある。 シリカ系粉末を分散する分散媒としては、水、
エタノール、メタノール、アセトン、イソプロパ
ノール等の溶媒やこれら溶媒の混合物に、これら
溶媒に可溶性でかつ電解コンデンサ用電解液に不
溶性のバインダ、例えばポリビニルアルコール
(PVA)、カルボキシメチルセルロース(CMC)、
可溶性澱粉などを溶解したものが用いられる。バ
インダの濃度は、シリカ系粉末がウエツプから剥
脱を起さない最低濃度がよく、濃度が高くなる
と、シリカ系粉末の剥脱は無くなるが、セパレー
タがフイルム化して孔が無くなりイオン移動がで
きず、抵抗が大きくなつたり電解液の浸透性が悪
くなる傾向があり、一般には2〜10wt%が好適
である。このようにバインダが溶解されて形成さ
れた分散媒にシリカ系粉末が30〜80wt%の割合
で加えられ、混合され、シリカ系粉末分散液とな
る。シリカ系粉末の配合量が30wt%未満である
と、シリカ系粉末のウエツプへの定着率が悪く、
ピンホールの数が増大して好ましくない。また、
80wt%を越えるとピンホールの発生は無くなる
が、加工性が悪くなり、低密度セパレータが形成
されず、抵抗の大きなセパレータとなり不都合で
ある。 シリカ系粉末分散液はついで合成繊維からなる
ウエツプに含浸、塗布される。ここで用いられる
合成繊維からなるウエツプは、ポリエチレン繊
維、ポリプロピレン繊維、ポリエステル繊維、ポ
リアミド繊維、ビニロン(商標)繊維等の合成繊
維を織つた織布、あるいはこれら合成繊維よりな
る不織布、あるいはこれら合成繊維を編んだ編布
などが挙げられる。得られるセパレータの使用許
容温度は合成繊維ウエツプの材質に関係するので
ウエツプの材質はこの点を考慮して選択すべきで
ある。使用温度が100℃以上の許容温度のセパレ
ータであればポリエステル繊維、ポリアミド繊
維、ビニロン繊維、ポリプロピレン繊維で、使用
温度が100℃以下の低いものであればポリエチレ
ン系繊維でウエツプを形成することが望ましい。
また、得られるセパレータの厚みはウエツプの厚
みに規定され、ウエツプの厚みはこれを構成する
合成繊維の繊維径に規定されるため、薄いセパレ
ータを得ようとすれば、繊維径の小さい合成繊維
を用いねばならない。一般にはセパレータの厚み
の1/2〜1/3の太さの繊維を用いればよい。シリカ
系粉末分散液を合成繊維からなるウエツプに含
浸、塗布するには通常の浸漬含浸法やロールコー
タ、ドクターナイフ、スクイズナイフを用いた塗
布法が用いられる。シリカ系粉末分散液の塗布量
はウエツプ1m2当り50g〜100gが好適であり、
塗布量がこれより少ない場合はウエツプ全面に均
一に分散液がゆきわたらず、またこれより多い場
合はセパレータの厚みが必要以上に厚くなつて好
ましくない。 シリカ系粉末分散液を含浸、塗布されたウエツ
プはついで乾燥され分散液中の溶媒が除去され、
シリカ系粉末がウエツプに固着されて、セパレー
タが得られる。 以上のようにして得られた電解コンデンサ用セ
パレータは、機械的強度が高く、耐薬品性のよい
合成繊維からなるウエツプを基体とするので、電
解液による劣化がなく、耐久性が向上する。ま
た、微細なシリカ系粉末をウエツプの繊維間の空
隙に充填するので、セパレータとして好適な孔径
の微細孔を有し、電解液によつてシリカ系粉末が
溶解することがないので、コンデンサの容量変化
が起きることがない。さらに、孔径が適切なもの
となるので洩れ電流を減少させることができる。 以下、実施例に基づいてこの発明を具体的に説
明する。 実施例 1 繊維径約15μm、厚さ60μm、目付30g/m2
ポリエチレンテレフタレート繊維よりなる不織布
をウエツプとし、これに種々の最大粒径のシリカ
粉末を40wt%配合した分散液を70〜80g/m2
布し、乾燥してセパレータを作成した。これらセ
パレータについて気密度(JIS−C−2111によ
る)、ピンホール、最大孔径を測定した。結果を
第1表に示す。
The present invention relates to a method of manufacturing a separator for an electrolytic capacitor. Conventionally, porous paper has been used for the separator of electrolytic capacitors, but this case has the following problems. There are many pinholes, which causes many short-circuit accidents between capacitor electrodes. The hole diameter of the paper hole is large, and the leakage current of the capacitor is large. Chemical resistance to electrolyte is insufficient, and mechanical strength decreases when impregnated with electrolyte. In order to solve these problems, it has been considered to form the separator with a thin film of cellulose plastic, but it has not been possible to obtain satisfactory results. This invention was made in view of the above circumstances,
The purpose is to provide a method for manufacturing electrolytic capacitor separators that are free from pinholes, have appropriate pore diameters, and have excellent chemical resistance to electrolytes. 30 to 30% of the following silica powder
This method is characterized by impregnating and coating a synthetic fiber web with a dispersion liquid dispersed in a dispersion medium at a ratio of 80 wt%, and then drying this. This invention will be explained in detail below. The silica-based powder used in this invention includes:
Mineral powder whose main component is SiO 2 , such as silica powder, silica powder, activated clay, etc. These powders are used with a maximum particle size of 30μm or less, and from the viewpoint of leakage current and ion movement of the electrolyte, 30μm or less is used.
A powder having a particle size distribution with m as the maximum particle size is desirable, and powders without a particle size distribution need to be used by mixing powders of different particle sizes. When the maximum particle size of the silica-based powder exceeds 30 μm, the particles become large and easily fall off from the separator to form pinholes, and the pore size becomes large, causing problems. Note that when activated clay is used as the silica-based powder, it is necessary to use one that has been pickled several times to remove impurities. As a dispersion medium for dispersing silica powder, water,
In solvents such as ethanol, methanol, acetone, and isopropanol, and mixtures of these solvents, binders that are soluble in these solvents and insoluble in electrolyte solutions for electrolytic capacitors, such as polyvinyl alcohol (PVA), carboxymethyl cellulose (CMC),
A solution containing soluble starch or the like is used. The best binder concentration is the lowest concentration at which the silica-based powder does not come off from the web.As the concentration increases, the silica-based powder will no longer come off, but the separator will become a film, with no pores and no ion movement, resulting in increased resistance. As the amount increases, the permeability of the electrolyte tends to deteriorate, so 2 to 10 wt% is generally suitable. Silica-based powder is added to the dispersion medium formed by dissolving the binder in a proportion of 30 to 80 wt% and mixed to form a silica-based powder dispersion. If the amount of silica-based powder is less than 30wt%, the fixation rate of the silica-based powder to the web will be poor,
This is undesirable because the number of pinholes increases. Also,
If it exceeds 80 wt%, pinholes will not occur, but processability will deteriorate, and a low-density separator will not be formed, resulting in a separator with high resistance, which is inconvenient. The silica powder dispersion is then impregnated and applied to a synthetic fiber web. The synthetic fiber web used here is a woven fabric made of synthetic fibers such as polyethylene fiber, polypropylene fiber, polyester fiber, polyamide fiber, Vinylon (trademark) fiber, or a non-woven fabric made of these synthetic fibers. Examples include knitted fabrics. The permissible operating temperature of the resulting separator is related to the material of the synthetic fiber web, so the material of the web should be selected with this point in mind. If the separator has an allowable operating temperature of 100°C or higher, it is preferable to use polyester fiber, polyamide fiber, vinylon fiber, or polypropylene fiber, and if the operating temperature is lower than 100°C, it is desirable to form the wep with polyethylene fiber. .
Furthermore, the thickness of the resulting separator is determined by the thickness of the webbing, and the thickness of the webbing is determined by the fiber diameter of the synthetic fibers that compose it. must be used. Generally, it is sufficient to use fibers having a thickness of 1/2 to 1/3 of the thickness of the separator. To impregnate and apply the silica-based powder dispersion to a web made of synthetic fibers, a conventional dipping impregnation method or a coating method using a roll coater, doctor knife, or squeeze knife is used. The suitable amount of the silica-based powder dispersion to be applied is 50g to 100g per 1 m 2 of wet cloth.
If the coating amount is less than this, the dispersion will not be uniformly spread over the entire surface of the web, and if it is greater than this, the thickness of the separator will become undesirably thicker than necessary. The wet coated with a silica-based powder dispersion is then dried to remove the solvent in the dispersion.
The silica-based powder is fixed to the web to obtain a separator. Since the separator for electrolytic capacitors obtained as described above has a web made of synthetic fibers having high mechanical strength and good chemical resistance as a base material, it does not deteriorate due to electrolytic solution and has improved durability. In addition, since the fine silica-based powder is filled into the voids between the fibers of the web, it has micropores with a suitable pore size as a separator, and the silica-based powder is not dissolved by the electrolyte, so the capacity of the capacitor is Change never occurs. Furthermore, since the hole diameter is appropriate, leakage current can be reduced. Hereinafter, this invention will be specifically explained based on Examples. Example 1 A nonwoven fabric made of polyethylene terephthalate fibers with a fiber diameter of approximately 15 μm, a thickness of 60 μm, and a basis weight of 30 g/m 2 was used as a web, and a dispersion containing 40 wt% of silica powder of various maximum particle sizes was mixed into the web at 70 to 80 g/m2. m 2 was applied and dried to create a separator. The airtightness (according to JIS-C-2111), pinholes, and maximum pore diameter of these separators were measured. The results are shown in Table 1.

【表】 第1表より明らかなように、シリカ系粉末の粒
径が50μm以上となると、ピンホール数が著るし
く増大する。また、最大孔径も大きくなる。 実施例 2 実施例1においてシリカ系粉末の粒径を20μ以
下の一定とし、分散液中のシリカ系粉末の濃度を
種々に変えてセパレータを作成した。これらセパ
レータについて同様の試験を行つた。その結果を
第2表に示す。
[Table] As is clear from Table 1, when the particle size of the silica-based powder is 50 μm or more, the number of pinholes increases significantly. Additionally, the maximum pore diameter also increases. Example 2 In Example 1, the particle size of the silica-based powder was kept constant at 20 μm or less, and the concentration of the silica-based powder in the dispersion was varied to create separators. Similar tests were conducted on these separators. The results are shown in Table 2.

【表】 第2表から明らかなように、シリカ系粉末濃度
が低すぎるとピンホール数が著るしく増大し、濃
度が90wt%では気密度が急激に増加し、イオン
移動が悪くなり電解コンデンサ用セパレータとし
ては好ましくない。 実施例 3 繊維径約15μm、厚さ50μm、目付20g/m2
ビニロン(商標)繊維よりなる不織布をウエツプ
とし、粒径25μm以下の各種シリカ系粉末を
40wt%の濃度で含む分散液を70〜80g/m2
布、乾燥してセパレータを得た。これらセパレー
タについて実施例1と同様の試験を行つた。その
結果を第3表に示す。
[Table] As is clear from Table 2, if the silica powder concentration is too low, the number of pinholes will increase significantly, and if the concentration is 90wt%, the airtightness will increase rapidly, ion movement will deteriorate, and the electrolytic capacitor It is not preferable for use as a separator. Example 3 A nonwoven fabric made of Vinylon (trademark) fibers with a fiber diameter of approximately 15 μm, a thickness of 50 μm, and a basis weight of 20 g/m 2 was used as a web, and various silica-based powders with a particle size of 25 μm or less were added.
A dispersion containing a concentration of 40 wt% was applied at 70 to 80 g/m 2 and dried to obtain a separator. The same tests as in Example 1 were conducted on these separators. The results are shown in Table 3.

【表】 * 商品名 シリカ微粉末 日本シリカ
社製
第3表よりどのような種類のシリカ系粉末を用
いてもすぐれた特性のセパレータが得られること
がわかる。 以上説明したように、この発明の電解コンデン
サ用セパレータの製造法は、最大粒子径が30μm
以下のシリカ系粉末を30〜80wt%の割合で分散
媒に分散した分散液を合成繊維からなるウエツプ
に含浸、塗布し、これを乾燥させるものであるの
で、得られるセパレータはピンホールがなく電極
短絡事故がない。また、孔の孔径が適切となるの
で、洩れ電流が少ないとともに、イオン移動は充
分に行え、コンデンサの耐圧が高められる。さら
に、電解液による劣化がないので耐久性に富み、
機械的強度も高く維持されるので、コンデンサの
耐振性等が向上するなどの利点を有する。
[Table] *Product Name Silica Fine Powder Manufactured by Nippon Silica Co., Ltd. From Table 3, it can be seen that a separator with excellent properties can be obtained no matter what type of silica powder is used. As explained above, the manufacturing method of the electrolytic capacitor separator of the present invention has a maximum particle size of 30 μm.
A synthetic fiber web is impregnated with a dispersion of the following silica-based powder dispersed in a dispersion medium at a ratio of 30 to 80 wt%, and then dried, so the separator obtained has no pinholes and is suitable for electrodes. There are no short circuit accidents. Furthermore, since the hole diameter is appropriate, leakage current is small, ion movement is sufficient, and the withstand voltage of the capacitor is increased. Furthermore, it is highly durable as there is no deterioration caused by electrolyte.
Since the mechanical strength is also maintained high, it has advantages such as improved vibration resistance of the capacitor.

Claims (1)

【特許請求の範囲】[Claims] 1 最大粒子径が30μm以下のシリカ系粉末を30
〜80wt%の割合で分散媒に分散した分散液を合
成繊維からなるウエツブに含浸、塗布し、これを
乾燥させることを特徴とする電解コンデンサ用セ
パレータの製造法。
1 30% of silica powder with a maximum particle size of 30μm or less
A method for producing a separator for an electrolytic capacitor, characterized by impregnating and applying a dispersion liquid dispersed in a dispersion medium at a ratio of ~80 wt% onto a web made of synthetic fibers, and drying the same.
JP9042081A 1981-06-12 1981-06-12 Method of producing separator for electrolytic condenser Granted JPS57206018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9042081A JPS57206018A (en) 1981-06-12 1981-06-12 Method of producing separator for electrolytic condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9042081A JPS57206018A (en) 1981-06-12 1981-06-12 Method of producing separator for electrolytic condenser

Publications (2)

Publication Number Publication Date
JPS57206018A JPS57206018A (en) 1982-12-17
JPS6262450B2 true JPS6262450B2 (en) 1987-12-26

Family

ID=13998101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9042081A Granted JPS57206018A (en) 1981-06-12 1981-06-12 Method of producing separator for electrolytic condenser

Country Status (1)

Country Link
JP (1) JPS57206018A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62222621A (en) * 1986-03-25 1987-09-30 ニチコン株式会社 Electrolytic capacitor
JP2002110464A (en) * 2000-09-29 2002-04-12 Nippon Chemicon Corp Solid-state electrolytic capacitor and method of manufacturing the same
JP5271868B2 (en) * 2009-10-28 2013-08-21 ニチコン株式会社 Electrolytic capacitor
JP5271870B2 (en) * 2009-10-28 2013-08-21 ニチコン株式会社 Electrolytic capacitor
JP5271869B2 (en) * 2009-10-28 2013-08-21 ニチコン株式会社 Electrolytic capacitor

Also Published As

Publication number Publication date
JPS57206018A (en) 1982-12-17

Similar Documents

Publication Publication Date Title
JP6735811B2 (en) Nonwoven fabric separator for lead acid battery and lead acid battery using the same
US3450650A (en) Method of making porous bodies
KR101446949B1 (en) Porous membrane and process for preparing the same
TWI644798B (en) Paper capable of stable paper feeding
KR101331481B1 (en) Separator for electrochemical device and process for preparing the same
JP4287622B2 (en) COATING SEPARATOR, MANUFACTURING METHOD THEREOF, AND ELECTRIC AND ELECTRONIC COMPONENT USING THE SAME
KR20130088902A (en) Microporous membrane and method for producing same
KR101827617B1 (en) Separator for electric double layer capacitors, and electric double layer capacitor
KR101335380B1 (en) Porous membrane and process for preparing the same
JP5955177B2 (en) Method for producing perforated sheet provided with polyvinyl alcohol resin
KR101337921B1 (en) Porous membrane and process for preparing the same
KR102541892B1 (en) Binder for non-aqueous secondary battery and dispersion thereof
JP2018006258A (en) Lead-acid battery separator and lead-acid battery using the same
JPS6262450B2 (en)
US2773114A (en) Battery separator and method of making same
JPH10154500A (en) Separator for lead-acid battery and manufacture
TW201942925A (en) Separator for aluminum electrolytic capacitors, and aluminum electrolytic capacitor using said separator
JP2017199728A (en) Separator for solid electrolytic capacitor
JP2023549035A (en) Separator for electrochemical devices using cellulose fiber
US2929005A (en) Separator means for electrolytic devices
JP2004183197A (en) Process for making fiber sheet
JP2019175703A (en) Lithium ion secondary battery separator and lithium ion secondary battery
JP2014074250A (en) Affinity porous sheet
JP2019179880A (en) Separator for semi-solid electrolytic capacitor
JP2001035754A (en) Separator for electric double-layer capacitor