JPS6262306A - Plastic optical fiber and edge surface processing method - Google Patents

Plastic optical fiber and edge surface processing method

Info

Publication number
JPS6262306A
JPS6262306A JP60201679A JP20167985A JPS6262306A JP S6262306 A JPS6262306 A JP S6262306A JP 60201679 A JP60201679 A JP 60201679A JP 20167985 A JP20167985 A JP 20167985A JP S6262306 A JPS6262306 A JP S6262306A
Authority
JP
Japan
Prior art keywords
optical fiber
face
light
fresnel lens
core part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60201679A
Other languages
Japanese (ja)
Inventor
Hiroshi Abe
阿部 拓
Yoji Shimojima
下嶋 庸司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP60201679A priority Critical patent/JPS6262306A/en
Publication of JPS6262306A publication Critical patent/JPS6262306A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4202Packages, e.g. shape, construction, internal or external details for coupling an active element with fibres without intermediate optical elements, e.g. fibres with plane ends, fibres with shaped ends, bundles
    • G02B6/4203Optical features

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

PURPOSE:To improve the introducing efficiency, the coming-out efficiency, and the space factor of the light by molding the edge surface of the core part of the plastic optical fiber into the Fresnel lens shape having the prescribed focus distance. CONSTITUTION:An edge surface 12 of a core part 11 of the optical fiber is formed to the Fresnel lens shape having the prescribed focus distance. The forming process is composed of the process to push the edge surface of the core part 11 to a Fresnel lens-shaped type 33 formed on the surface of a heating plate 31, the process to heat the edge surface of the core part 11 to the thermal deformation temperature by a heating plate 31 and transfer the Fresnel lens shape formed at the type 33 to the edge surface, and the process to reduce the temperature of the heating plate 31, reduce the temperature of the edge surface of the core part and stabilize the Fresnel lens shape transferred to the edge surface of the core part. Thus, the simplification and the low cost of the introducing efficiency, the coming-out efficiency, the space factor of the light and the processing of the Fresnel lens shape of the edge surface are improved.

Description

【発明の詳細な説明】 〔発明の利用分野〕 この発明は、少なくともコア部に透明なプラスチック材
料を用い、光信号の伝i!!、に使用されるプラスチッ
ク光ファイバに係り、4Iに、仁のプラスチック光ファ
イバの端面形状と、この端面形状に成形するための端面
加工方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention uses a transparent plastic material at least in the core portion to transmit optical signals. ! The present invention relates to plastic optical fibers used in , and 4I relates to the shape of the end face of the plastic optical fiber and an end face processing method for forming the end face into this shape.

〔発明の背景〕[Background of the invention]

プラスチック光ファイバは1例えば、アクリル系のメタ
クリル樹脂等の繊維からなるコアに、該コアよりも屈折
率の低い例えばフッ素人りメタクリル樹脂をクラッドと
して被覆して形成され、光1伝送の導波路として利用さ
れる。
A plastic optical fiber is formed by covering a core made of fibers such as acrylic-based methacrylic resin with a cladding of, for example, fluorine-containing methacrylic resin, which has a lower refractive index than the core, and serves as a waveguide for transmitting light. used.

光の導波路として利用するためには、プラスチック光フ
ァイバ(以下、光ファイバと略称する)のコテビ一端面
側を発光側からの入射面とし、他端面側を出射面として
従来までは、第5図に示すような形状に両端面3c/と
もできるだけ平滑に仕上けていた。これは、もし該端面
3 e’の仕上げが粗雑であると、該端面3Cで光が乱
反射や全反射をおこして光学的損失を生じることがあり
、また、出射面からの光が拡散して、所定の受光素子2
aなどの受光側へ有効に入射する光量が減少すること&
lるためである。
In order to use it as a light waveguide, one end face of a plastic optical fiber (hereinafter abbreviated as optical fiber) was used as the incident face from the light emitting side, and the other end face was used as the exit face. Both end faces 3c were finished as smooth as possible in the shape shown in the figure. This is because if the finish of the end surface 3e' is rough, the light may be diffusely reflected or totally reflected at the end surface 3C, causing optical loss, and the light from the exit surface may be diffused. , a predetermined light receiving element 2
The amount of light that effectively enters the light receiving side such as a decreases &
This is to help you.

このようにコア3aの端面3cf:平滑に仕上げること
が光ファイバにとって必須のことであり、端面3cを仕
上げる方法としては、グラインダを使用したシ、加熱板
を使用する方法が知られている。特に、表面が平滑に形
成された加熱板に、光ファイバの端面を押し当てて、端
面を平滑に仕上げる方法は1%公昭60−15241号
として公知になっている。
As described above, it is essential for an optical fiber to have a smooth finish on the end face 3cf of the core 3a, and known methods for finishing the end face 3c include using a grinder and using a heating plate. In particular, a method of pressing the end face of an optical fiber against a heating plate having a smooth surface to make the end face smooth is known as 1% Publication No. 15241/1983.

一方、光ファイバの端面を平滑に形成し1発光素子とし
ての発光ダイオードや半導体レーザがいかに大きな光出
力を出しても、光ファイバに効率良く光が入らなくては
意味がない。発光ダイオードの場合1面発光型と端面発
光型とがあるが、いずれにしても発光の強度分布は、は
とんど等方的に近く、このように拡がった光をコア径の
小さな元ファイバに入れることは難しい。また第6図に
示すようにコア3aとクラッド3bとの屈折率の違いに
より、入射光がコア3aとクラッド3bの間で全反射せ
ず、コア3aからクラッド3b側に光が透過することも
あるので、浅い角度θで光をコア3aに導く必要がある
。(θはり2ツド3bで全反射する入射角)。すなわち
、このように平滑に形成していてもコア3aの端面に入
射した光のうち一部分しかコア3aK導入されないとい
う問題がある。そのために、例えば、第7図に示すよう
にレンズlが発光ダイオード2と光フアイバ30間に挿
入され、発光ダイオード2からの光を収束せしめて光フ
ァイバ3のコア3aに入射せしめているものがある。こ
の構造のものにおいて浅い角度θで光をコア3aに導く
ためには、レンズ1を発光ダイオード2に近づければよ
いが1発光源の像が拡大されて、光ファイバ3のコア3
a径以上に拡がり、多くの光が光ファイバ3に入らなく
なる。これをさけるために発光領域を小さくすると、発
光ダイオード2の光出力が小さくなるので光ファイバ3
に入る光出力も小さくなる。また。
On the other hand, no matter how smooth the end face of an optical fiber is and how much light output a light emitting diode or semiconductor laser as a single light emitting element outputs, it is meaningless unless light enters the optical fiber efficiently. There are two types of light-emitting diodes: single-face emitting type and edge-emitting type, but in either case, the intensity distribution of the light emitted is almost isotropic, and the light spread in this way is transferred to the original fiber with a small core diameter. It is difficult to put it in. Furthermore, as shown in FIG. 6, due to the difference in refractive index between the core 3a and the cladding 3b, the incident light may not be totally reflected between the core 3a and the cladding 3b, and the light may be transmitted from the core 3a to the cladding 3b side. Therefore, it is necessary to guide the light to the core 3a at a shallow angle θ. (Incidence angle at which total reflection occurs at θ beam 2 and 3b). That is, even if the core 3a is formed smoothly, only a portion of the light incident on the end face of the core 3a is introduced into the core 3aK. For this purpose, for example, as shown in FIG. 7, a lens l is inserted between the light emitting diode 2 and the optical fiber 30 to converge the light from the light emitting diode 2 and make it enter the core 3a of the optical fiber 3. be. In this structure, in order to guide light to the core 3a at a shallow angle θ, it is sufficient to bring the lens 1 close to the light emitting diode 2.
It spreads beyond the diameter a, and much light does not enter the optical fiber 3. If the light emitting area is made smaller to avoid this, the light output of the light emitting diode 2 will become smaller, so the optical fiber 3
The light output that enters is also reduced. Also.

レンズ1を遠ざければ1発光領域での像が小さくなるか
、入射角が深くなる上にレンズ1に入らない光の量が増
えてしまう。また、別体のレンズ1を光路内に挿入する
ことで、スペースファクタも劣化するという問題もある
If the lens 1 is moved further away, the image in one light emitting area will become smaller, or the angle of incidence will become deeper, and the amount of light that does not enter the lens 1 will increase. There is also the problem that the space factor is also degraded by inserting the separate lens 1 into the optical path.

このような理由によシ、より多くの光を浅い角度θで光
ファイバ3のコア3b内に導くために各種の結合方法が
とられている。この−例として。
For these reasons, various coupling methods are used to guide more light into the core 3b of the optical fiber 3 at a shallow angle θ. This - as an example.

第8図に示すように、光ファイバ3のコア3aの一端を
球レンズ4状に形成した先球ファイバと称される光ファ
イバがある。この先球ファイバはコア3aにガラス繊維
を用いたものに多く使用され、コア3aの端面積よシ広
い面積で受光し、受光した光を浅い角度でコア3a内に
導入することができる。しかし、光ファイバ3の先端が
球状に拡大しているため、プラグやコネクタを用いて発
光素子(発光ダイオード)2や受光素子に近接して設置
することが難しく、使用性に問題があった。
As shown in FIG. 8, there is an optical fiber called a spherical fiber in which one end of the core 3a of the optical fiber 3 is formed into the shape of a spherical lens 4. This spherical-tipped fiber is often used in fibers that use glass fiber for the core 3a, and can receive light over a wider area than the end area of the core 3a, and can introduce the received light into the core 3a at a shallow angle. However, since the tip of the optical fiber 3 is enlarged into a spherical shape, it is difficult to install it close to the light emitting element (light emitting diode) 2 and the light receiving element using a plug or connector, which poses a problem in usability.

また、コア3aに高分子材料を用いたプラスチック光フ
ァイバの端面を同図に示すように球レンズ上に仕上げる
ことも簡増ではなく、ガラス材料との屈折率の違いから
、この先球形状がプラスチック光ファイバに適用される
ことはほとんどなかった。一方、平滑に形成した端面3
cから光が出射する場合においても、第5図に示すよう
に光がコア3a径よりも拡大するので、受光素子2&の
受光領域を広くしないと効率が低下するという問題があ
夛、このため、該端面3cと受光素子2&間にレンズ等
の集光手段を挿入することもあった。
In addition, it is not easy to finish the end face of a plastic optical fiber whose core 3a is made of a polymeric material into a spherical lens as shown in the same figure.Due to the difference in refractive index from the glass material, this spherical tip shape is made of plastic. It has rarely been applied to optical fibers. On the other hand, the end surface 3 formed smoothly
Even when light is emitted from c, as shown in Fig. 5, the light expands beyond the diameter of the core 3a, so there is a problem that the efficiency decreases unless the light receiving area of the light receiving element 2& is widened. , a condensing means such as a lens may be inserted between the end surface 3c and the light receiving element 2&.

しかし、レンズを挿入するとコストがかかるばかりでな
く、レンズを挿入するためのスペースが必illな)、
スペースファクタの点でも問題がでてくる。
However, inserting a lens not only costs money, but also requires space to insert the lens).
Problems also arise in terms of space factor.

〔発明の目的〕[Purpose of the invention]

この発明は、上記従来技術の実情に鑑みてなされたもの
で、その目的は、少なくとも端面に入射した光を全てコ
ア内に導入して伝送可能な光ファイバを提供することに
ある。他の目的は、導入された光を受光側に効率良く出
射可能な光ファイバを提供することKある。他の目的は
、上記特性の向上をスペースファクタよく実現すること
にある。
The present invention has been made in view of the actual state of the prior art described above, and its purpose is to provide an optical fiber that can transmit all the light incident on at least the end face by introducing it into the core. Another object is to provide an optical fiber that can efficiently emit introduced light to the light receiving side. Another object is to realize the improvement of the above characteristics with a good space factor.

さらに他の目的は、上記のように光の導°入効率、およ
び出射効率に優れた光ファイバを製造する方法を提案す
ることにある。
Still another object is to propose a method for manufacturing an optical fiber with excellent light introduction efficiency and light output efficiency as described above.

〔発明の概要〕[Summary of the invention]

上記目的を達成するため、この発明は、光ファイバのコ
ア部の端面をフレネルレンズ形状に形成した構成に特徴
があり、さらに、該端面を加熱板の表面に形成されたフ
レネルレンズ状の型に押し当てる工程と、該加熱板によ
って上記端面を熱変形温度に加熱し、紋型に形成された
7レネルレンメ形状を該端面に転写する工程と、上記加
熱板の温度を低下させて該端面の温度を低下せしめ、該
端面に転写されたフレネルレンズ形状を定着する工程を
経て、光ファイバのコア部の端面に7し゛ネルレンズ体
を形成可能に構成したことを特徴としている。   ゛ 〔発明の実施例〕 以下、本発明の実施例を図面を参照して説明する。
In order to achieve the above object, the present invention is characterized in that the end face of the core portion of the optical fiber is formed into a Fresnel lens shape, and further, the end face is formed into a Fresnel lens shaped mold formed on the surface of a heating plate. a pressing step, a step of heating the end surface to a heat deformation temperature by the heating plate, and transferring a 7-Lehnel Lemme shape formed in a pattern onto the end surface, and a step of lowering the temperature of the heating plate to reduce the temperature of the end surface. The present invention is characterized in that a seven-channel lens body can be formed on the end face of the core portion of the optical fiber through a step of lowering the angle and fixing the transferred Fresnel lens shape on the end face.゛[Embodiments of the Invention] Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図および第2図は1本発明の実施例に係る光ファイ
バを説明するためのもので、第1図(a)は。
1 and 2 are for explaining an optical fiber according to an embodiment of the present invention, and FIG. 1(a) is a diagram.

元ファイバのコア部の拡大端面図、第1図(b)は光フ
ァイバの端面形状を示す正面図、第2図は光ファイバの
発光素子側への取付方法の一例を示す分解斜視図である
FIG. 1(b) is an enlarged end view of the core portion of the original fiber, FIG. 1(b) is a front view showing the end face shape of the optical fiber, and FIG. 2 is an exploded perspective view showing an example of how to attach the optical fiber to the light emitting element side. .

第1図、第2図において、光ファイバ10は。In FIGS. 1 and 2, an optical fiber 10 is shown.

例えばアクリル系のメタクリル樹脂等の識維からなるコ
ア11部と、このコア11よりも屈折率の低いフッ素入
りメタクリル樹脂を該コア11に被覆してなるクラッド
13部とからなシ、該コア11の端面12はフレネルレ
ンズ形状に成形されている。フレネルレンズとは、厚い
レンズの光学的特性を有するよう1(1表面を第1図(
b)に示すような同心円の階段状に形成したもので、こ
の階段形状を規定するととくよシ、第1図(a) K示
すように所定の焦点距離に設定できる。この場合は受光
素子14の受光部14aに焦点を結ぶように設定しであ
る。
For example, the core 11 consists of a core 11 made of fibers such as acrylic methacrylic resin, and a cladding 13 made by coating the core 11 with a fluorine-containing methacrylic resin having a lower refractive index than the core 11. The end surface 12 of is formed into a Fresnel lens shape. A Fresnel lens has the optical characteristics of a thick lens.
It is formed in the shape of concentric steps as shown in FIG. In this case, the setting is made to focus on the light receiving portion 14a of the light receiving element 14.

第2図は、光素子15に対して光ファイバ】0を対向せ
しめる構造の一例である。すなわち、コネクタ1Gの一
側に光素子15を装着し、さらに光ファイバ10のクラ
ッド13の被覆が一部剥されたコア11全プラグ17に
′!I#入し、コア11のフレネル状の端面12と該プ
ラグ17の端面18とほぼ一致させて、該プラグ17を
コネクタ16内に挿入する。すると、コネクタ16の係
合突起19にプラグ17の鍔20が弾性的(C保合し、
ちょうど光素子150半導体チップ21が、端面12の
フレネルレンズ体の焦点((なるよう((、該端面12
が光素子15に対向する。この上うに配置することによ
り、光素子濃5が受光素子の場合には受光部たる半導体
チップ21に光が集中して受光効率の向上を図ることが
できる。また、光素子15が発光素子の場合には1発光
した光のうち該端面12に入射した光が、はぼ平行光と
なってコアll内に導入されるのでクラッド13側に光
が透過することがなく、この光の透過による光損失を最
小限に抑えることができ、該端面12に入射した光を効
率よく伝送することができる。
FIG. 2 shows an example of a structure in which the optical fiber 10 is opposed to the optical element 15. That is, the optical element 15 is attached to one side of the connector 1G, and the entire core 11 with the cladding 13 of the optical fiber 10 partially peeled off is attached to the plug 17'! I#, and insert the plug 17 into the connector 16 so that the Fresnel-shaped end surface 12 of the core 11 and the end surface 18 of the plug 17 almost match. Then, the collar 20 of the plug 17 is elastically engaged with the engagement protrusion 19 of the connector 16.
Just so that the optical element 150 and the semiconductor chip 21 are at the focal point of the Fresnel lens body on the end surface 12 ((((, the end surface 12
faces the optical element 15. By arranging it in this manner, when the optical element 5 is a light receiving element, light is concentrated on the semiconductor chip 21 which is a light receiving part, and the light receiving efficiency can be improved. Further, when the optical element 15 is a light emitting element, the light incident on the end face 12 out of one emitted light becomes almost parallel light and is introduced into the core 11, so that the light is transmitted to the cladding 13 side. Therefore, the optical loss due to the transmission of this light can be minimized, and the light incident on the end face 12 can be efficiently transmitted.

次に、光ファイバ10のコア11の端面を加工する方法
を第3図、第4図を参照して説明する。
Next, a method for processing the end face of the core 11 of the optical fiber 10 will be explained with reference to FIGS. 3 and 4.

83図は、この加工方法に用いる表面にフレネルレンズ
の形状をした型33が形成された加熱装置の一例でちっ
て、この加熱装置1ハ、該fi33が表面に形成された
金属、ガラスもしくは石英等からなる加熱板31と、加
熱板31の両端(付設され、この加熱板31を加熱する
電熱ヒータ等の熱源32とからなっている。
Fig. 83 shows an example of a heating device with a mold 33 in the shape of a Fresnel lens formed on the surface used in this processing method. The heating plate 31 consists of a heating plate 31 and heat sources 32 such as electric heaters attached to both ends of the heating plate 31 to heat the heating plate 31.

この加工方法は、以下の3工程からなっている。This processing method consists of the following three steps.

第1工程は、第4図に示すようK 、光ファイバ10の
コア11の端面12を、上記加熱板31のフレネルレン
ズ状の厘33に垂直に押し当てるもので、多量生産的に
は、機械により直角度と適正な押圧力を設定しておこな
われる。
In the first step, as shown in FIG. 4, the end surface 12 of the core 11 of the optical fiber 10 is pressed perpendicularly to the Fresnel lens-shaped ring 33 of the heating plate 31. This is done by setting the right angle and appropriate pressing force.

第2工程は、上記加熱板31によってコア11の端面1
2を1例えば約80℃程度の熱変形温度に加熱して、該
型33形状を端面12に転写する本ので、加熱部1廣、
加熱時間は、コア11の材質に応じて適宜設定される。
In the second step, the end surface 1 of the core 11 is heated by the heating plate 31.
Since the shape of the mold 33 is transferred to the end surface 12 by heating the mold 33 to a heat deformation temperature of, for example, about 80°C, the heating part 1 is
The heating time is appropriately set depending on the material of the core 11.

第3工程は、上記加熱板31の温度を、例えば40℃な
いし室温にまで低下させ、°該端面12の温度をコア1
1の硬化温度まで下げ、該端面12に転写されたフレネ
ルレンズ形状を該端面に定着させる。このとき、堰33
の凹凸は約30〜50μmに設えされているので、該端
面12にも約30〜50μの凹凸を有する同心円の溝状
のフレネルレンズ体が形成されることになる。このフレ
ネルレンズ体の焦点距離は、屈折率と凸部の傾斜角によ
り自由に設定することができる。
In the third step, the temperature of the heating plate 31 is lowered to, for example, 40°C to room temperature, and the temperature of the end face 12 is lowered to the core 1.
The curing temperature is lowered to No. 1, and the Fresnel lens shape transferred to the end face 12 is fixed to the end face. At this time, weir 33
Since the concavities and convexities are set to approximately 30 to 50 .mu.m, a concentric groove-shaped Fresnel lens body having concavities and convexities of approximately 30 to 50 .mu.m is also formed on the end face 12. The focal length of this Fresnel lens body can be freely set depending on the refractive index and the inclination angle of the convex portion.

以上のように、この実施例によれば、コア11の端面を
単に型a3・に押し当てて加熱することにより、簡単に
所定の焦点距離を備えたフレネルレンズ体に端面を加工
することができる。この手間は、従来の端面を平滑する
手間と同じであり、極めて低コストで複雑なフレネルレ
ンズ形状の端面加工が可能になっている。
As described above, according to this embodiment, by simply pressing the end face of the core 11 against the mold a3 and heating it, the end face can be easily processed into a Fresnel lens body having a predetermined focal length. . This effort is the same as the conventional process of smoothing the end face, making it possible to process the end face of a complex Fresnel lens shape at extremely low cost.

〔発明の効果〕〔Effect of the invention〕

本発明は、上記のように構成されているので。 The present invention is configured as described above.

光の導入効率、出射効率に優れ、スペースファクタの良
いプラスチックファイバを提供できる効果がある。また
、本発明方法によれば、光ファイバの端面を上記特性を
備えた端面形状に簡単かつ効率的に加工することができ
る効果がある。
This has the effect of providing a plastic fiber with excellent light introduction efficiency and light output efficiency, and a good space factor. Further, according to the method of the present invention, there is an effect that the end face of an optical fiber can be easily and efficiently processed into an end face shape having the above characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明の実施例に係る元ファイバ
を説明するためのもので、第1図(a)はコアの端面形
状を示す概念図、第1図(b)はコアの端面に形成され
たフレネルレンズ体の正面図、第2図は光ファイバと光
素子とこれらの結合装置を示す分解斜視図、第3図およ
び第4図は本発明方法を説明するためのもので、第3図
は加熱装置の斜視図、第4図は端面加工方法を示す概念
図、第5図ないし第8図は従来例を説明するためのもの
で。 第5図(a)は端面を平滑に形成した光ファイバの概念
図、第5図(b)は平滑な端面を示す正面図、第6図、
第7図、第8図はそれぞれ、光の導入径路を示す概念図
である。 3.10・・・・・・光ファイバ、3a、11・・・・
・・コア。 3b、13・・・・・・クラッド、 3o、12・・・
・・・端面。 31・・・・・・加熱板、32・・・・・・熱源、33
・・・・・・型。 第1図 第3図 (a) 14σ 第4図 第5図      第6図 tσノ 第7図      第8図
1 and 2 are for explaining the original fiber according to the embodiment of the present invention, FIG. 1(a) is a conceptual diagram showing the end face shape of the core, and FIG. 1(b) is a conceptual diagram showing the end face shape of the core. FIG. 2 is an exploded perspective view showing an optical fiber, an optical element, and a coupling device for these, and FIGS. 3 and 4 are for explaining the method of the present invention. , FIG. 3 is a perspective view of the heating device, FIG. 4 is a conceptual diagram showing an end face processing method, and FIGS. 5 to 8 are for explaining conventional examples. FIG. 5(a) is a conceptual diagram of an optical fiber with a smooth end surface, FIG. 5(b) is a front view showing a smooth end surface, FIG.
FIG. 7 and FIG. 8 are conceptual diagrams showing the introduction path of light, respectively. 3.10...Optical fiber, 3a, 11...
··core. 3b, 13...Clad, 3o, 12...
···End face. 31... Heating plate, 32... Heat source, 33
・・・・・・Type. Figure 1 Figure 3 (a) 14σ Figure 4 Figure 5 Figure 6 tσ Figure 7 Figure 8

Claims (2)

【特許請求の範囲】[Claims] (1)透明なプラスチック材料からなるコア部と、この
コア部を被覆するクラッド部とを備え、該コア部の一端
面から光を入射し、この受光した光をコア部を介して伝
送し他端面から出射するものにおいて、該コア部の端面
が所定の焦点距離を有するフレネルレンズ形状に成形さ
れていることを特徴とするプラスチック光ファイバ。
(1) A core part made of a transparent plastic material and a clad part covering this core part, which allows light to enter from one end surface of the core part and transmit the received light through the core part. 1. A plastic optical fiber that emits light from an end face, wherein the end face of the core portion is formed into a Fresnel lens shape having a predetermined focal length.
(2)透明なプラスチック材料からなるコア部と、この
コア部を被覆するクラッド部とを備えた光ファイバの該
コア部の端面を、加熱板の表面に形成されたフレネルレ
ンズ状の型に押し当てる工程と、該加熱板によつて上記
端面を熱変形温度に加熱し、上記型に形成されたフレネ
ルレンズ形状を該端面に転写する工程と、上記加熱板の
温度を低下させて該端面の温度を低下せしめ、該端面の
フレネルレンズ形状を定着する工程とからなることを特
徴とするプラスチック光ファイバの端面加工方法。
(2) Press the end face of the core part of an optical fiber, which has a core part made of a transparent plastic material and a clad part covering this core part, into a Fresnel lens-shaped mold formed on the surface of a heating plate. a step of heating the end surface to a heat deformation temperature by the heating plate to transfer the Fresnel lens shape formed in the mold onto the end surface; and a step of lowering the temperature of the heating plate to transform the end surface. A method for processing an end face of a plastic optical fiber, comprising the steps of lowering the temperature and fixing a Fresnel lens shape on the end face.
JP60201679A 1985-09-13 1985-09-13 Plastic optical fiber and edge surface processing method Pending JPS6262306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60201679A JPS6262306A (en) 1985-09-13 1985-09-13 Plastic optical fiber and edge surface processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60201679A JPS6262306A (en) 1985-09-13 1985-09-13 Plastic optical fiber and edge surface processing method

Publications (1)

Publication Number Publication Date
JPS6262306A true JPS6262306A (en) 1987-03-19

Family

ID=16445102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60201679A Pending JPS6262306A (en) 1985-09-13 1985-09-13 Plastic optical fiber and edge surface processing method

Country Status (1)

Country Link
JP (1) JPS6262306A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0312149A1 (en) * 1987-10-16 1989-04-19 Philips Patentverwaltung GmbH Light guide with coupling optics
JP2007260192A (en) * 2006-03-29 2007-10-11 Namiki Precision Jewel Co Ltd Optical irradiation probe, eye ground observing apparatus using the probe, eye ground operation apparatus, and endoscope

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0312149A1 (en) * 1987-10-16 1989-04-19 Philips Patentverwaltung GmbH Light guide with coupling optics
JP2007260192A (en) * 2006-03-29 2007-10-11 Namiki Precision Jewel Co Ltd Optical irradiation probe, eye ground observing apparatus using the probe, eye ground operation apparatus, and endoscope

Similar Documents

Publication Publication Date Title
US4186998A (en) Optical interconnecting device having tapered surfaces
US4119362A (en) Optical fiber connector utilizing opposed lenses
US5301252A (en) Mode field conversion fiber component
US5222795A (en) Controlled light extraction from light guides and fibers
JPH041881B2 (en)
US4201443A (en) Optical fiber coupler for interfacing with light sources and detectors
WO1986001150A1 (en) Microlens manufacture
JP3911305B2 (en) Fiber optic plate
US7039275B2 (en) Focusing fiber optic
US4966432A (en) Optical coupler and process for preparation thereof
JPH07209548A (en) Bonding device between glass fiber and dielectric waveguide
JPS6262306A (en) Plastic optical fiber and edge surface processing method
JPS58178310A (en) Optical fiber array wrought end face working oblique
JP3224106B2 (en) Optical fiber for laser input
GB1564379A (en) Optical fibre connector
JPS63149610A (en) Optical tapping device
JPS6257001B2 (en)
JPS5988672A (en) Optical fiber sensor
JPS6029085B2 (en) Light source coupler and its manufacturing method
JPH01166007A (en) Optical fiber end face treating method and optical plug used in this method
JPS5735820A (en) Multicore optical fiber connector
JPS6235237Y2 (en)
JPS5949504A (en) Illumination device
JPH0132003Y2 (en)
CA1098745A (en) Optical fiber coupling device and method