JPS62620B2 - - Google Patents

Info

Publication number
JPS62620B2
JPS62620B2 JP54060926A JP6092679A JPS62620B2 JP S62620 B2 JPS62620 B2 JP S62620B2 JP 54060926 A JP54060926 A JP 54060926A JP 6092679 A JP6092679 A JP 6092679A JP S62620 B2 JPS62620 B2 JP S62620B2
Authority
JP
Japan
Prior art keywords
light
optical
semiconductor laser
wavelengths
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54060926A
Other languages
Japanese (ja)
Other versions
JPS55153438A (en
Inventor
Keiichi Kubota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP6092679A priority Critical patent/JPS55153438A/en
Publication of JPS55153438A publication Critical patent/JPS55153438A/en
Publication of JPS62620B2 publication Critical patent/JPS62620B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2587Arrangements specific to fibre transmission using a single light source for multiple stations

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Description

【発明の詳細な説明】 この発明は光通信装置に関するものである。近
年、画像伝送、計算機のデータバス、フアクシミ
リ網等で通信回線の利用が大幅に増加している。
フアイバー光学系を用いた光通信システムは回線
ケーブルの軽量化、伝送帯域の広帯域化を可能に
するので、将来の通信システムと期待されてい
る。より高度の光通信システムを実現するために
は、変調器、復調器、交換器、分割器の機能をも
つ光学的デバイスが必要である。このうち特に光
のスイツチング、交換の機能をもつデバイスとし
て、電気光学結晶を用いた光変調器、光IC素子
が考えられている。しかし、これらのデバイスは
光の入射角度、モード、偏向条件などにかなりの
制限があり、多数素子をカスケードに継いだ光交
換器なるものの実現はかなり難しい。そのため
に、従来の光通信システムは伝送回路のみに光フ
アイバーを用い、その他のスイツチング機能等は
電気的におこなうために、光通信の多重通信、双
方向通信の特徴が生かされなかつた。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical communication device. In recent years, the use of communication lines has increased significantly for image transmission, computer data buses, facsimile networks, and the like.
Optical communication systems using fiber optics are expected to become future communication systems because they enable lighter line cables and wider transmission bands. In order to realize more advanced optical communication systems, optical devices with the functions of modulators, demodulators, exchangers, and dividers are required. Among these, optical modulators and optical IC elements using electro-optic crystals are being considered as devices that have the function of switching and exchanging light. However, these devices have considerable limitations on light incident angle, mode, polarization conditions, etc., and it is quite difficult to realize an optical exchanger in which multiple elements are connected in cascade. For this reason, conventional optical communication systems use optical fiber only for the transmission circuit, and other switching functions are performed electrically, making it impossible to take advantage of the multiplex communication and bidirectional communication features of optical communication.

この発明の目的は光スイツチングを必要としな
い多方向光通信装置を提供するところにある。
An object of the present invention is to provide a multidirectional optical communication device that does not require optical switching.

この発明によれば、複数の波長で発振する半導
体レーザと、該半導体レーザからの複数の発振光
を分波する分波器と、該分波器により分波された
光を伝播する複数の光伝播路と、該光伝播路の各
端末に置かれた光検出手段と変調機能を有する光
帰還手段とからなる光通信装置が得られる。
According to the invention, there is provided a semiconductor laser that oscillates at a plurality of wavelengths, a demultiplexer that demultiplexes a plurality of oscillation lights from the semiconductor laser, and a plurality of light beams that propagate the light demultiplexed by the demultiplexer. An optical communication device comprising a propagation path, a light detection means placed at each terminal of the light propagation path, and an optical feedback means having a modulation function is obtained.

以下、この発明について図面を参照しつつ詳し
く説明する。第1図はこの発明による光通信装置
を示すものである。複数本の縦モードが発振する
半導体レーザ1からの複数の波長の光2が放射さ
れ、これらの光は分波器3によつて各波長の光に
対応する光伝播路4に導びかれる。光伝播路4
a,……,4cを通つた光は各端末に置かれた光検
出手段5a,……,5cによつて検出されると同時
に、変調機能を有する光帰還手段6a,……6c
よつて再び光伝播路4a,……,4cに送り返され
る。帰還する光は分波器3を通り半導体レーザ1
に戻り、戻り光による自己結合効果によつて半導
体レーザの出力光が変化する。半導体レーザの自
己結合効果は、外部共振器が形成されるために生
じる効果として説明することができる。半導体レ
ーザの自己結合効果については、たとえば「第39
回応用物理学会学術講演会講演予稿集」1978年
478頁に掲載の予稿「CSP型半導体レーザの回折
格子による自己結合効果」に述べられている。縦
モード複数本の波長で発振している半導体レーザ
に、回折格子を用いてそのうちの一つの波長の光
だけを半導体レーザに戻したとき、他の発振波長
の光は抑圧されて一つの波長の光だけが発振した
ことを報告している。第2図、第3図は半導体レ
ーザの発振スペクトルを示したもので、入a,…
…,入b,……入cのN本の波長の光が発振して
いるものとする。この半導体レーザに波長入aの
光を戻したとすると、第3図の実線のように半導
体レーザが発振する光は波長入aの光だけにな
る。また波長入cの光を戻したとき、発振光は点
線の入cの光のみになる。本発明はこの半導体レ
ーザの自己結合効果を応用したものである。第1
図において半導体レーザは縦モード複数本で発振
し、自己結合効果をもつ素子であれば良く、スト
ライプ構造によらない。分波器はハーフミラーと
干渉フイルターから構成されるものとか、回折格
子を利用して、各波長の光を分離できるものが利
用できる。
Hereinafter, this invention will be explained in detail with reference to the drawings. FIG. 1 shows an optical communication device according to the present invention. Light 2 of a plurality of wavelengths is emitted from a semiconductor laser 1 that oscillates in a plurality of longitudinal modes, and these lights are guided by a demultiplexer 3 to an optical propagation path 4 corresponding to the light of each wavelength. Light propagation path 4
The light passing through a , . 6c , the light is sent back to the light propagation path 4a ,..., 4c . The returning light passes through the demultiplexer 3 and enters the semiconductor laser 1.
Returning to , the output light of the semiconductor laser changes due to the self-coupling effect due to the returned light. The self-coupling effect of semiconductor lasers can be explained as an effect caused by the formation of an external cavity. Regarding the self-coupling effect of semiconductor lasers, see, for example, "No. 39
Proceedings of the Academic Conference of Japan Society for Applied Physics, 1978
This is described in the preliminary paper ``Self-coupling effect of diffraction gratings in CSP semiconductor lasers'' published on page 478. When a diffraction grating is used for a semiconductor laser that oscillates at multiple wavelengths in the longitudinal mode and only one of the wavelengths is returned to the semiconductor laser, the light at other oscillation wavelengths is suppressed and only one wavelength is produced. It is reported that only light oscillated. Figures 2 and 3 show the oscillation spectra of semiconductor lasers, with inputs a,...
It is assumed that light of N wavelengths with input b, input c, etc. are oscillating. If the light with the wavelength input a is returned to this semiconductor laser, the only light that the semiconductor laser oscillates will be the light with the wavelength input a, as shown by the solid line in FIG. Furthermore, when the light with the wavelength input c is returned, the oscillation light becomes only the light with the input c shown by the dotted line. The present invention applies this self-coupling effect of semiconductor lasers. 1st
In the figure, the semiconductor laser need only be an element that oscillates in a plurality of longitudinal modes and has a self-coupling effect, and does not need to have a striped structure. The demultiplexer can be made up of a half mirror and an interference filter, or it can use a diffraction grating to separate light of each wavelength.

第4図に回折格子を用いた分波器の1例を示
す。光フアイバー10を通つて波長入a,入b,
入cの光が伝播してきたとする。光フアイバー1
0から出射した光14はレンズ15によつて平行
にされた後に、回折格子16に入射する。回折格
子は各波長の光を異なつた方向に回折する。回折
された各波長の光はレンズ15で異なつた位置に
集光され、その集光点に置かれた光フアイバー1
1,12,13に波長入a,入b,入cの光が分
離して取り出される。
FIG. 4 shows an example of a duplexer using a diffraction grating. Through the optical fiber 10, the wavelengths a, b,
Suppose that an incident light beam propagates. optical fiber 1
Light 14 emitted from 0 is made parallel by lens 15 and then enters diffraction grating 16 . A diffraction grating diffracts each wavelength of light in a different direction. The diffracted light of each wavelength is focused at different positions by a lens 15, and an optical fiber 1 is placed at the focusing point.
At wavelengths 1, 12, and 13, light having wavelengths a, b, and c is separated and extracted.

このように、波長入a,入b,入cの光を独立
に各波長に対応する光フアイバに導びく分波器が
できる。また逆方向に、個々のフアイバー11,
12,13からの波長入a,入b,入cの光は再
び1本の光フアイバー10に導かれる。半導体レ
ーザが多モードで発振するときの発振波長は中心
波長820nmを中心として約1nm程度の間隔で並
んでいる。これらの波長を分離して取り出すに
は、例えば回折格子として1180本/mm、レンズ焦
点距離250mmを用いると、2次の回折光を利用し
て、0.1nmの分離能で光を分離することが容易に
できる。
In this way, a demultiplexer can be created that independently guides the light at wavelengths a, b, and c to the optical fibers corresponding to each wavelength. In addition, in the opposite direction, the individual fibers 11,
The lights of wavelengths a, b, and c from 12 and 13 are guided to one optical fiber 10 again. When a semiconductor laser oscillates in multiple modes, the oscillation wavelengths are arranged at intervals of approximately 1 nm around a central wavelength of 820 nm. To separate and extract these wavelengths, for example, if you use a diffraction grating of 1180 lines/mm and a lens focal length of 250 mm, it is possible to separate the light with a separation power of 0.1 nm using the second-order diffracted light. It's easy to do.

次に第1図において、光伝播路4は光フアイバ
ーで、損失の少ないフアイバーが望ましい。
Next, in FIG. 1, the light propagation path 4 is an optical fiber, preferably a fiber with low loss.

光検出手段5a,……,5b,……,5cの例と
しては、ハーフミラーで光を取り出して受光素
子、例えばホトダイオードなどで、光を検出する
方法がある。光帰還手段6a,6b,……6cとし
ては入射した光を再び変調して戻す素子であれば
よく、反射鏡を圧電素子で振るデバイス電気光学
素子や音響光学素子を用いた光変調器と反射鏡を
組み合わせたもの等がある。第5図に音響光学素
子を用いた光帰還手段の1例を示す。
An example of the light detection means 5 a , . . . , 5 b , . The optical feedback means 6 a , 6 b , ... 6 c may be any element that modulates the incident light again and returns it, such as a device that shakes a reflecting mirror with a piezoelectric element, an optical modulation using an electro-optic element or an acousto-optic element. There are some that combine a vessel and a reflecting mirror. FIG. 5 shows an example of an optical feedback means using an acousto-optic element.

レーザ光18は音響光学偏向器17によつて偏
向されたレーザ光21になり、レンズ20によつ
て反射鏡22に集光される。反射鏡22によつて
反射されたレーザ光は逆行し、音響光学偏向器1
7によつて再び偏向され、レーザ光18と逆方向
に戻る光となる。
The laser beam 18 is deflected by the acousto-optic deflector 17 to become a laser beam 21, which is focused onto a reflecting mirror 22 by a lens 20. The laser beam reflected by the reflecting mirror 22 travels backwards and passes through the acousto-optic deflector 1.
The laser beam 18 is deflected again by the laser beam 18, and becomes light that returns in the opposite direction to the laser beam 18.

音響光学偏向器17が働らかないときは、レー
ザ光18は直進する光19となり、再び戻つてく
ることはない。このように音響光学偏向器を
ON、OFFすることによつて、レーザ光を戻した
り、戻らないようにできる。
When the acousto-optic deflector 17 does not work, the laser beam 18 becomes light 19 that travels straight and never returns. In this way, an acousto-optic deflector
By turning it ON and OFF, the laser beam can be returned or prevented from returning.

第6図はこの発明による光通信装置の動作を説
明するものである。三つの端末A,B,Cで受光
された受光器出力7a,7b,7cを示している。
各端末の光帰還手段6a,6b,6cが動作しない
T1までの時間は、半導体1から出射された各端
末に対応する波長の光が、分波回路3、光伝播路
a,4b,4cを通つて光検出手段5a,5b,5c
に受けられ、各出力7a,7b,7cが得られる。
FIG. 6 explains the operation of the optical communication device according to the present invention. The receiver outputs 7 a , 7 b , and 7 c received by three terminals A, B, and C are shown.
Optical feedback means 6 a , 6 b , 6 c of each terminal do not work
During the time up to T 1 , the light of the wavelength corresponding to each terminal emitted from the semiconductor 1 passes through the demultiplexing circuit 3 and the optical propagation paths 4 a , 4 b , 4 c to the photodetecting means 5 a , 5 b ,5 c
The outputs 7 a , 7 b , and 7 c are obtained.

各出力は同程度の強度をもつ光を受けるので
V1の値をもつている。T1から端末Aの光帰還手
段6aが動作を開始し、波長入aの光を変調して
戻したとする。このとき、半導体レーザ1に波長
入aの光が戻されることによつて、半導体レーザ
1から出射されていた他の波長の光は抑圧されて
波長入aの光のみが出射される。
Each output receives light with the same intensity, so
It has a value of V 1 . Assume that the optical feedback means 6 a of terminal A starts operating from T 1 and modulates the light of wavelength a and returns it. At this time, by returning the light of wavelength a to the semiconductor laser 1, the light of other wavelengths emitted from the semiconductor laser 1 is suppressed, and only the light of wavelength a is emitted.

そのために、端末B,Cに光は届かず、光検出
手段5b,5cの出力7b,7cは0になる。端末A
の光検出手段5aの出力7aはV2の値をとる。すな
わち端末Aからの送信信号7aの負極性の信号が
他の端末B,Cに同時に送られることになる。こ
の効果は端末Cが時間T2より光帰還手段6cを動
作させて送信をする場合も同様で、端末A,Bに
負極性の信号が送られる。このようにスイツチン
グ素子をもつ交換器を必要としないので高速に多
局間の情報を相互に送ることができる。
Therefore, the light does not reach the terminals B and C, and the outputs 7 b and 7 c of the light detection means 5 b and 5 c become 0. Terminal A
The output 7 a of the photodetecting means 5 a takes the value of V 2 . That is, the negative polarity of the transmission signal 7a from terminal A is sent to other terminals B and C at the same time. This effect is the same when terminal C operates the optical feedback means 6 c from time T 2 to transmit, and signals of negative polarity are sent to terminals A and B. In this way, since an exchange having a switching element is not required, information can be mutually sent between multiple stations at high speed.

以下、詳細に説明したように、この発明によれ
ば、スイツチング素子を必要とせず、高速に多局
間の情報を交換できる多方向交通信装置が得られ
る。
As described in detail below, according to the present invention, a multi-directional communication device can be obtained that can exchange information between multiple stations at high speed without requiring a switching element.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明による光通信装置を示す図、
第2図、第3図は半導体レーザの発振スペクトル
を示す図、第4図は分波器の1例を示す図、第5
図は光帰還手段の1例を示す図、第6図はこの発
明による光通信装置の動作を説明するものであ
る。 図において、1は半導体レーザ、2,18,1
9,21は半導体レーザ光、3は分波回路、4,
a,4b,4c,10,11,12,13は光伝
播路、5a,5b,5cは光検出手段、6a,6b,6
c光帰還手段、15,20はレンズ、16は回折
格子、17は音響光学光偏向器、22は反射鏡で
ある。
FIG. 1 is a diagram showing an optical communication device according to the present invention;
Figures 2 and 3 are diagrams showing the oscillation spectrum of a semiconductor laser, Figure 4 is a diagram showing an example of a duplexer, and Figure 5 is a diagram showing an example of a duplexer.
The figure shows an example of the optical feedback means, and FIG. 6 explains the operation of the optical communication device according to the present invention. In the figure, 1 is a semiconductor laser, 2, 18, 1
9, 21 are semiconductor laser beams, 3 is a branching circuit, 4,
4 a , 4 b , 4 c , 10 , 11 , 12 , 13 are optical propagation paths; 5 a , 5 b , 5 c are optical detection means; 6 a , 6 b , 6
c Optical feedback means, 15 and 20 are lenses, 16 is a diffraction grating, 17 is an acousto-optic optical deflector, and 22 is a reflecting mirror.

Claims (1)

【特許請求の範囲】[Claims] 1 複数の波長で発振する半導体レーザと、該半
導体レーザからの複数の発振光を分波する分波器
と、該分波器により分波された光をそれぞれ伝播
する複数の光伝播路と、該光伝播路の各端末に接
置された光検出手段と、変調機能を有する光帰還
手段とからなることを特徴とする多方向光通信装
置。
1. A semiconductor laser that oscillates at a plurality of wavelengths, a demultiplexer that demultiplexes the multiple oscillation lights from the semiconductor laser, and a plurality of optical propagation paths that respectively propagate the light demultiplexed by the demultiplexer; A multidirectional optical communication device characterized by comprising a light detection means disposed at each terminal of the optical propagation path and an optical feedback means having a modulation function.
JP6092679A 1979-05-17 1979-05-17 Optical communication unit of multidirection Granted JPS55153438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6092679A JPS55153438A (en) 1979-05-17 1979-05-17 Optical communication unit of multidirection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6092679A JPS55153438A (en) 1979-05-17 1979-05-17 Optical communication unit of multidirection

Publications (2)

Publication Number Publication Date
JPS55153438A JPS55153438A (en) 1980-11-29
JPS62620B2 true JPS62620B2 (en) 1987-01-08

Family

ID=13156472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6092679A Granted JPS55153438A (en) 1979-05-17 1979-05-17 Optical communication unit of multidirection

Country Status (1)

Country Link
JP (1) JPS55153438A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4865520B2 (en) * 2006-12-11 2012-02-01 シャープ株式会社 Liquid fuel combustion equipment

Also Published As

Publication number Publication date
JPS55153438A (en) 1980-11-29

Similar Documents

Publication Publication Date Title
US5521733A (en) Optical switching device for wavelength-multiplexing optical communication
US4930855A (en) Wavelength multiplexing of lasers
US5450510A (en) Wavelength division multiplexed optical modulator and multiplexing method using same
US5608826A (en) Wavelength division multiplexed optical modulator and multiplexing method using same
US5231529A (en) Light amplifier for multi-wavelength signals
US8260099B2 (en) Reconfigurable optical add/drop multiplexer
US8391654B2 (en) Wavelength selection switch
US6421478B1 (en) Tapered MMI coupler
JPS61113009A (en) Optical multiplexer/demultiplexer
US6587615B1 (en) Wavelength multiplexer-demultiplexer having a wide flat response within the spectral passband
US7068885B2 (en) Double diffraction grating planar lightwave circuit
JPS61173537A (en) Optical fiber circuit network
US6263129B1 (en) High-isolation dense wavelength division multiplexer utilizing a polarization beam splitter, non-linear interferometers and birefringent plates
CN201886169U (en) Multiplexing/demultiplexing double-function wavelength multiplexing device
US6160933A (en) Optical fiber wavelength multiplexer-demultiplexer
JPS62620B2 (en)
GB2152317A (en) Optical wavelength selector
JPS63244003A (en) Multiplexer/demultiplexer
JPS5815926Y2 (en) Composite optical wavelength demultiplexing circuit
JPH04111381A (en) Semiconductor laser apparatus
WO2023158265A1 (en) Laser system using tilting mirror and control method therefor
JPS5929219A (en) Optical coupler with terminal for monitoring light output
JPS62170932A (en) Multiplex wavelength transmission system
JPS6159573B2 (en)
JP2000009950A (en) Optical element