JPS6262194A - Heat transfer tube and manufacture thereof - Google Patents

Heat transfer tube and manufacture thereof

Info

Publication number
JPS6262194A
JPS6262194A JP20367785A JP20367785A JPS6262194A JP S6262194 A JPS6262194 A JP S6262194A JP 20367785 A JP20367785 A JP 20367785A JP 20367785 A JP20367785 A JP 20367785A JP S6262194 A JPS6262194 A JP S6262194A
Authority
JP
Japan
Prior art keywords
inner groove
groove
grooves
tube
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20367785A
Other languages
Japanese (ja)
Other versions
JPH0473076B2 (en
Inventor
Takuyuki Sato
佐藤 巧行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP20367785A priority Critical patent/JPS6262194A/en
Publication of JPS6262194A publication Critical patent/JPS6262194A/en
Publication of JPH0473076B2 publication Critical patent/JPH0473076B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • F28F13/185Heat-exchange surfaces provided with microstructures or with porous coatings
    • F28F13/187Heat-exchange surfaces provided with microstructures or with porous coatings especially adapted for evaporator surfaces or condenser surfaces, e.g. with nucleation sites

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Metal Extraction Processes (AREA)

Abstract

PURPOSE:To provide a heat transfer tube having both of high evaporating characteristics and high condensating characteristics by forming a multitude of protuberances, having a substantially triangular sectional shape, on the inernal surface of the heat transfer tube. CONSTITUTION:A plurality of first internal grooves 2, pinched between parallel protuberances having substantially triangular secitonal shapes, a plurality of second internal grooves 3, intersecting with the first internal grooves 2 and shallower than said first internal grooves 2, and projected sections 5, formed by projecting the troughs of the second internal grooves 3 toward the trough sections of the first internal grooves 2, are formed on the inner surface of a heat transfer tube. According to this method, evaporating characteristics may be improved by the discontinuity of the width of the first internal grooves 2 while the condensating characteristics of the same tube may be improved by sharp protuberances.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、冷凍、空調用等に用いる伝熱管の構造及びそ
の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a structure of a heat exchanger tube used for refrigeration, air conditioning, etc., and a method of manufacturing the same.

「従来技術」 例えば空気熱交換器に用いる伝熱管は、従来内面が真円
の平滑管が用いられてきたが、最近では高効率化、省エ
ネ化などの観点から、内面溝付管が多く使われるように
なっている。これは、管の内面に三角形や台形などの溝
をストレート状、または螺旋状に形成したもので、特に
螺旋状に溝を形成したものについては内部流体の攪拌作
用の向上や内表面積の増加による熱伝達率の上昇に加え
、内面溝の角部が沸騰核を形成することから沸騰伝熱特
性が優れている。しかしながら上記のような単純な形状
の内面溝付管では、山数、リード角、溝形状などに改善
を加えても伝熱特性に限界があり、冬期におけるヒート
ポンプエアコンの暖房能力の向上等を図ることができな
い。
``Prior art'' For example, heat transfer tubes used in air heat exchangers have traditionally been smooth tubes with a perfectly circular inner surface, but recently, tubes with grooves on the inner surface are often used from the viewpoint of increasing efficiency and saving energy. It is becoming more and more popular. This is a pipe in which triangular or trapezoidal grooves are formed in a straight or spiral shape on the inner surface of the tube.In particular, the spiral grooves improve the agitation effect of the internal fluid and increase the inner surface area. In addition to increasing the heat transfer coefficient, the corners of the inner grooves form boiling nuclei, resulting in excellent boiling heat transfer characteristics. However, with the simple shape of the internally grooved tubes mentioned above, there are limits to their heat transfer characteristics even if improvements are made to the number of threads, lead angle, groove shape, etc., and efforts are being made to improve the heating capacity of heat pump air conditioners in winter. I can't.

ヒートポンプエアコンの室外機は、夏期はコンデンサと
して作用し、また冬期にはエバポレータとして作用する
ので、その熱交換器に用いられる伝熱管には、凝縮、茎
発両特性の優れた特性を要求される。
The outdoor unit of a heat pump air conditioner acts as a condenser in the summer and as an evaporator in the winter, so the heat exchanger tubes used in the heat exchanger are required to have excellent characteristics in both condensation and oxidation. .

これに応えるものとして、管内面に微細な螺旋溝を設け
た伝熱管が用いられており、またその性能を向上させる
ために、交差溝付管の開発がなされている。
In response to this, heat exchanger tubes with fine spiral grooves provided on the inner surface of the tube are used, and in order to improve their performance, cross-grooved tubes are being developed.

「発明が解決しようとする問題点」 しかし、ヒートポンプエアコンにおいては、冬期など外
気の温度が低下した場合に、蒸発器が屋外に設面されて
いるため冷媒が十分茎発しなくなって、暖房温度の低下
を招くことが多い。
``Problem to be solved by the invention'' However, in heat pump air conditioners, when the outside temperature drops during winter, the evaporator is installed outdoors, so the refrigerant is not emitted sufficiently, and the heating temperature decreases. This often leads to a decline.

これは、蒸発器に用いられている伝熱管の蒸発熱特性の
低下によるものであって、特に外気の温度が低いときに
著しく現れる。
This is due to a decrease in the heat of evaporation characteristics of the heat exchanger tube used in the evaporator, and is particularly noticeable when the outside air temperature is low.

またヒートポンプエアコンの室外機は、夏期にあっては
凝l1iI器として機能するので、凝縮特性の低下は夏
期における冷房能力の不足を招くことになる。
Furthermore, since the outdoor unit of the heat pump air conditioner functions as a condenser in the summer, a decrease in condensing characteristics leads to a lack of cooling capacity in the summer.

「発明の目的」 本発明は、かかる従来の欠点を解消するためになされた
もので、例えばヒートポンプエアコン用として、高い蒸
発特性と凝縮特性を併せ持った伝熱管及びこれに通した
製造方法を提供することを目的とする。
``Object of the Invention'' The present invention was made in order to eliminate such conventional drawbacks, and provides a heat transfer tube having both high evaporation characteristics and condensation characteristics, for example for use in a heat pump air conditioner, and a manufacturing method using the same. The purpose is to

「問題点を解決するための手段」 上記目的を達成するために本発明が採用する主たる手段
は、略三角形の横断面形状を有する平行な山部の間に挟
まれた複数の第1内面溝と、上記第1内面溝に交差して
上記第1内面溝より浅い溝部と台形状の横断面形状を有
する山部とが交互に平行に形成された複数の第2内面溝
と、上記第1内面溝の谷部と交差する第2内面溝の谷部
の底面を第1内面溝の谷部の方へ向かって張り出すよう
に形成した張り出し部と、が管内面に形成されてなる点
を要旨とする伝熱管であり、かつその製造方法として略
三角形の横断面形状の溝を外周に多数存してなる第1溝
付きプラグによって、管内面に略三角形の横断面形状を
有する平行な山部の間に挟まれた複数の第1内面溝を形
成した後、上記第1溝付きプラグの外周に設けた溝より
も浅い多数の溝を外周にをし、第2溝付きプラグによっ
て、上記第1内面溝に交差してその山部を一定間隔で圧
迫して第1内面溝の谷部の方へ向かっC張り出すように
第2内面溝を形成するようにした伝熱管の製造方法が提
供される。
"Means for Solving the Problems" The main means adopted by the present invention to achieve the above object is to provide a plurality of first inner grooves sandwiched between parallel peaks having a substantially triangular cross-sectional shape. and a plurality of second inner grooves in which groove portions shallower than the first inner groove and peak portions having a trapezoidal cross-sectional shape are alternately formed in parallel to intersect with the first inner groove; An overhanging portion is formed on the inner surface of the tube so that the bottom surface of the trough of the second inner groove that intersects with the trough of the inner groove extends toward the trough of the first inner groove. The heat transfer tube is a heat exchanger tube, and the manufacturing method thereof is such that a first grooved plug having a plurality of grooves with a substantially triangular cross-sectional shape on the outer periphery is used to create parallel peaks with a substantially triangular cross-sectional shape on the inner surface of the tube. After forming a plurality of first inner grooves sandwiched between the parts, a plurality of grooves shallower than the grooves provided on the outer periphery of the first grooved plug are formed on the outer periphery, and the second grooved plug A method for manufacturing a heat exchanger tube is provided in which a second inner groove is formed so as to intersect with the first inner groove and press the peaks thereof at regular intervals so as to extend toward the troughs of the first inner groove. provided.

「発明の作用」 上記のように構成したので、本発明によれば、第1内面
溝の幅が第2内面溝と交差する部分で狭くなるので、第
1内面溝は幅が広い部分と幅が狭い部分とが交互に連続
して形成される。したがって第1内面溝内の冷媒液の流
れが攪律されるので蒸発特性が向上する。
"Operation of the Invention" With the above structure, according to the present invention, the width of the first inner groove becomes narrower at the part where it intersects with the second inner groove, so that the width of the first inner groove becomes narrower at the part where the width is wider. Narrow portions are formed alternately and continuously. Therefore, the flow of the refrigerant liquid in the first inner groove is stirred and the evaporation characteristics are improved.

また、第1内面溝の間の山部であって、第2内面溝によ
って切り欠かれていない突起部によって高い凝縮能力が
保持される。
Furthermore, high condensation ability is maintained by the protrusions that are located between the first inner grooves and are not cut out by the second inner grooves.

「実施例」 以下、本発明の実施例を第1図乃至第10図にしたがっ
て説明し、本発明の理解に供する。
"Embodiments" Examples of the present invention will be described below with reference to FIGS. 1 to 10 to provide an understanding of the present invention.

尚以下の実施例は、本発明の具体的−例にすぎず、本発
明の技術的範囲を限定する性格のものではない。
The following examples are merely specific examples of the present invention, and are not intended to limit the technical scope of the present invention.

ここに、第】図は本発明の一実施例に係る伝熱管の内面
を平面に展開した状態を示す斜視図、第2図は第1図に
示した伝熱管の製造過程において第1内面溝を刻設した
ときの断面図、第3図はその第2内面溝を刻設したとき
の断面図、第4図は本発明にかかる伝熱管の製造装置の
一例を示す側断面図、第5図は第1#付きプラグの概略
側面図、第6図は第5図のVl−Vl線に沿った断面図
、第7図は第2溝付プラグの概略側面図、第8図は第7
図の■−■線に沿った断面図、第9図は本発明の伝熱管
の効果を説明するための蒸発特性を示す図表、第10図
はその凝縮特性を示す図表である。
Here, Figure 1 is a perspective view showing the inner surface of the heat exchanger tube according to an embodiment of the present invention developed into a plane, and Figure 2 is the first inner groove formed during the manufacturing process of the heat exchanger tube shown in Figure 3 is a sectional view when the second inner groove is carved, FIG. 4 is a side sectional view showing an example of the heat exchanger tube manufacturing apparatus according to the present invention, and FIG. 5 is a sectional view when the second inner groove is carved. The figure is a schematic side view of the first plug with a groove, FIG. 6 is a sectional view taken along the line Vl-Vl in FIG.
FIG. 9 is a diagram showing evaporation characteristics for explaining the effects of the heat exchanger tube of the present invention, and FIG. 10 is a diagram showing its condensation characteristics.

第1図において、この伝熱管1は当初内面に凹凸がない
内面真円の平滑管に、特殊な形状を付与することにより
形成される。この伝熱管lには第2図に示すように断面
略三角形の山部を有する第1内面溝2が複数平行に形成
されている。
In FIG. 1, this heat exchanger tube 1 is formed by giving a special shape to a smooth tube with a perfectly circular inner surface and no irregularities on the inner surface. As shown in FIG. 2, this heat exchanger tube l has a plurality of parallel first inner grooves 2 each having a peak having a substantially triangular cross section.

この第1内面溝2の方向が矢印Pで示されている。この
矢印Pで示す第1内面溝2に交差する方向に第1内面溝
2よりも浅い第2内面溝3が形成されている。この第2
内面溝3の方向が矢印Qで示される。
The direction of the first inner groove 2 is indicated by an arrow P. A second internal groove 3, which is shallower than the first internal groove 2, is formed in a direction intersecting the first internal groove 2 as indicated by the arrow P. This second
The direction of the inner groove 3 is indicated by an arrow Q.

また第3図に示すように上記第2内面溝3と第1内面溝
2の間の山部とが交差する部分は、二点鎖線で示す第1
内面溝2の間の山部が圧迫されて、第1内面溝2の溝部
の方へ押し出されるので、第1内面溝2の幅b)はb2
になる。
Furthermore, as shown in FIG.
Since the peaks between the inner grooves 2 are compressed and pushed out toward the grooves of the first inner groove 2, the width b) of the first inner groove 2 becomes b2.
become.

しかし、第1内面溝2の間の山部の圧迫されない部分は
、もとのままの形状であるから、第1内面溝2の幅す、
は広いままである。したがって第1内面溝2は広い幅す
、の部分と、狭い幅b2の部分とが交互に連続して表れ
る。このため、第1内面溝2の中の冷媒液の流れが攪(
牢されて芸発特性が向上する。
However, since the unstressed portions of the peaks between the first inner grooves 2 remain in their original shape, the width of the first inner grooves 2 is
remains wide. Therefore, in the first inner groove 2, wide portions of width S and portions of narrow width b2 appear in succession alternately. Therefore, the flow of the refrigerant liquid in the first inner groove 2 is agitated (
Being imprisoned will improve your artistic abilities.

このように第1内面溝2の間の山部を圧迫することによ
って表れる張り出し部5を十分な大きさにするためには
、第2内面溝3の深さh2が大きいことが必要であり、
第1内面溝2の深さり、の1/3以上であることが望ま
しい。
In order to make the overhanging portion 5 that appears by pressing the peaks between the first inner grooves 2 to a sufficient size, the depth h2 of the second inner groove 3 needs to be large.
It is desirable that the depth be 1/3 or more of the depth of the first inner groove 2.

また、第2内面溝3の幅b(第1図)が狭いと、山を押
しのける体積が少なくなるので、十分な大きさの張り出
し部5ができない。したがってbは0.05 tm以上
、好ましくは0.1n以上が望ましい。
Moreover, if the width b (FIG. 1) of the second inner surface groove 3 is narrow, the volume to displace the peaks will be small, so that the overhang portion 5 of sufficient size cannot be formed. Therefore, b is desirably 0.05 tm or more, preferably 0.1 n or more.

一方、第1内面溝2の溝底の幅a (第2図)が小さい
と、凝縮した冷媒液が溝にたまって山の部分が液中に没
してしまうので、凝縮特性が低下する。このため、溝底
の幅aはなるべく大きい方がよい。
On the other hand, if the width a (FIG. 2) of the groove bottom of the first inner groove 2 is small, the condensed refrigerant liquid will accumulate in the groove and the peaks will be submerged in the liquid, resulting in a decrease in condensation characteristics. For this reason, the width a of the groove bottom is preferably as large as possible.

更に、第1内面溝2の山の頂部Aが鋭利な場合には、冷
媒液の液膜が薄くなるので、凝縮特性が向上する。
Furthermore, when the peaks A of the first inner grooves 2 are sharp, the liquid film of the refrigerant liquid becomes thinner, so that the condensation characteristics are improved.

次に上記第1図に示したような伝熱管1を製造するため
の装置及び方法に付き説明する。
Next, the apparatus and method for manufacturing the heat exchanger tube 1 as shown in FIG. 1 will be explained.

第4図において原管A、は、矢印Xの方向へ図示せぬ牽
引装置により牽引されており、円形ダイス装置Bと管内
のフローティングプラグCは各々のテーバ状アプローチ
部B+、C+及びベアリング部B2.C2とが協働して
連続通過する原管A。
In FIG. 4, the original tube A is pulled in the direction of arrow .. The prototube A passes through continuously in cooperation with C2.

を内外から圧迫し、縮径減肉加工する。この場合、円形
ダイス装置Bの部分での摩擦力を軽減するため円形ダイ
ス装置Bを回転方式としても良いし、原管A、の材質に
よっては固定式でも構わない。
The material is compressed from the inside and outside to reduce its diameter and thickness. In this case, in order to reduce the frictional force in the circular die device B, the circular die device B may be of a rotating type, or it may be of a fixed type depending on the material of the original tube A.

またフローティングプラグCと管内面との間に薄い潤滑
油膜を設け、縮径減肉加工下での焼き付きの防止に有効
に作用させる。この潤滑油膜は原管A1内に予め潤滑剤
Pが薄く引き伸ばされて形成されたものである。
In addition, a thin lubricating oil film is provided between the floating plug C and the inner surface of the tube to effectively prevent seizure during diameter and thinning processing. This lubricating oil film is formed by previously stretching the lubricant P thinly within the original tube A1.

上記フローティングプラグCの後方側(管の抽伸方向下
流側)に連接環りを介して、内面溝付き加工用の第1f
i付きプラグEがフローティングプラグCとは独立して
回動自在に連結されている。
The 1st f.
A plug E with an i is rotatably connected to the floating plug C independently.

縮径後の管A2の通過に伴い、第1溝付きプラクEには
管軸方向の引っ張り力が作用するが、第1溝付きプラグ
E後部にこの軸方向の引っ張り力を支えるためのスラス
トベアリングGが設けられ、これにより第1溝付きプラ
グEが定位置で回転できる。
As the pipe A2 passes through after diameter reduction, a tensile force in the tube axial direction acts on the first grooved plug E. A thrust bearing is provided at the rear of the first grooved plug E to support this axial tensile force. G is provided, which allows the first grooved plug E to rotate in position.

上記第1溝付きプラグEは第5図および第6図に示すよ
うに、その外面に規則的に並んだ又は不規則(ランダム
)に並んだ複数の溝E、が概ね管軸方向に対して斜めに
傾斜した形で刻設されている。通過する管A2の肉が、
この溝E、の凹部に管外からの圧迫により埋設されて、
内面溝付き管の第1内面溝2の山部を形成し、一方凸部
が同様に第1内面溝2の谷部を形成する。
As shown in FIGS. 5 and 6, the first grooved plug E has a plurality of grooves E arranged regularly or irregularly (randomly) on its outer surface approximately in the tube axis direction. It is carved in a diagonal shape. The meat of tube A2 passing through is
It is buried in the recess of this groove E by pressure from outside the pipe,
The peaks of the first inner groove 2 of the inner grooved tube are formed, while the convex portions similarly form the troughs of the first inner groove 2.

なお、第1溝付きプラグEの外面に設けられた溝EIが
管軸方向に対してストレート状(つまり管軸に平行)で
ある場合には、管の引抜きにつれて内面にストレート溝
が形成され、第1a付きプラグEは管の移動につれて回
転することがない。
Note that when the groove EI provided on the outer surface of the first grooved plug E is straight in the tube axis direction (that is, parallel to the tube axis), a straight groove is formed on the inner surface as the tube is pulled out. Plug E with No. 1a does not rotate as the pipe moves.

管外にあって管肉を連続的に前記、第1溝付きプラグ已
に強圧する第1転圧装置F、は、加工中は図示せぬ接離
機構によって管軸に対して押し付けられ、非加工中は管
外表面に触れぬように離される。かかる第1転圧装置F
、は、管外周面に3個以上設けられ、同時に接離機構に
より管肉を圧迫する。
The first rolling device F, which is located outside the tube and continuously presses the tube flesh strongly against the first grooved plug, is pressed against the tube shaft by a contact/separation mechanism (not shown) during processing, and is During processing, the tube is kept away from the outside surface so as not to touch it. Such a first rolling device F
, are provided on the outer circumferential surface of the tube, and at the same time press the tube flesh with a contact/separation mechanism.

上記のような内面溝付は装置において、管A3を矢印X
の方向に牽引しつつ、第1転圧装置F1や円形ダイス装
置Bを矢印Yで示すように回転させると、まず原管A1
がフローティングプラグCのアプローチ部C7と円形ダ
イス装置Bのアプローチ部B、の間に把持され縮径され
ていき、且つ円形ダイス装置Bのベアリング部B2とフ
ローティングプラグCのベアリング部C2との間を通る
時に管外径を規制され、縮径加工後の管A2となって引
き出される。管A2は更に第1転圧装置F1によって第
1溝付きプラグEの溝E、に押しつけられ、その内面に
第1内面溝2が溝B、の傾斜角度に対応して螺旋状に形
成される。このような第1内面溝2の形状は第5図およ
び第6図に示されている。
For internal grooves as described above, place pipe A3 in the direction of arrow
When the first rolling device F1 and the circular die device B are rotated as shown by the arrow Y while being pulled in the direction of
is held between the approach portion C7 of the floating plug C and the approach portion B of the circular die device B, and its diameter is reduced, and between the bearing portion B2 of the circular die device B and the bearing portion C2 of the floating plug C. As it passes through, the outside diameter of the tube is regulated and it is pulled out as tube A2 after diameter reduction. The pipe A2 is further pressed against the groove E of the first grooved plug E by the first rolling device F1, and a first inner groove 2 is formed in the inner surface thereof in a spiral shape corresponding to the inclination angle of the groove B. . The shape of the first inner groove 2 is shown in FIGS. 5 and 6.

したがって、第1溝付きプラグEによって加工された管
の内面は、第2図に示すように頂点がへの三角形断面の
山部と底幅がaの溝部とが交互に形成される。
Therefore, on the inner surface of the pipe processed by the first grooved plug E, as shown in FIG. 2, peaks having a triangular cross section with an apex and grooves having a bottom width of a are alternately formed.

このようにして内面に第1内面溝2が形成された管A、
は更に第2転圧装置F2の部分を通過する。この第2転
圧装置F、に対応する管A3内には第2溝付きプラグE
3が収容され、この第2溝付きプラグE3は、第7図お
よび第8図に示すように、第1溝付きプラグEの外径d
1により小さな外径d2を有し、断面形状が略台形の溝
部4を有する短円柱状のものである。
A pipe A with the first inner groove 2 formed on the inner surface in this way,
further passes through the second rolling device F2. A second grooved plug E is provided in the pipe A3 corresponding to the second rolling device F.
3 is accommodated, and this second grooved plug E3 has an outer diameter d of the first grooved plug E, as shown in FIGS. 7 and 8.
It has a short cylindrical shape having an outer diameter d2 smaller than 1, and a groove 4 having a substantially trapezoidal cross-sectional shape.

したがって、第2溝付きプラグE3によって加工された
部分の管の内面は第3図に示すように形成される。すな
わち、二点鎖線で示される第1内面溝2の山部が第2溝
付きプラグE3の外周面によって圧迫されるので、第1
内面溝2の山の頂部Aからの深さはり、となる。
Therefore, the inner surface of the pipe in the portion processed by the second grooved plug E3 is formed as shown in FIG. That is, since the peak portion of the first inner groove 2 shown by the two-dot chain line is pressed by the outer circumferential surface of the second grooved plug E3, the first
The depth from the top A of the inner groove 2 is as follows.

またこの圧迫によって、第1内面溝2の山部が第1内面
溝2の溝部の方へ張り出されて張り出し部5となるので
、第1内面溝2の幅b1は、この圧迫された部分ではb
2となる。
Also, due to this compression, the peak part of the first inner groove 2 is overhanged toward the groove part of the first inner groove 2 to form an overhang part 5, so the width b1 of the first inner groove 2 is the compressed part. So b
It becomes 2.

この第2内面fI3の間の山部は、第2溝付きプラグE
3の台形部に沿うので、圧迫されずにもとのままの山部
である。したがって溝の幅は依然としてす、である。
The peak between this second inner surface fI3 is the second grooved plug E.
Since it follows the trapezoidal part of No. 3, the mountain part remains as it was without being compressed. Therefore, the width of the groove is still .

なお、第2溝付きプラグE、は前記連接棒りの延長上に
設けた連接棒D1に回転自在に支承され、スラストベア
リングG1によって軸方向一定位置に保持されている。
The second grooved plug E is rotatably supported by a connecting rod D1 provided on an extension of the connecting rod, and is held at a fixed position in the axial direction by a thrust bearing G1.

以上の説明では、第1内面溝2が右ねじの向きで第2内
面溝3が左ねじの向きに形成されているが、各溝付きプ
ラグに形成した溝E1及びE4の方向を適当に調整する
ことによって第1内面溝及び第2内面溝のいずれかを管
軸に平行なストレート状と為し、他方をこれと交差する
右ねし方向もしくは左ねじ方向の螺旋溝とすることも可
能である。
In the above explanation, the first inner groove 2 is formed to have a right-hand thread, and the second inner groove 3 is formed to have a left-hand thread. However, the directions of the grooves E1 and E4 formed in each grooved plug may be adjusted appropriately. By doing so, it is also possible to make either the first inner groove or the second inner groove a straight groove parallel to the tube axis, and the other to be a spiral groove in the right-handed or left-handed direction that intersects with this. be.

また、上記の装置ではフローティングプラグC1第1溝
付きプラグE、第2溝付きプラグE3を連接棒り及びD
lによってユニット状に組み合わせて第1及び第2内面
溝2及び3を連続的に成形する装置及び方法について説
明したが、これらを別個に切り離して、例えばフローテ
ィングプラグCと第1a付きプラグEとを連接棒で一体
的に組み合わせたもので、まず第1内面溝2を形成し、
連続的に巻き取った後、新たに第2溝付きプラグE3を
別のフローティングプラグと組み合わせたものを用いて
、第2内面溝3を第1内面a2の上に彫り込んでいくよ
うにしてバッチ的に両内面溝を形成することも可能であ
る。
In addition, in the above device, the floating plug C1, the first grooved plug E, and the second grooved plug E3 are connected to the connecting rod and D.
Although the apparatus and method for continuously forming the first and second internal grooves 2 and 3 by combining them into a unit by means of the above-described method has been described, it is also possible to separate them separately to form, for example, a floating plug C and a plug E with No. 1a. They are integrally assembled using a connecting rod, and first, a first inner groove 2 is formed,
After continuous winding, a new second grooved plug E3 combined with another floating plug is used to carve the second inner groove 3 onto the first inner surface a2 in a batch-like manner. It is also possible to form grooves on both inner surfaces.

本実施例における具体的数値は、第1表に示す通りであ
って、本発明に係る伝熱管の効果を確認するために、こ
の表に併記した仕様を有する従来の内面溝付管との比較
試験を行った。
The specific numerical values in this example are as shown in Table 1, and in order to confirm the effect of the heat exchanger tube according to the present invention, a comparison with a conventional internally grooved tube having the specifications listed in this table is made. The test was conducted.

その試験結果は、第9図および第10図に示す如くであ
って、本実施例の伝熱管(黒丸印)は従来の内面溝付管
(白丸印)に比して、茎発特性において約1.2倍、凝
縮特性において約1.3倍に向上した。
The test results are as shown in FIGS. 9 and 10, and the heat exchanger tube of this example (marked with black circles) has about 100% of the stem generation characteristics compared to the conventional internally grooved tube (marked with white circles). The condensation properties were improved by 1.2 times and about 1.3 times.

呈上l 「発明の効果」 以上説明したように、本発明は略三角形の横断面形状を
有する平行な山部の間に挟まれた複数の第1内面溝と、
上記第1内面溝に交差して上記第1内面溝より浅い溝部
と台形状の横断面形状を有する山部とが交互に平行に形
成された複数の第2内面溝と、上記第1内面溝の谷部と
交差する第2内面溝の谷部の底面を第1内面溝の谷部の
方へ向かって張り出すように形成した張り出し部と、が
管内面に形成されてなることを特徴とする伝熱管である
から、第1内面溝の溝幅の不連続によって茎発特性が向
上し、また鋭利な凸部によって凝縮特性が向上する。
Presentation l "Effects of the Invention" As explained above, the present invention provides a plurality of first inner grooves sandwiched between parallel peaks having a substantially triangular cross-sectional shape;
a plurality of second inner grooves intersecting with the first inner groove and having groove portions shallower than the first inner groove and peak portions having a trapezoidal cross-sectional shape alternately formed in parallel; and the first inner groove. An overhang is formed on the inner surface of the tube, the bottom surface of the valley of the second inner groove intersecting with the valley of the first inner groove extending toward the valley of the first inner groove. Since the tube is a heat transfer tube, the discontinuity in the groove width of the first inner groove improves the stem generation characteristics, and the sharp convex portions improve the condensation characteristics.

更に、本発明は略三角形の横断面形状の溝を外周に多数
有してなる第1溝付きプラグによって、管内面に略三角
形の横断面形状を有する平行な山部の間に挟まれた複数
の第1内面溝を形成した後、上記第1溝付きプラグの外
周に設けた溝よりも浅い多数の溝を外周に有し、第2溝
付きプラグによって、上記第1内面溝に交差してその山
部を一定間隔で圧迫して第1内面溝の谷部の方へ向かっ
て張り出すように第2内面溝を形成することを特徴とす
る伝熱管の製造方法であるから、上記のように伝熱特性
の優れた伝熱管を、第1溝付きプラグおよび第2溝付プ
ラグを使用した簡便な装置で、容易に製造することがで
きるという顕著な効果を奏する。
Furthermore, the present invention provides a first grooved plug having a plurality of grooves having a substantially triangular cross-sectional shape on the outer periphery, and a plurality of grooves sandwiched between parallel peaks having a substantially triangular cross-sectional shape on the inner surface of the tube. After forming the first inner groove, the outer periphery has a number of grooves shallower than the grooves provided on the outer periphery of the first grooved plug, and the second grooved plug intersects with the first inner groove. Since the method for manufacturing a heat transfer tube is characterized in that the second internal groove is formed by compressing the peaks at regular intervals so as to protrude toward the troughs of the first internal groove, as described above, This has the remarkable effect that a heat exchanger tube with excellent heat transfer characteristics can be easily manufactured using a simple device using a first grooved plug and a second grooved plug.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る伝熱管の内面を平面に
展開した状態を示す斜視図、第2図は第1図に示した伝
熱管の製造過程において第1内面溝を刻設したときの断
面図、第3図はその第2内面溝を刻設したときの断面図
、第4図は本発明にかかる伝熱管の製造装置の一例を示
す側断面図、第5図は第1溝付きプラグの概略側面図、
第6図は第5図のMl−Ml線に沿った断面図、第7図
は第2溝付プラグの概略側面図、第8図は第7図の■−
■線に沿った断面図、第9図は本発明の伝熱管の効果を
説明するための茎発特性を示す図表、第10図はその凝
縮特性を示す図表である。 (符号の説明) 1・・・伝熱管      2・・・第1内面溝3・・
・第2内面溝    5・・・張り出し部E・・・第1
溝付きプラグ E3・・・第2溝付きプラグ
Fig. 1 is a perspective view showing the inner surface of a heat exchanger tube according to an embodiment of the present invention developed into a plane, and Fig. 2 shows a first inner groove carved in the manufacturing process of the heat exchanger tube shown in Fig. 1. 3 is a sectional view when the second inner groove is carved, FIG. 4 is a side sectional view showing an example of the heat exchanger tube manufacturing apparatus according to the present invention, and FIG. 5 is a sectional view when the second inner groove is carved. 1 Schematic side view of a grooved plug,
FIG. 6 is a sectional view taken along the line Ml-Ml in FIG. 5, FIG. 7 is a schematic side view of the second grooved plug, and FIG. 8 is a -
9 is a sectional view taken along the line (2), FIG. 9 is a chart showing the stem generation characteristics for explaining the effects of the heat exchanger tube of the present invention, and FIG. 10 is a chart showing the condensation characteristics thereof. (Explanation of symbols) 1... Heat exchanger tube 2... First inner groove 3...
・Second inner groove 5...Protrusion part E...First
Grooved plug E3...Second grooved plug

Claims (2)

【特許請求の範囲】[Claims] (1)略三角形の横断面形状を有する平行な山部の間に
挟まれた複数の第1内面溝と、 上記第1内面溝に交差して上記第1内面溝 より浅い溝部と台形状の横断面形状を有する山部とが交
互に平行に形成された複数の第2内面溝と、 上記第1内面溝の谷部と交差する第2内面 溝の谷部の底面を第1内面溝の谷部の方へ向かって張り
出すように形成した張り出し部とが管内面に形成されて
なることを特徴とす る伝熱管。
(1) A plurality of first inner grooves sandwiched between parallel ridges having a substantially triangular cross-sectional shape, a trapezoidal groove intersecting the first inner groove and shallower than the first inner groove; A plurality of second inner grooves in which peaks having a cross-sectional shape are alternately formed in parallel, and a bottom surface of the valley of the second inner groove that intersects with the valley of the first inner groove are connected to the first inner groove. A heat exchanger tube characterized in that an overhanging portion is formed on the inner surface of the tube so as to overhang toward the trough.
(2)略三角形の横断面形状の溝を外周に多数有してな
る第1溝付きプラグによって、管内面に略三角形の横断
面形状を有する平行な山部の間に挟まれた複数の第1内
面溝を形成した後、 上記第1溝付きプラグの外周に設けた溝よ りも浅い多数の溝を外周に有し、第2溝付きプラグによ
って、上記第1内面溝に交差してその山部を一定間隔で
圧迫して第1内面溝の谷部の方へ向かって張り出すよう
に第2内面溝を形成することを特徴とする伝熱管の製造
方法。
(2) A first grooved plug having a plurality of grooves with a substantially triangular cross-sectional shape on the outer periphery has a plurality of grooves sandwiched between parallel peaks with a substantially triangular cross-sectional shape on the inner surface of the tube. After forming the first inner groove, the outer periphery has a number of grooves shallower than the grooves provided on the outer periphery of the first grooved plug, and the second grooved plug intersects the first inner groove and forms the peaks thereof. A method of manufacturing a heat exchanger tube, comprising: forming a second inner groove so as to extend toward a trough of the first inner groove by compressing the inner groove at regular intervals.
JP20367785A 1985-09-13 1985-09-13 Heat transfer tube and manufacture thereof Granted JPS6262194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20367785A JPS6262194A (en) 1985-09-13 1985-09-13 Heat transfer tube and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20367785A JPS6262194A (en) 1985-09-13 1985-09-13 Heat transfer tube and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS6262194A true JPS6262194A (en) 1987-03-18
JPH0473076B2 JPH0473076B2 (en) 1992-11-19

Family

ID=16478015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20367785A Granted JPS6262194A (en) 1985-09-13 1985-09-13 Heat transfer tube and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6262194A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0530258U (en) * 1991-09-19 1993-04-20 株式会社イナツクス Water faucet
WO2012060461A1 (en) * 2010-11-02 2012-05-10 日本電気株式会社 Cooling device and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS555176A (en) * 1978-06-29 1980-01-16 Sumitomo Light Metal Ind Ltd Production of heat transer pipe
JPS5541342A (en) * 1978-09-16 1980-03-24 Daikin Ind Ltd Heat exchanger
JPS59119192A (en) * 1982-12-27 1984-07-10 Hitachi Ltd Heat transfer pipe
JPS6237693A (en) * 1985-08-12 1987-02-18 Mitsubishi Heavy Ind Ltd Heat transfer tube provided with intersecting groove on internal wall thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS555176A (en) * 1978-06-29 1980-01-16 Sumitomo Light Metal Ind Ltd Production of heat transer pipe
JPS5541342A (en) * 1978-09-16 1980-03-24 Daikin Ind Ltd Heat exchanger
JPS59119192A (en) * 1982-12-27 1984-07-10 Hitachi Ltd Heat transfer pipe
JPS6237693A (en) * 1985-08-12 1987-02-18 Mitsubishi Heavy Ind Ltd Heat transfer tube provided with intersecting groove on internal wall thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0530258U (en) * 1991-09-19 1993-04-20 株式会社イナツクス Water faucet
WO2012060461A1 (en) * 2010-11-02 2012-05-10 日本電気株式会社 Cooling device and manufacturing method thereof

Also Published As

Publication number Publication date
JPH0473076B2 (en) 1992-11-19

Similar Documents

Publication Publication Date Title
US6026892A (en) Heat transfer tube with cross-grooved inner surface and manufacturing method thereof
CN1062951C (en) Heat-transfer small size tube and method of manufacturing same
JPH0857535A (en) Pipe with multiplex wound rib and its production
KR100830724B1 (en) Manufacturing device for spiral finned tube
JPS6262194A (en) Heat transfer tube and manufacture thereof
JPS60216190A (en) Heat transfer pipe and manufacture thereof
JPS61175485A (en) Heat transfer tube and manufacture thereof
JPH0459968B2 (en)
JP2580353B2 (en) ERW heat transfer tube and its manufacturing method
JPH04260793A (en) Heat transfer tube with inner surface groove
JPH0473077B2 (en)
JPS6029594A (en) Heat-transmitting pipe and manufacture thereof
JP2628712B2 (en) Method of forming heat transfer surface
JP2737799B2 (en) Heat transfer tube
JP2773872B2 (en) Heat transfer tube for boiling and condensation
JPS588995A (en) Heat conducting pipe
JPS61209723A (en) Manufacture of heat exchanger tube
JP2726480B2 (en) Heat transfer tube
WO2002033340A9 (en) Tapered fin and method of forming the same
JPS61125592A (en) Heat transfer tube and manufacturing device therefor
CN208108902U (en) Half annular knurl finned condensation pipe
JP3076167B2 (en) Manufacturing method of heat exchanger tube for heat exchanger by rolling method
JPH0724522A (en) Heat-transfer tube for absorber and production therefor
CN220818691U (en) Non-symmetrical heat transfer tube
JPS59202397A (en) Internally grooved pipe and manufacture thereof