JPS6261598B2 - - Google Patents

Info

Publication number
JPS6261598B2
JPS6261598B2 JP24950083A JP24950083A JPS6261598B2 JP S6261598 B2 JPS6261598 B2 JP S6261598B2 JP 24950083 A JP24950083 A JP 24950083A JP 24950083 A JP24950083 A JP 24950083A JP S6261598 B2 JPS6261598 B2 JP S6261598B2
Authority
JP
Japan
Prior art keywords
compound
deoxy
arabinofuranosyl
group
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP24950083A
Other languages
Japanese (ja)
Other versions
JPS59231087A (en
Inventor
Tadashi Hirata
Akira Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KH Neochem Co Ltd
Original Assignee
Kyowa Hakko Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Hakko Kogyo Co Ltd filed Critical Kyowa Hakko Kogyo Co Ltd
Priority to JP24950083A priority Critical patent/JPS59231087A/en
Publication of JPS59231087A publication Critical patent/JPS59231087A/en
Publication of JPS6261598B2 publication Critical patent/JPS6261598B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明はペントヌス郚䜍がアラビノヌス構造を
有する新芏なヌクレオシドおよびその補法に関す
る。この皮のヌクレオシドは公知であり、そのな
かには−β−−アラビノフラノシルアデニン
や−β−−アラビノフラノシルシトシンのよ
うに制がん䜜甚を有するものがある。しかし2′䜍
の眮換基がアミノ基であるものは知られおいなか
぀た。さお意倖にも䞀般匏〔〕 匏䞭およびは同䞀でも異な぀おもよく、
アミノ基、氎酞基、チオヌル基たたは氎玠を衚わ
すで衚わされる化合物を還元するこずによ぀
お、ペントヌス郚䜍がアラビノヌス構造で、2′䜍
の眮換基がアミノ基である新芏なヌクレオシドを
埗るこずができ、しかもこのヌクレオシドが制が
ん䜜甚を瀺すこずが認められた。なお䞊蚘の匏
〔〕の化合物も新芏化合物である。本発明は䞊
蚘の知芋に基くものである。本発明の目的はペン
トヌス郚䜍がアラビノヌス構造を有する新芏なヌ
クレオシドおよびその補法を䟛するこずにある。 なお、本出願人の出願に係る特願昭48−26061
号特開昭49−110891号明现曞には、匏 で瀺される化合物の開瀺があり、本発明化合物を
文蚀䞊含んでいるようにみえる。しかしながら、
特願昭48−26061号を優先暩䞻匵しお出願された
米囜特蚱第3987030号によれば、䞊蚘特蚱公開公
報蚘茉の化合物は匏のペントヌス環2′䜍の
アミノ基がα䜍であるこずがわかる。本発明化合
物はアラビノフラノシル型であるので2′䜍のアミ
ノ基がβ䜍であるから䞊蚘特蚱公開公報蚘茉の化
合物ならびに䞊蚘米囜特蚱蚘茉の化合物ずは異な
る化合物である。本発明化合物が特開昭49−
110891号蚘茉の化合物ず比范しおも抗腫瘍掻性に
おいお優れおいるこずは、埌蚘実隓䟋によ぀お
明らかである。 本発明により䟛されるヌクレオシドは次の䞀般
匏〔〕で瀺されるこずを特城ずしおいる。 匏䞭およびは前蚘ず同䞀の意矩を有す
る 匏〔〕で衚わされるヌクレオシド類の理化孊
的性状の䟋は次のずおりである。 (ã‚€) −−デオキシ−−アミノ−β−−
アラビノフラノシル−グアニン実斜䟋参
照 薄局クロマトグラフむヌRf倀、0.08 展開溶媒 −ブタノヌル酢酞氎  薄 å±€ セルロヌスアれセルSF 元玠分析倀 C10H14N6O4分子量282.26ず
しお    蚈算倀 42.55 5.00 29.78 実枬倀 42.33 4.99 29.51 栞磁気共鳎スペクトル 第図 赀倖吞収スペクトル 第図 (ロ) −−デオキシ−−アミノ−β−−
アラビノフラノシル−アデニン実斜䟋参
照 融 点215〜218℃分解 薄局クロマトグラフむヌRf倀、0.18 展開溶媒 −ブタノヌル酢酞氎  薄 å±€ キヌれルゲル60F254アヌト5719 メルク 元玠分析倀 C10H14N6O3分子量266.26
ずしお    蚈算倀 45.11 5.30 31.57 実枬倀 45.35 5.47 31.02 栞磁気共鳎スペクトル 第図 赀倖吞収スペクトル 第図 以䞊によ぀お匏〔〕で衚わされるヌクレオシ
ド類は新芏であり、(ã‚€)の堎合は、匏〔〕におい
おが氎酞基でがアミノ基であるもの、すなわ
ち−−デオキシ−−アミノ−β−−ア
ラビノフラノシル−グアニンであり、(ロ)の堎合
は匏〔〕においおがアミノ基で、が氎玠原
子であるもの、すなわち−−デオキシ−
−アミノ−β−−アラビノフラノシル−アデ
ニンであるこずが確認された。 次に本発明は䞊蚘の新芏なヌクレオシド〔〕
の補法を䟛するこずを目的ずしおいる。本発明に
より、䞊蚘のヌクレオシドは匏〔〕および
は前蚘ず同䞀の意矩を有するの化合物を還元
するこずによ぀お埗られる。 この匏〔〕の化合物ず氎玠ずを甚いお觊媒の
存圚䞋に接觊還元するのは、アゞド基をアミノ基
に倉換するための有利な方法である。觊媒ずしお
は、パラゞりム炭玠、酞化癜金、ラネヌニツケル
等が甚いられるが、亜硫酞氎玠ナトリりム、硫化
ナトリりム等のアゞド基の還元に垞甚される還元
剀を甚いおもよい。 反応時の氎玠圧は䞀般に垞圧でよい。反応枩床
は䞀般に宀枩でよいが10℃から80℃の範囲で行な
うこずもできる。反応時間は30分ないし24時間
で、反応枩床、氎玠圧等の条件によ぀お異なる。 反応に甚いる溶媒は、原料を溶解しうるもの
で、反応に参加しないものならばずくに限定され
ないが、たずえば氎性メタノヌル、氎性゚タノヌ
ル等が甚いられる。原料ず同等量以䞊奜たしく
は〜10倍圓量の鉱酞たずえば塩酞たたは
有機酞たずえば酢酞を溶媒に含有させお反応
を行なうず、反応産物を察応する酞の付加塩ずし
お埗るこずができる。 本発明はさらに匏〔〕およびは前蚘ず
同䞀の意矩を有するで衚わされる新芏化合物お
よびその補法を䟛する。この匏〔〕の化合物
は、本発明により匏〔〕 ただし、およびは前蚘ず同䞀意味を衚わ
し、はアルキル基たたはアリヌル基を衚わす で衚わされる2′−スルフオニルオキシ化合物をア
ゞ化氎玠酞塩ず反応させるこずによ぀お埗るこず
ができる。 匏〔〕においお、ずしおはメチル、゚チ
ル、−トリル −ニトロプニル基等が具䜓
的にあげられる。 この反応は䞀般匏〔〕で衚わされる化合物の
スルホニル基の立䜓配眮の転䜍を䌎なうアゞド基
ぞの眮換反応であ぀お、甚いられる溶媒はずくに
限定はないが、ゞメチルホルムアミド ゞメチル
アセトアミド ゞメチルスルホキシド ヘキサメ
チルホスホリツクトリアミド等の溶媒䞭で行なう
のが奜たしい。アゞド化剀ずしおは、芪栞眮換反
応を行なうものであればずくに限定はないが、ア
ゞ化ナトリりム アゞ化リチりム等のようなアゞ
化氎玠酞塩を甚いるずよい。反応枩床は100〜180
℃皋床であるが、副反応を最少限にするために、
奜たしい枩床は130〜150℃である。反応時間は、
反応枩床、溶媒によ぀お異なるが、通垞は時間
ないし24時間である。 䞊蚘の䌚〔〕で衚わされる2′−スルホニルオ
キシ化合物のうち、が氎酞基で、が氎玠原子
で、が−トリル基であるものず、がアミノ
基で、が氎玠原子で、が−トリル基である
ものは公知である。匏〔〕で衚わされる化合物
は、匏 匏䞭およびは前蚘ず同䞀の意矩を有す
る で衚わされるリボヌクレオシドをゞ−−ブチル
錫オキシドず反応させ、次いで塩基の存圚䞋スル
ホニル化剀ず反応させるこずによ぀お埗られる。
ここでゞ−−ブチル錫オキシドずの反応に぀い
お述べれば、反応に甚いられる溶媒はずくに限定
はないが、䟋えばメタノヌル ゚タノヌル −
プロパノヌル む゜プロパノヌルのような脂肪族
䜎玚アルコヌル類が奜適である。反応枩床はずく
に限定はないが、通垞、䜿甚する溶媒の沞点付近
で加熱還流するのが奜たしく、反応時間は玄な
いし10時間である。この反応で生成される2′
3′−−ゞブチルスタニレン化合物は䞀般には単
離するこずなく、そのたた次のスルホニル化反応
に甚いる。すなわち、次のスルホニル化反応は、
䞊蚘反応液に有機塩基たずえばトリ゚チルアミ
ン、トリメチルアミン、トリプロピルアミン、ト
リブチルアミン、トリアミルアミンのような第
玚アミンたたはピリゞンのような異項環アミン
等を觊媒ずしお加え、スルホニル化詊剀ず反応
させる。スルホニル化詊剀ずしおは、メタンスル
ホニルクロリド、゚タンスルホニルクロリド、
−トル゚ンスルホニルクロリド、−トル゚ンス
ルホニルブロミド、−ニトロベンれンスルホニ
ルクロリド等のアルキルあるいはアリヌルスルホ
ニルハラむドがあげられるが、䞀般には−トル
゚ンスルホニルクロリドが奜たしい。反応枩床は
通垞は宀枩付近で行なう。反応時間は䞻ずしお反
応枩床、反応材料、溶媒等によ぀お異なるが、通
垞は玄分間ないし時間である。 本発明により䟛されるアミノヌクレオシド類は
新芏であり、以䞋の実隓䟋に瀺すように抗がん䜜
甚を有する。 たた、匏〔〕の化合物は前述の通り、匏
〔〕の化合物補造のための䞭間䜓ずしお有甚で
あるばかりでなく、埌蚘実隓䟋に瀺すように、そ
れ自䜓、抗腫瘍掻性を有しおいるこずがわか぀
た。 実隓䟋  人がん现胞ずしおHeLa−S3现胞を䜿甚した。
YLE培地に小牛血枅およびペニシリン・ストレ
プトマむシンをそれぞれ100および100u
mlずなるように添加するこずにより枬定甚培地
PH7.2を調敎した。 HeLa−S3现胞を枬定甚培地䞭で37℃で培逊す
る。培逊開始埌24時間目に被怜化合物、すなわ
ち、−−デオキシ−−アミノ−β−−
アラビノフラノシルグアニンたたは−−
デオキシ−−アミノ−β−−アラビノフラノ
シルアデニンの燐酞緩衝生理食塩氎−PBS
PH7.2溶液を衚に蚘した濃床ずなるように添
加しおさらに培逊を続ける。 培逊96時間目に培地を遠心分離によ぀お陀去す
る。埗られたHeLa−S3现胞にクリスタルバむオ
レツトを0.2含む0.1Mク゚ン酞溶液を加え
お、现胞栞数を顕埮鏡で数える。コントロヌルず
しお被怜化合物を含たない燐酞緩衝生理食塩氎
PH7.2を培逊開始埌24時間目に加え、同様に现
胞栞数を数える。 被怜化合物の堎合の现胞栞数をコントロヌルの
现胞栞数で陀した倀に100を乗じたものを
阻止ずしお算出し、が50になるよう
な化合物の濃床をIC5050増殖抑制濃床ずし
お算出する。 結果を衚に瀺す。
The present invention relates to a novel nucleoside whose pentose moiety has an arabinose structure and a method for producing the same. Nucleosides of this type are known, and some of them, such as 9-β-D-arabinofuranosyl adenine and 9-β-D-arabinofuranosylcytosine, have anticancer effects. However, it was not known that the substituent at the 2' position was an amino group. Well, surprisingly general formula〔〕 (In the formula, X and Y may be the same or different,
By reducing a compound represented by an amino group, a hydroxyl group, a thiol group, or a hydrogen group, a novel nucleoside in which the pentose moiety is an arabinose structure and the substituent at the 2' position is an amino group can be obtained. Moreover, this nucleoside was found to have anticancer effects. Note that the compound of the above formula [] is also a new compound. The present invention is based on the above findings. An object of the present invention is to provide a novel nucleoside whose pentose moiety has an arabinose structure and a method for producing the same. Please note that the patent application filed by the applicant in 1973-26061
No. (Japanese Unexamined Patent Publication No. 49-110891), the formula (X) There is a disclosure of a compound represented by the following, which appears to literally include the compound of the present invention. however,
According to U.S. Patent No. 3,987,030, which was filed by claiming priority from Japanese Patent Application No. 48-26061, the compound described in the above-mentioned patent publication has an amino group at the 2'-position of the pentose ring of formula (X) at the α-position. I understand that there is something. Since the compound of the present invention is of the arabinofuranosyl type, the amino group at the 2'-position is at the β-position, so it is a different compound from the compounds described in the above-mentioned patent publications and the compounds described in the above-mentioned US patents. The compound of the present invention is disclosed in JP-A-49-
It is clear from Experimental Example 2 described later that the antitumor activity is superior to that of the compound described in No. 110891. The nucleoside provided by the present invention is characterized by being represented by the following general formula []. (In the formula, X and Y have the same meanings as above.) Examples of the physical and chemical properties of the nucleosides represented by the formula [] are as follows. (a) 9-(2-deoxy-2-amino-β-D-
Arabinofuranosyl)-guanine (see Example 2) Thin layer chromatography: Rf value, 0.08 Developing solvent n-butanol:acetic acid:water (4:1:2) Thin layer Cellulose (Azecel SF) Elemental analysis value C 10 H 14 N 6 O 4 (molecular weight 282.26) C H N Calculated value (%) 42.55 5.00 29.78 Actual value (%) 42.33 4.99 29.51 Nuclear magnetic resonance spectrum (Figure 4) Infrared absorption spectrum (Figure 9) ( b) 9-(2-deoxy-2-amino-β-D-
arabinofuranosyl)-adenine (see Example 1) Melting point: 215-218°C (decomposition) Thin layer chromatography: Rf value, 0.18 Developing solvent n-butanol:acetic acid:water (4:1:2) thin Layer Kieselgel 60F 254 Art 5719 (Merck) Elemental analysis value C 10 H 14 N 6 O 3 (Molecular weight 266.26)
As C H N Calculated value (%) 45.11 5.30 31.57 Actual value (%) 45.35 5.47 31.02 Nuclear magnetic resonance spectrum (Figure 2) Infrared absorption spectrum (Figure 7) The above shows the nucleosides represented by the formula [] is new, and in the case of (a), in the formula [], X is a hydroxyl group and Y is an amino group, that is, 9-(2-deoxy-2-amino-β-D-arabinofuranosyl)- In the case of (b), X is an amino group and Y is a hydrogen atom, that is, 9-(2-deoxy-2
-amino-β-D-arabinofuranosyl)-adenine. Next, the present invention provides the above-mentioned novel nucleoside []
The purpose is to provide a manufacturing method for According to the present invention, the above-mentioned nucleosides are obtained by reducing a compound of formula [] (X and Y have the same meanings as above). Catalytic reduction of a compound of formula [] with hydrogen in the presence of a catalyst is an advantageous method for converting an azide group into an amino group. As the catalyst, palladium on carbon, platinum oxide, Raney nickel, etc. are used, but reducing agents commonly used for reducing azide groups, such as sodium bisulfite and sodium sulfide, may also be used. The hydrogen pressure during the reaction may generally be normal pressure. The reaction temperature may generally be room temperature, but it can also be carried out in the range of 10°C to 80°C. The reaction time is 30 minutes to 24 hours, and varies depending on conditions such as reaction temperature and hydrogen pressure. The solvent used in the reaction is not particularly limited as long as it can dissolve the raw materials and does not participate in the reaction, and for example, aqueous methanol, aqueous ethanol, etc. are used. When the reaction is carried out in a solvent containing an equivalent amount or more (preferably 1 to 10 times equivalent) of a mineral acid (e.g., hydrochloric acid) or an organic acid (e.g., acetic acid) as the raw material, the reaction product is obtained as an addition salt of the corresponding acid. be able to. The present invention further provides a novel compound represented by the formula [] (X and Y have the same meanings as above) and a method for producing the same. According to the present invention, the compound of the formula [] (However, X and Y represent the same meanings as above, and R represents an alkyl group or an aryl group.) Obtained by reacting a 2'-sulfonyloxy compound represented by the following with a hydrogen azide salt. Can be done. In formula [], specific examples of R include methyl, ethyl, p-tolyl, p-nitrophenyl, and the like. This reaction is a substitution reaction with an azide group that involves rearrangement of the sulfonyl group of the compound represented by the general formula [], and the solvent used is not particularly limited, but examples include dimethylformamide, dimethylacetamide, dimethylsulfoxide, hexa Preferably, the reaction is carried out in a solvent such as methylphosphoric triamide. The azidating agent is not particularly limited as long as it performs a nucleophilic substitution reaction, but it is preferable to use a hydroazide salt such as sodium azide, lithium azide, or the like. Reaction temperature is 100-180
℃, but in order to minimize side reactions,
The preferred temperature is 130-150°C. The reaction time is
Although it varies depending on the reaction temperature and solvent, it is usually 1 hour to 24 hours. Among the 2'-sulfonyloxy compounds represented by the above group [], there are those in which X is a hydroxyl group, Y is a hydrogen atom, and R is a p-tolyl group, and those in which X is an amino group and Y is a hydrogen atom. , R is a p-tolyl group is known. The compound represented by the formula [] is the compound represented by the formula [] (wherein X and Y have the same meanings as above) It is obtained by reacting a ribonucleoside represented by the following with di-n-butyltin oxide, and then reacting it with a sulfonylating agent in the presence of a base.
Regarding the reaction with di-n-butyltin oxide, the solvent used in the reaction is not particularly limited, but for example, methanol, ethanol, n-
Propanol Aliphatic lower alcohols such as isopropanol are preferred. The reaction temperature is not particularly limited, but it is usually preferable to heat the reaction to reflux near the boiling point of the solvent used, and the reaction time is about 1 to 10 hours. 2′ produced in this reaction,
The 3'-o-dibutylstanylene compound is generally used as it is in the next sulfonylation reaction without being isolated. That is, the following sulfonylation reaction is
An organic base (such as triethylamine, trimethylamine, tripropylamine, tributylamine, triamylamine, etc.) is added to the reaction solution.
amine or a heterocyclic amine such as pyridine) is added as a catalyst and reacted with a sulfonylation reagent. Sulfonylation reagents include methanesulfonyl chloride, ethanesulfonyl chloride, p
Examples include alkyl or arylsulfonyl halides such as -toluenesulfonyl chloride, p-toluenesulfonyl bromide, and p-nitrobenzenesulfonyl chloride, but p-toluenesulfonyl chloride is generally preferred. The reaction temperature is usually around room temperature. The reaction time varies mainly depending on the reaction temperature, reaction materials, solvent, etc., but is usually about 5 minutes to 5 hours. The aminonucleosides provided by the present invention are novel and have anticancer effects as shown in the following experimental examples. Furthermore, as mentioned above, the compound of formula [] is not only useful as an intermediate for producing the compound of formula [], but also has antitumor activity itself, as shown in the experimental examples below. I found out. Experimental Example 1 HeLa-S 3 cells were used as human cancer cells.
100g/100g/and 100u/penicillin/streptomycin of calf serum and penicillin/streptomycin in YLE medium.
A measurement medium (PH7.2) was prepared by adding ml of the solution. HeLa-S 3 cells are cultured at 37°C in assay medium. 24 hours after the start of culture, the test compound, i.e., 9-(2-deoxy-2-amino-β-D-
arabinofuranosyl)guanine or 9-(2-
Deoxy-2-amino-β-D-arabinofuranosyl) adenine in phosphate-buffered saline (-PBS)
(PH7.2) solution is added to the concentration shown in Table 1 and culture is continued. At 96 hours of culture, the medium is removed by centrifugation. A 0.1M citric acid solution containing 0.2 g of crystal violet is added to the obtained HeLa-S 3 cells, and the number of cell nuclei is counted using a microscope. As a control, phosphate buffered saline (PH7.2) containing no test compound is added 24 hours after the start of culture, and the number of cell nuclei is counted in the same manner. I% is the value obtained by dividing the number of cell nuclei for the test compound by the number of cell nuclei for the control, multiplied by 100.
(inhibition %), and the concentration of the compound that makes I% 50% is calculated as IC 50 (50% growth inhibition concentration). The results are shown in Table 1.

【衚】 衚から本発明化合物が抗がん掻性を有するこ
ずが明らかである。 実隓䟋  抗ザルコヌマヌ180è©Šéš“ ザルコヌマヌ180の×106现胞をdd系マりス
矀匹の右腋䞋に皮䞋移怍し、24時間埌に特開昭
49−110891号公報実斜䟋で埗られる化合物1000
mgKg、本発明実斜䟋蚘茉の化合物500mgKg
を腹腔内に回投䞎する。移怍週間埌の、薬剀
凊理矀ず未凊理察照矀(C)の腫瘍容積の比
をも぀お制癌効果を衚わす。
[Table] It is clear from Table 1 that the compounds of the present invention have anticancer activity. Experimental example 2 Anti-Sarucomer 180 test 5 × 10 6 cells of Sarcomer 180 were added to DD mouse 1
It was subcutaneously transplanted into the right armpit of 5 animals in the group, and 24 hours later, the
Compound 1000 obtained in Example 1 of Publication No. 49-110891
mg/Kg, 500 mg/Kg of the compound described in Example 1 of the present invention
Administer once intraperitoneally. The anticancer effect is expressed as the tumor volume ratio (T/C) between the drug-treated group (T) and the untreated control group (C) one week after transplantation.

【衚】 実隓䟋  −−デオキシ−−アゞド−β−−ア
ラビノフラノシル−アデニンの抗腫瘍実隓を次
のように行な぀た。 移怍埌日目のL1210担癌マりスから腹氎现胞
を採取し、滅菌生理食塩氎により×105個ml
の现胞浮遊液を䜜成した。この0.2mlを䜓重25±
週什のCDF、雄性マりスの腹腔内に
移怍した。回投䞎は移怍埌24時間目に、連続投
䞎は移怍埌24時間目より日回日間、各矀
匹ず぀のマりスに、薬剀を腹腔内投䞎した。 薬剀の効果刀定は、察照矀(C)に察する薬剀投䞎
矀の延呜効果Increase of Life Span
ILSを䞋匏で求めお衚わした。
[Table] Experimental Example 3 An antitumor experiment using 9-(2-deoxy-2-azido-β-D-arabinofuranosyl)-adenine was conducted as follows. Ascites cells were collected from L1210 tumor-bearing mice on the 7th day after transplantation, and diluted with sterile physiological saline to 5 x 10 cells/ml.
A cell suspension was prepared. Add this 0.2ml to your body weight 25±
2 g (6 weeks old) of CDF was implanted intraperitoneally into male mice. One dose was administered 24 hours after transplantation, and continuous administration was administered once a day for 6 days from 24 hours after transplantation, 5 times per group.
Drugs were administered intraperitoneally to each mouse. The effect of the drug is determined by the increase of life span (increase of life span) in the drug administration group (T) compared to the control group (C).
ILS) was calculated and expressed using the following formula.

【衚】 以䞋、本発明を実斜䟋により説明する。 実斜䟋  (ã‚€) −−デオキシ−−アゞド−β−−
アラビノフラノシル−アデニンの補造法 −−デオキシ−−−トシル−β−
−リボフラノシル−アデニン600mgずアゞ化ナト
リりム560mgをヘキサメチルホスホリツクトリア
ミドml䞭、130℃で時間加熱する。溶媒を枛
圧溜去し、残枣を50氎性メタノヌルに溶解し、
ダり゚ツクス×OHカラム100mlに
通塔し、カラムを氎掗埌、30および60氎性メ
タノヌルを順次カラムの倍容通塔埌、99メタ
ノヌルで溶出される260mΌでの吞光床以䞊の
区分を集め、枛圧濃瞮埌100゚タノヌルから再
結晶するず190mgの癜色結晶が埗られる。 融 点204〜205℃ 薄局クロマトグラフむヌRf倀0.61 展開溶媒 クロロホルムメタノヌル  薄 å±€ キヌれルゲル60F254アヌト5719 メルク 元玠分析倀 C10H12N8O3分子量292.26
ずしお    蚈算倀 41.09 4.14 38.34 実枬倀 40.87 4.06 38.12 第図にこの化合物の栞磁気共鳎スペクトルを
瀺し、第図に赀倖吞収スペクトルを瀺す。 これらの物性倀より、この化合物は−−
デオキシ−−アゞド−β−−アラビノフラノ
シル−アデニンず同定される。収率45.7。 (ロ) −−デオキシ−−アミノ−−−
アラビノフラノシル−アデニンの補造法 −−デオキシ−−アゞド−β−−ア
ラビノフラノシル−アデニン1.0を67氎性メ
タノヌル150mlに溶解し、10パラゞりム炭玠500
mgを觊媒にしお氎玠ガスを撹拌しながら時間導
入する。メタノヌルをほが枛圧溜去埌、熱氎100
mlを加えお、ろ過助剀セラむト545を甚いろ
過し、ろ液を濃瞮也固させ、゚タノヌルから再結
しお粉末390mgを埗る。 融 点215〜218℃分解 薄局クロマトグラフむヌRf倀0.18 展開溶媒 −ブタノヌル酢酞氎  薄 å±€ キヌれルゲル60F254アヌト5719 メルク 元玠分析倀 C10H14N6O3分子量266.26
ずしお    蚈算倀 45.11 5.30 31.57 実枬倀 45.35 5.47 31.02 第図にこの化合物の栞磁気共鳎スペクトルを
瀺し、第図に赀倖吞収スペクトルを瀺す。 これらの物性倀より、この化合物は−−
デオキシ−−アミノ−β−−アラビノフラノ
シル−アデニンず同定される。収率68.5。 実斜䟋  (ã‚€) −−デオキシ−−アゞド−β−−
アラビノフラノシル−グアニンの補造法 −−デオキシ−−−トシル−β−
−リボフラノシル−グアニン3.6ずアゞ化ナト
リりム3.2をヘキサメチルホスホリツクトリア
ミド45mläž­140℃で時間加熱する。溶媒を枛圧
溜去し、残枣を゚ヌテル䞭でよく掗い、さらによ
く砕いお掗う。゚ヌテルをろ別埌の固圢物に200
mlの33氎性メタノヌルを加え、熱時撹拌しお、
䞍溶物を陀去埌、ろ液を沈殿物が生成しない皋床
に、䞀郚枛圧溜去する。これをダり゚ツクス×
OHカラム200mlに通塔する。カラム
を氎掗埌、50および80氎性メタノヌルを順
次、カラムの玄倍容通塔埌、0.3M塩化リチり
ム溶液で溶出される260mΌでの吞光床以䞊の
区分を集め、垌塩酞でPH6.8ずした埌、30mlずな
るたで濃瞮しお、ダむダむオンHP10暹脂䞉菱
化成300mlに通塔する。カラムを氎掗埌、10
氎性メタノヌルでカラムの玄倍容通塔埌、20
氎性メタノヌルで溶出を行なう。溶出埌は40ml
ず぀分画する。第14〜21分画郚のものを集め、枛
圧濃瞮するず220mgの薄局的に単䞀な淡黄色粉末
を埗る。 薄局クロマトグラフむヌRf倀0.46 展開溶媒 む゜酪酞酢酞゚チル1Nアン
モニア10 薄 å±€ キヌれルゲル60F254アヌト5719 メルク 元玠分析倀 C10H12N8O4分子量308.26
ずしお    蚈算倀 38.96 3.92 36.35 実枬倀 38.26 4.11 36.07 第図はこの化合物の栞磁気共鳎スペクトルを
瀺し、第図に赀倖吞収スペクトルを瀺す。 これらの物性倀より、この化合物は−−
デオキシ−−アゞド−β−−アラビノフラノ
シル−グアニンず同定される。収率10.8。 (ロ) −−デオキシ−−アミノ−β−−
アラビノフラノシル−グアニンの補造法 −−デオキシ−−アゞド−β−−ア
ラビノフラノシルグアニン130mgを33氎性メ
タノヌル45mlに溶解し、10パラゞりム炭玠60mg
を觊媒ずしお加え、撹拌しながら氎玠ガスを時
間導入する。メタノヌルをほが枛圧溜去埌、熱氎
50mlを加えお、ろ過助剀セラむト545を甚い
ろ過し、ろ液を濃瞮也固させ、氎から再結しお癜
色粉末90mgを埗る。䞊蚘粉末は明確な融点を瀺さ
なか぀た。 薄局クロマトグラフむヌRf倀0.08 展開溶媒 −ブタノヌル酢酞氎  薄 å±€ セルロヌスアビセルSF 元玠分析倀 C10H14N6O4分子量282.26
ずしお    蚈算倀 42.55 5.00 29.78 実枬倀 42.33 4.99 29.51 第図にこの化合物の栞磁気共鳎スペクトルを
瀺し、第図に赀倖吞収スペクトルを瀺す。 これらの物性倀より、この化合物は−−
デオキシ−−アミノ−β−−アラビノフラノ
シル−グアニンず同定される。収率75.6。 参考䟋  −−デオキシ−−−トシル−β−
−リボフラノシル−グアニンの補造法 グアノシン5.66ずゞ−−ブチル錫オキシド
5.00を1.1のメタノヌルに懞濁させ、時間
加熱還流する。反応液を℃に冷华埌、トリ゚チ
ルアミン42mlず−トル゚ンスルホニルクロリド
57.2を添加し、宀枩で45分間撹拌を行なう。メ
タノヌルを枛圧溜去埌、残枣に氎600mlを加え、
゚ヌテル600mlで床氎局を掗滌する。氎局およ
び゚ヌテル局に䞍溶の沈殿物ず、氎局を玄300ml
に濃瞮埌、冷蔵庫に攟眮し析出した結晶ずを合わ
せ、800mlの80氎性゚タノヌルに熱時溶解さ
せ、䞍溶物を陀去埌、溶媒を60mlに枛圧濃瞮埌、
℃に冷华保存しお埗られる沈殿物をろ取し、癜
色結晶4.2を埗る。 薄局クロマトグラフむヌRf倀0.58 展開溶媒 氎飜和−ブタノヌル 薄 å±€ キヌれルゲル60F254アヌト5719 メルク 元玠分析倀 C17H19N5O7S分子量437.42
ずしお    蚈算倀 46.68 4.38 16.01 実枬倀 46.63 4.50 15.93 第図にこの化合物の栞磁気共鳎スペクトルを
瀺し、第図に赀倖吞収スペクトルを瀺す。 これらの物性倀より、この化合物は−−
デオキシ−−−トシル−β−−リボフラノ
シル−グアニンず同定される。収率48.0。 参考䟋  −−デオキシ−−−トシル−β−
−リボフラノシル−アデニンの補造法 アデノシン7.0ずゞ−−ブチル錫オキシド
5.0を500mlのメタノヌルに懞濁させ、30分間還
流䞋に加熱する。埗られた透明な溶液を℃に冷
华した埌、トリ゚チルアミン42.0mlず−トル゚
ンスルホニルクロリド57.2を添加し、宀枩で10
分間撹拌を行なう。メタノヌルを枛圧溜去埌、残
枣に氎600mlを加え、゚ヌテル500mlで床氎局を
掗滌する。氎局および゚ヌテル局に䞍溶の沈殿物
ず、氎局を玄300mlに濃瞮埌、冷蔵庫に攟眮し析
出した結晶ずを合わせ、300mlの80氎性゚タノ
ヌルに熱時溶解させ、䞍溶物を陀去埌、溶媒を30
mlに枛圧濃瞮埌、℃に冷华保存しお埗られる沈
殿物をろ取し、癜色結晶6.3を埗る。 融 点228〜230℃ 薄局クロマトグラフむヌRf倀0.71 展開溶媒 クロロホルムメタノヌル
 薄 å±€ キヌれルゲル60F254アヌト5719 メルク 元玠分析倀 C17H19N5O6S分子量421.42
ずしお    蚈算倀 48.54 4.54 16.62 実枬倀 48.19 4.56 16.39 第図にこの化合物の栞磁気共鳎スペクトル
を瀺し、第図に赀倖吞収スペクトルを瀺す。 これらの物性倀より、この化合物は−−
デオキシ−−−トシル−β−−リボフラノ
シル−アデニンず同定される。収率57.0。
[Table] The present invention will be explained below with reference to Examples. Example 1 (a) 9-(2-deoxy-2-azido-β-D-
Method for producing arabinofuranosyl)-adenine 9-(2-deoxy-2-o-tosyl-β-D
600 mg of -ribofuranosyl)-adenine and 560 mg of sodium azide are heated in 6 ml of hexamethylphosphoric triamide at 130 DEG C. for 6 hours. The solvent was removed under reduced pressure and the residue was dissolved in 50% aqueous methanol.
After passing through a Dowex 1×2 (OH) column (100ml) and washing the column with water, twice the volume of 30% and 60% aqueous methanol was sequentially passed through the column, and the absorbance at 260 mÎŒ was eluted with 99% methanol. Collect 5 or more fractions, concentrate under reduced pressure, and recrystallize from 100% ethanol to obtain 190 mg of white crystals. Melting point: 204-205℃ Thin layer chromatography: Rf value 0.61 Developing solvent Chloroform: methanol (3:1) Thin layer Kieselgel 60F 254 Art 5719 (Merck) Elemental analysis value C 10 H 12 N 8 O 3 (Molecular weight 292.26 )
As C H N Calculated value (%) 41.09 4.14 38.34 Actual value (%) 40.87 4.06 38.12 Figure 1 shows the nuclear magnetic resonance spectrum of this compound, and Figure 6 shows the infrared absorption spectrum. From these physical property values, this compound has 9-(2-
It is identified as deoxy-2-azido-β-D-arabinofuranosyl)-adenine. Yield 45.7%. (b) 9-(2-deoxy-2-amino-B-D-
Method for producing 9-(2-deoxy-2-azido-β-D-arabinofuranosyl)-adenine Dissolve 1.0 g of 9-(2-deoxy-2-azido-β-D-arabinofuranosyl)-adenine in 150 ml of 67% aqueous methanol and dissolve 10% palladium on carbon 500.
mg as a catalyst and hydrogen gas was introduced for 5 hours with stirring. After almost all methanol has been distilled off under reduced pressure, hot water 100%
ml, filtered using a filter aid (Celite 545), concentrated the filtrate to dryness, and reconsolidated from ethanol to obtain 390 mg of powder. Melting point: 215-218℃ (decomposition) Thin layer chromatography: Rf value 0.18 Developing solvent n-butanol:acetic acid:water (4:1:2) Thin layer Kieselgel 60F 254 Art 5719 (Merck) Elemental analysis value C 10 H 14 N 6 O 3 (molecular weight 266.26)
As C H N Calculated value (%) 45.11 5.30 31.57 Actual value (%) 45.35 5.47 31.02 Figure 2 shows the nuclear magnetic resonance spectrum of this compound, and Figure 7 shows the infrared absorption spectrum. From these physical property values, this compound has 9-(2-
It is identified as deoxy-2-amino-β-D-arabinofuranosyl)-adenine. Yield 68.5%. Example 2 (a) 9-(2-deoxy-2-azido-β-D-
Method for producing arabinofuranosyl)-guanine 9-(2-deoxy-2-o-tosyl-β-D
3.6 g of -ribofuranosyl)-guanine and 3.2 g of sodium azide are heated at 140 DEG C. for 7 hours in 45 ml of hexamethylphosphoric triamide. The solvent was distilled off under reduced pressure, and the residue was thoroughly washed in ether and then thoroughly triturated. 200 to the solid after filtering the ether
Add ml of 33% aqueous methanol and stir while hot.
After removing the insoluble matter, the filtrate is partially distilled under reduced pressure to an extent that no precipitate is formed. Dowex 1x
Pass through a 2(OH) column (200ml). After washing the column with water, sequentially pass 50% and 80% aqueous methanol through the column approximately 4 times the volume of the column, collect the fraction with absorbance of 5 or more at 260 mΌ eluted with 0.3M lithium chloride solution, and dilute with dilute hydrochloric acid to pH 6.8. After that, concentrate it to 30 ml and pass it through a column of Diaion HP10 resin (Mitsubishi Kasei) (300 ml). After washing the column with water, 10
After passing approximately twice the volume of the column with 20% aqueous methanol,
Elution is carried out with % aqueous methanol. 40ml after elution
Fractionate each. The 14th to 21st fractions were collected and concentrated under reduced pressure to obtain 220 mg of a thin, single, pale yellow powder. Thin layer chromatography: Rf value 0.46 Developing solvent Isobutyric acid: Ethyl acetate: 1N ammonia (10:5:1) Thin layer Kieselgel 60F 254 Art 5719 (Merck) Elemental analysis value C 10 H 12 N 8 O 4 (Molecular weight 308.26 )
As C H N Calculated value (%) 38.96 3.92 36.35 Actual value (%) 38.26 4.11 36.07 Figure 3 shows the nuclear magnetic resonance spectrum of this compound, and Figure 8 shows the infrared absorption spectrum. From these physical property values, this compound has 9-(2-
It is identified as deoxy-2-azido-β-D-arabinofuranosyl)-guanine. Yield 10.8%. (b) 9-(2-deoxy-2-amino-β-D-
Method for producing 9-(2-deoxy-2-azido-β-D-arabinofuranosyl)-guanine Dissolve 130 mg of 9-(2-deoxy-2-azido-β-D-arabinofuranosyl) guanine in 45 ml of 33% aqueous methanol, and dissolve 60 mg of 10% palladium on carbon.
was added as a catalyst, and hydrogen gas was introduced for 3 hours while stirring. After almost all methanol has been distilled off under reduced pressure, hot water
Add 50 ml, filter using a filter aid (Celite 545), concentrate the filtrate to dryness, and reconstitute from water to obtain 90 mg of white powder. The powder did not exhibit a clear melting point. Thin layer chromatography: Rf value 0.08 Developing solvent n-butanol:acetic acid:water (4:1:2) Thin layer Cellulose (Avicel SF) Elemental analysis value C 10 H 14 N 6 O 4 (molecular weight 282.26)
As C H N Calculated value (%) 42.55 5.00 29.78 Actual value (%) 42.33 4.99 29.51 Figure 4 shows the nuclear magnetic resonance spectrum of this compound, and Figure 9 shows its infrared absorption spectrum. From these physical property values, this compound has 9-(2-
It is identified as deoxy-2-amino-β-D-arabinofuranosyl)-guanine. Yield 75.6%. Reference example 1 9-(2-deoxy-2-o-tosyl-β-D
-Ribofuranosyl)-Production method of guanine 5.66g of guanosine and di-n-butyltin oxide
Suspend 5.00 g in 1.1 methanol and heat under reflux for 3 hours. After cooling the reaction solution to 5°C, 42 ml of triethylamine and p-toluenesulfonyl chloride were added.
Add 57.2 g and stir at room temperature for 45 minutes. After distilling off methanol under reduced pressure, add 600ml of water to the residue.
Wash the aqueous layer three times with 600 ml of ether. Approximately 300 ml of the aqueous layer and the insoluble precipitate in the aqueous and ether layers.
After concentrating to
The precipitate obtained by cooling and storing at 0°C is collected by filtration to obtain 4.2 g of white crystals. Thin layer chromatography: Rf value 0.58 Developing solvent Water saturated n-butanol Thin layer Kieselgel 60F 254 Art 5719 (Merck) Elemental analysis value C 17 H 19 N 5 O 7 S (molecular weight 437.42)
As C H N Calculated value (%) 46.68 4.38 16.01 Actual value (%) 46.63 4.50 15.93 Figure 5 shows the nuclear magnetic resonance spectrum of this compound, and Figure 10 shows the infrared absorption spectrum. From these physical property values, this compound has 9-(2-
It is identified as deoxy-2-o-tosyl-β-D-ribofuranosyl)-guanine. Yield 48.0%. Reference example 2 9-(2-deoxy-2-o-tosyl-β-D
-Ribofuranosyl)-adenine production method Adenosine 7.0g and di-n-butyltin oxide
Suspend 5.0 g in 500 ml of methanol and heat under reflux for 30 minutes. After cooling the resulting clear solution to 5°C, 42.0 ml of triethylamine and 57.2 g of p-toluenesulfonyl chloride were added and the solution was stirred for 10 min at room temperature.
Stir for a minute. After distilling off methanol under reduced pressure, add 600 ml of water to the residue and wash the aqueous layer three times with 500 ml of ether. After concentrating the aqueous layer to about 300 ml, the insoluble precipitate in the aqueous layer and the ether layer was combined with the precipitated crystals left in the refrigerator, and dissolved in 300 ml of 80% aqueous ethanol while hot. After removing the insoluble matter, 30% solvent
After concentrating under reduced pressure to 1.0 ml, the resulting precipitate was stored cooled at 0° C. and collected by filtration to obtain 6.3 g of white crystals. Melting point: 228-230℃ Thin layer chromatography: Rf value 0.71 Developing solvent Chloroform: methanol (2:
1) Thin layer Kieselgel 60F 254 Art 5719 (Merck) Elemental analysis value C 17 H 19 N 5 O 6 S (molecular weight 421.42)
As C H N Calculated value (%) 48.54 4.54 16.62 Actual value (%) 48.19 4.56 16.39 Figure 11 shows the nuclear magnetic resonance spectrum of this compound, and Figure 12 shows the infrared absorption spectrum. From these physical property values, this compound has 9-(2-
It is identified as deoxy-2-o-tosyl-β-D-ribofuranosyl)-adenine. Yield 57.0%.

【図面の簡単な説明】[Brief explanation of the drawing]

第図および第図は−−デオキシ−
−アゞド−β−−アラビノフラノシル−アデ
ニンの栞磁気共鳎スペクトルおよび赀倖吞収スペ
クトルをそれぞれ衚わす。第図および第図は
−−デオキシ−−アミノ−β−−アラ
ビノフラノシル−アデニンの栞磁気共鳎スペク
トルおよび赀倖吞収スペクトルをそれぞれ衚わ
す。第図および第図は−−デオキシ−
−アゞド−β−−アラビノフラノシル−グ
アニンの栞磁気共鳎スペクトルおよび赀倖吞収ス
ペクトルをそれぞれ衚わす。第図および第図
は−−デオキシ−−アミノ−β−−ア
ラビノフラノシル−グアニンの栞磁気共鳎スペ
クトルおよび赀倖吞収スペクトルをそれぞれ衚わ
す。第図および第図は−−デオキシ
−−−トシル−β−−リボフラノシル−
グアニンの栞磁気共鳎スペクトルおよび赀倖吞収
スペクトルをそれぞれ衚わす。第図および第
図は−−デオキシ−−−トシル−
β−−リボフラノシル−アデニンの栞磁気共
鳎スペクトルおよび赀倖吞収スペクトルをそれぞ
れ衚わす。
Figures 1 and 6 show 9-(2-deoxy-2
-Azide-β-D-arabinofuranosyl)-adenine nuclear magnetic resonance spectrum and infrared absorption spectrum, respectively. FIGS. 2 and 7 show the nuclear magnetic resonance spectrum and infrared absorption spectrum of 9-(2-deoxy-2-amino-β-D-arabinofuranosyl)-adenine, respectively. Figures 3 and 8 show 9-(2-deoxy-
2 shows the nuclear magnetic resonance spectrum and infrared absorption spectrum of 2-azido-β-D-arabinofuranosyl)-guanine, respectively. FIGS. 4 and 9 show the nuclear magnetic resonance spectrum and infrared absorption spectrum of 9-(2-deoxy-2-amino-β-D-arabinofuranosyl)-guanine, respectively. 5 and 10 are 9-(2-deoxy-2-o-tosyl-β-D-ribofuranosyl)-
The nuclear magnetic resonance spectrum and infrared absorption spectrum of guanine are shown respectively. Figures 11 and 12 show 9-(2-deoxy-2-o-tosyl-
Figure 3 shows the nuclear magnetic resonance spectrum and infrared absorption spectrum of β-D-ribofuranosyl)-adenine, respectively.

Claims (1)

【特蚱請求の範囲】  䞀般匏〔〕 ただし、およびは同䞀でも異な぀おもよ
く、アミノ基あるいは氎酞基あるいはチオヌル基
あるいは氎玠を衚わすで衚わされる化合物。  匏〔〕においお、がアミノ基で、が氎
玠である特蚱請求の範囲による化合物。  匏〔〕においお、が氎酞基で、がアミ
ノ基である特蚱請求の範囲による化合物。
[Claims] 1. General formula [] (However, X and Y may be the same or different and represent an amino group, a hydroxyl group, a thiol group, or hydrogen.) 2. A compound according to claim 1, wherein in formula [], X is an amino group and Y is hydrogen. 3. A compound according to claim 1, wherein in formula [], X is a hydroxyl group and Y is an amino group.
JP24950083A 1983-12-26 1983-12-26 Novel nucleoside Granted JPS59231087A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24950083A JPS59231087A (en) 1983-12-26 1983-12-26 Novel nucleoside

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24950083A JPS59231087A (en) 1983-12-26 1983-12-26 Novel nucleoside

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP3634277A Division JPS5919556B2 (en) 1977-03-31 1977-03-31 New nucleosides and their production method

Publications (2)

Publication Number Publication Date
JPS59231087A JPS59231087A (en) 1984-12-25
JPS6261598B2 true JPS6261598B2 (en) 1987-12-22

Family

ID=17193889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24950083A Granted JPS59231087A (en) 1983-12-26 1983-12-26 Novel nucleoside

Country Status (1)

Country Link
JP (1) JPS59231087A (en)

Also Published As

Publication number Publication date
JPS59231087A (en) 1984-12-25

Similar Documents

Publication Publication Date Title
JPH0694475B2 (en) Nucleoside derivative
JPS63267796A (en) Therapeutical nucleotide
JPS5834479B2 (en) Novel nucleosides and their production methods
PT98943B (en) METHOD FOR PREPARING NEW CARBOCYCLIC ANALOGS OF ADENOSIN AND PHARMACEUTICAL COMPOSITIONS THAT CONTAIN THEM.
Schinazi et al. Antiviral and antineoplastic activities of pyrimidine arabinosyl nucleosides and their 5'-amino derivatives
JPH07502740A (en) therapeutic nucleosides
JP2504000B2 (en) Glucosylmoranolin derivative
JPS6261598B2 (en)
WO2005058247A2 (en) Method for preparing radiolabeled thymidine having low chromophoric byproducts
WO1996001834A1 (en) 2'-deoxy-2'-(substituted or unsubstituted methylidene)-4'-thionucleoside
JPH0532399B2 (en)
JPH0517920B2 (en)
EP0061001A1 (en) Antiallergic agent comprising derivatives of adenosine
US3168513A (en) Derivative of 2'-deoxy-5-fluorouridine
JPS5919556B2 (en) New nucleosides and their production method
JPH0129800B2 (en)
JPS63130599A (en) Modified nucleotide
JPH06211890A (en) 2'-deoxy-2'@(3754/24)s)-substituted alkylcytidine derivative
US4861873A (en) 8-Chloroadenosine 3', 5'-cyclic monophosphate preparations
Krenitsky et al. Nucleosides of azathioprine and thiamiprine as antiarthritics
Gosselin et al. Stereospecific synthesis and biological evaluation of 9-α-D-ribofuranosylguanine (α-guanosine)
JPS6318590B2 (en)
CN113773324B (en) Synthesis and preparation process of antitumor drug CFI-402257
Keller et al. A Simplified Synthesis of 1-β-D-Arabinofuranosyl-5-fluorouracil1
JPS6293281A (en) Antitumor agent