JPS6261244B2 - - Google Patents

Info

Publication number
JPS6261244B2
JPS6261244B2 JP17843880A JP17843880A JPS6261244B2 JP S6261244 B2 JPS6261244 B2 JP S6261244B2 JP 17843880 A JP17843880 A JP 17843880A JP 17843880 A JP17843880 A JP 17843880A JP S6261244 B2 JPS6261244 B2 JP S6261244B2
Authority
JP
Japan
Prior art keywords
liquid crystal
substrates
coated
rubbing
twist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17843880A
Other languages
Japanese (ja)
Other versions
JPS57101817A (en
Inventor
Kaname Myazawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP17843880A priority Critical patent/JPS57101817A/en
Publication of JPS57101817A publication Critical patent/JPS57101817A/en
Publication of JPS6261244B2 publication Critical patent/JPS6261244B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133719Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films with coupling agent molecules, e.g. silane

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、液晶パネルの水平配向処理方法に関
するものである。 液晶パネルは、低消費電力で、明るいところ程
良く見える、コントラストが良好等の理由で、時
計・電卓等に広く用いられている。液晶には、表
示モードとして、FETN、DSM、GH等がある
が、ここではFETN方式を例に、本発明を詳細に
説明する。 従来、FETN方式の水平配向処理方法には、斜
め蒸着法とラビング法があるが、前者は、製造コ
ストが高い、チルト角が大きく電圧−コントラス
トカーブの急峻性が失なわれダイナミツク駆動が
困難等の理由で、後者の配向処理方法が主流とな
つている。ラビング配向には、電極付き基板に、
より配向性を良くするために、シラン系、チタン
系等のカツプリング剤、テフロン、ポリイミド等
の高分子樹脂をコーテイングし、キユアー後、綿
布等で一定方向にラビングする方法がとられてい
る。後者の高分子樹脂コートした配向剤は、基板
全面にコーテイングするとシール強度が著しく低
下し、耐湿下の信頼性が損なわれるため、シール
の内側だけにコートする必要がある。そのため、
印刷法、マスク蒸着法等を必要とし、ランニング
コストが増加する。前者のカツプリング剤による
方法は、有機シールの密着性も良く、コストも安
いのであるが、以下の欠点を有している。 (1) ラビング角度と液晶の配向方向がいくぶんず
れている。(ラビング角度より5゜程度狭くな
る。) (2) 耐湿下におけるツイスト角度が徐々に狭くな
る。 (3) 電圧−コントラスト特性を損なわない程度の
コレステリツク液晶の添加した液晶を用いたと
き、ツイスト角度が90゜に近ずくにつれて、リ
バースツイストによるバブルドメインが多発す
る。FETN方式においては、コントラストアツ
プ及び電圧−コントラスト特性の急峻性を高め
るうえでも、90゜ツイストが望ましい。 (4) 点灯時における電極の輪郭部に逆チルトによ
るドメインが発生し、電圧印加を行なうと進行
する。 これらの欠点は、特にシラン系のカツプリング
剤、例えばアミノシラン(東レシリコーン製
SH6020)、エポキシシラン(東レシリコーン製
SH6040)等を単独で用いたときおこる。本発明
者は、シラン系カツプリング剤に四官能基を有す
るチタン系カツプリング剤、例えばテトラブトキ
シチタン(日本曹達製アトロンNTi16)を混合す
ることにより、これらの欠点の(1)、(3)は解決でき
ることはわかつたが、(2)、(4)は解決できなかつ
た。一方、四官能のシラン系カツプリング剤、例
えばテトラメトキシシランに四官能のチタン系カ
ツプリング剤、例えばテトラブトキシチタンの混
合被膜により、(1)、(2)、(3)、(4)全て解決すること
はできたが、セル組立時のエポキシ樹脂のシール
強度が著しく弱く、60℃、90%等の耐湿下におい
てシールのパンクとか、著しい表示のにじみ現象
を引きおこす。本発明者は、(1)〜(4)を満足し、し
かも耐湿下における不良現象を生じない配向剤を
検討した結果、本発明を生むに至つた。 本発明に述べる少なくとも一方が透明な絶縁基
板とは、ガラス、セラミツク等の無機物、ポリエ
ステル、三酢酸セルロース等のセルロース類、エ
ポキシ樹脂等の少なくとも耐液晶性に優れた高分
子物質から成る。これらの絶縁基板上に、
CVD、スパツタリング、蒸着、スプレー法等で
酸化スズ、酸化インジウム等の透明導電膜を形成
し、リングラフイー技術により所定のパターニン
グを行なう。このようなパターニングされた透明
導電膜付絶縁基板上に、一般式Si(OR14とTi
(OR24とSi(OR33R4(R1、R2、R3:C1〜C8
アルキル基、R4:エポキシ基を含む有機基を示
す)を含む有機溶媒を塗布後、250℃以下で加水
分解被膜を形成させる。Si(OR14とは、テトラ
メトキシシラン、テトラエトキシシラン、テトラ
ブトキシシラン等である。Ti(OR24とは、テト
ライソプロキシチタン、テトラブトキシチタン、
2−エチルヘキシルオキシチタン等である。Si
(OR33R4とは、トリメトキシブチルグリシジル
シラン、トリエトキシモリフオリルシラン等であ
る。これらの混合割合は任意に選ばれるが、Si
(OR14:30〜80wt%、Ti(OR24:1%〜5wt
%、Si(OR33R4:1〜20wt%程度である。ただ
しSi(OR14は、一番リツチにする必要がある。
Ti(OR24が多くなると、被膜が黄色味を帯びる
と共に液が不安定となる。又、耐熱agingが悪く
なる。Si(OR33R4は20wt%を越えると、前記(3)
の不良が生じやすくなる。これらを原液で混合す
るか、又、別々に次の有機溶媒に溶解させる。メ
タノール、エタノール等のアルコール類、酢酸メ
チル、酢酸エチル等のエステル類、アセトン、メ
チルエチルケトン等のケトン類、エチルセルソル
ブ等のセルソルブ類、ジプロピレングリコール等
の多価アルコール類、トリフルオロトリクロルエ
タン等のハロゲン化炭化水素類等から選ばれた単
独又は混合溶媒である。これらの有機溶媒に溶か
す前記混合物は、トータルで10wt%以下であ
る。又、場合によつては、液の安定性を増すため
に、酢酸、過塩素酸、硫酸等を原液又は水に
10wt%以下溶解して溶かしても良い。これらを
含んだ有機溶媒は、等速引き上げ法、スプレー
法、スピンナー法、浸漬法、ロールコーター法、
印刷法等により電極付き絶縁基板に塗布する。空
気中で50〜250℃で加熱すると、これらのカツプ
リング剤のアルコキシ基が加水分解反応して、被
膜が形成される。温度が低ければ30分〜3時間、
150℃以上では5分〜30分で十分である。250℃以
上になると、エポキシ基が熱分解してしまう。こ
のように被膜形成されたパターニング透明導電膜
付き絶縁基板を、綿布、スポンジ、ハケ等で上下
基板を90゜になるように一定方向にラビングす
る。このようにした基板間に液晶を封入すると、
水平配向するとともに90゜ツイストする。 以下、実施例に従つて本発明を詳細に説明す
る。 実施例 1 パイレツクスガラスにCVD法で酸化スズ透明
導電膜を400Å被膜後、リソグラフイー技術によ
りZn−HClを用いて所定のエツチングパターンを
形成した。洗浄・乾燥後、テトラメトキシシラン
0.5部、テトラブトキシチタン0.1部、エポキシシ
ラン(東レシリコーン製SH6040)0.05部を含
む、ダイワロン93%、エタノール7%(いづれも
容量比)の共沸有機溶媒に浸漬し、5cm/minの
引き上げスピードで塗布した。オーブン中、180
℃1時間で加水分解させ被膜を形成させた。上・
下基板を90゜異なる方向にサラシを用いて40Kgの
圧力で一定方向にラビングした。10μのアルミナ
ギヤツプ剤を含むエポキシ樹脂で上下基板をシー
ルし、ビフエニール系液晶E7(BDH社製)にCB
−15(BDH社製)0.03%添加したネマチツク液晶
を注入した。直交ニコル間で配向状態を観察した
ところ、ラビング方向と配向軸は全く同一で、90
゜方向であつた。又、リバースツイストによるバ
ブルドメインも全く存在しなかつた。次に、この
パネルを60℃90%の耐湿エイジングを行なつたと
ころ、500時間経過後も全く不良が発生せず、又
ツイスト角度の変化もなかつた。高温aging試験
110℃でも同様の結果が得られた。 表1は、各種液晶と配向剤の組み合わせによる
初期の配向状態を示す。
The present invention relates to a horizontal alignment treatment method for a liquid crystal panel. Liquid crystal panels are widely used in watches, calculators, etc. because of their low power consumption, good visibility in bright areas, and good contrast. Liquid crystals have display modes such as FETN, DSM, and GH. Here, the present invention will be explained in detail using the FETN method as an example. Conventional FETN horizontal alignment processing methods include the oblique vapor deposition method and the rubbing method, but the former has problems such as high manufacturing cost, large tilt angle, loss of steepness of voltage-contrast curve, and difficulty in dynamic driving. For these reasons, the latter orientation treatment method has become mainstream. For rubbing orientation, on the substrate with electrodes,
In order to improve the orientation, a method is used in which the material is coated with a coupling agent such as silane or titanium, or a polymeric resin such as Teflon or polyimide, and after curing, the material is rubbed in a certain direction with cotton cloth or the like. The latter alignment agent coated with a polymeric resin must be coated only on the inside of the seal because if the entire surface of the substrate is coated, the seal strength will be significantly reduced and reliability under moisture resistance will be impaired. Therefore,
Printing methods, mask vapor deposition methods, etc. are required, which increases running costs. The former method using a coupling agent provides good adhesion of the organic seal and is inexpensive, but it has the following drawbacks. (1) The rubbing angle and the alignment direction of the liquid crystal are slightly different. (It is about 5 degrees narrower than the rubbing angle.) (2) The twist angle under moisture resistance gradually becomes narrower. (3) When using a liquid crystal to which cholesteric liquid crystal is added to an extent that does not impair voltage-contrast characteristics, as the twist angle approaches 90°, bubble domains due to reverse twist occur frequently. In the FETN method, a 90° twist is desirable in order to increase contrast and increase the steepness of voltage-contrast characteristics. (4) Domains due to reverse tilt occur on the contour of the electrode during lighting, and progress when voltage is applied. These drawbacks are especially true of silane-based coupling agents, such as aminosilane (manufactured by Toray Silicone).
SH6020), epoxy silane (manufactured by Toray Silicone)
SH6040) etc. is used alone. The present inventor has solved these drawbacks (1) and (3) by mixing a titanium-based coupling agent having a tetrafunctional group, such as tetrabutoxytitanium (Atron NTi16 manufactured by Nippon Soda), with a silane-based coupling agent. I found out that it can be done, but I couldn't solve (2) and (4). On the other hand, all of (1), (2), (3), and (4) can be solved by a mixed coating of a tetrafunctional silane coupling agent, such as tetramethoxysilane, and a tetrafunctional titanium coupling agent, such as tetrabutoxytitanium. However, the sealing strength of the epoxy resin during cell assembly was extremely weak, causing seal punctures and severe display smearing under conditions of 60°C and 90% humidity. The present inventor has studied an alignment agent that satisfies (1) to (4) and does not cause defects under moisture resistance, and as a result, the present invention has been created. The insulating substrate, at least one of which is transparent, mentioned in the present invention is made of an inorganic material such as glass or ceramic, a polymeric material having at least excellent liquid crystal resistance such as polyester, cellulose such as cellulose triacetate, or epoxy resin. On these insulating substrates,
A transparent conductive film made of tin oxide, indium oxide, etc. is formed using CVD, sputtering, vapor deposition, spraying, etc., and a predetermined patterning is performed using phosphorography technology. On such a patterned insulating substrate with a transparent conductive film, Si (OR 1 ) 4 and Ti
(OR 2 ) 4 and Si (OR 3 ) 3 R 4 (R 1 , R 2 , R 3 : C 1 to C 8 alkyl group, R 4 : organic group including epoxy group). After application, a hydrolyzed film is formed at 250°C or below. Si(OR 1 ) 4 includes tetramethoxysilane, tetraethoxysilane, tetrabutoxysilane, and the like. Ti( OR2 ) 4 means tetraisoproxytitanium, tetrabutoxytitanium,
2-ethylhexyloxytitanium and the like. Si
(OR 3 ) 3 R 4 is trimethoxybutylglycidylsilane, triethoxymolyfurylsilane, or the like. These mixing ratios can be chosen arbitrarily, but Si
(OR 1 ) 4 : 30-80wt%, Ti (OR 2 ) 4 : 1%-5wt
%, Si( OR3 ) 3R4 : about 1 to 20wt %. However, Si(OR 1 ) 4 needs to be made the richest.
When Ti(OR 2 ) 4 increases, the coating becomes yellowish and the liquid becomes unstable. Also, heat resistance and aging deteriorate. When Si(OR 3 ) 3 R 4 exceeds 20 wt%, it
defects are more likely to occur. These can be mixed as stock solutions or separately dissolved in the following organic solvents. Alcohols such as methanol and ethanol, esters such as methyl acetate and ethyl acetate, ketones such as acetone and methyl ethyl ketone, cellosolves such as ethyl cellosolve, polyhydric alcohols such as dipropylene glycol, trifluorotrichloroethane, etc. It is a single or mixed solvent selected from halogenated hydrocarbons and the like. The total amount of the mixture dissolved in these organic solvents is 10 wt% or less. In some cases, acetic acid, perchloric acid, sulfuric acid, etc. may be added to the stock solution or water to increase the stability of the solution.
It may be dissolved by dissolving 10wt% or less. Organic solvents containing these can be used by the constant velocity pulling method, spray method, spinner method, dipping method, roll coater method,
It is applied to an insulating substrate with electrodes using a printing method or the like. When heated in air at 50 to 250°C, the alkoxy groups of these coupling agents undergo a hydrolysis reaction to form a film. 30 minutes to 3 hours if the temperature is low.
At temperatures above 150°C, 5 to 30 minutes is sufficient. If the temperature exceeds 250℃, the epoxy group will thermally decompose. The insulating substrate with the patterned transparent conductive film thus formed is rubbed in a certain direction with a cotton cloth, sponge, brush, etc. so that the upper and lower substrates are at an angle of 90°. When a liquid crystal is sealed between these substrates,
Orient horizontally and twist 90°. Hereinafter, the present invention will be explained in detail according to Examples. Example 1 A tin oxide transparent conductive film was coated on Pyrex glass to a thickness of 400 Å using the CVD method, and then a predetermined etching pattern was formed using Zn-HCl using a lithography technique. After washing and drying, tetramethoxysilane
It was immersed in an azeotropic organic solvent of 93% Daiwalon and 7% ethanol (all by volume) containing 0.5 parts of titanium, 0.1 parts of tetrabutoxytitanium, and 0.05 parts of epoxy silane (SH6040 manufactured by Toray Silicone), and the pulling speed was 5 cm/min. It was coated with In the oven, 180
It was hydrolyzed for 1 hour at °C to form a film. Up·
The lower substrate was rubbed in a fixed direction at a pressure of 40 kg using a scrubber in 90° different directions. The upper and lower substrates are sealed with epoxy resin containing 10μ alumina gapping agent, and CB is attached to the biphenyl liquid crystal E 7 (manufactured by BDH).
Nematic liquid crystal containing 0.03% -15 (manufactured by BDH) was injected. When we observed the orientation state between orthogonal nicols, we found that the rubbing direction and orientation axis were exactly the same, 90
It was heated in the ° direction. Furthermore, there was no bubble domain due to reverse twist. Next, this panel was subjected to humidity aging at 60° C. and 90% humidity, and no defects were observed even after 500 hours, and there was no change in the twist angle. High temperature aging test
Similar results were obtained at 110°C. Table 1 shows initial alignment states obtained by combinations of various liquid crystals and alignment agents.

【表】 なお、ラビング角は90゜で、ドメイン消去剤と
してCB−15を0.03%添加した液晶を用いた。表
中の数字は、90゜よりツイスト角の狭い場合は、
マイナス数字で示してある。表中、有無はバブル
ドメインを示す。 表2は、同様にして60℃90%で500Hr Aging試
験した場合の変化を示す。
[Table] The rubbing angle was 90°, and liquid crystal containing 0.03% CB-15 as a domain eraser was used. The numbers in the table are for twist angles narrower than 90°.
It is shown as a negative number. In the table, presence or absence indicates a bubble domain. Table 2 shows changes when a 500 hour aging test was conducted at 60° C. 90% in the same manner.

【表】【table】

【表】 又、表中で、大・中・小・ナシは、通電したと
きの表示のにじみの程度を示す。この結果から明
らかなように、本発明の配向剤は、初期及び
Aging後も全く問題なく、理想的配向剤と言え
る。表中には示さなかつたが、前記(1)〜(4)の不良
内容も全く観察されなかつた。ここでは、FETN
のみを例に説明したが、相転移型表示、相転移型
ゲストホスト、負液晶を用いたゲストホストでも
全く不良は観察されなかつた。 以上、実施例に従つて本発明を説明したが、本
発明を用いた液晶表示パネルは、時計・電卓・自
動車・カメラ等に用いられる。
[Table] Also, in the table, large, medium, small, and blank indicate the degree of blurring of the display when energized. As is clear from this result, the alignment agent of the present invention
There is no problem at all even after aging, and it can be said to be an ideal alignment agent. Although not shown in the table, none of the above defects (1) to (4) were observed. Here, FETN
However, no defects were observed even in the case of a phase change type display, a phase change type guest host, and a guest host using a negative liquid crystal. The present invention has been described above according to the embodiments, and liquid crystal display panels using the present invention are used in watches, calculators, automobiles, cameras, and the like.

Claims (1)

【特許請求の範囲】[Claims] 1 少なくとも一方が透明な絶縁基板上に電極を
有し、該基板間に水平配向した液晶をサンドウイ
ツチして成る液晶パネルにおいて、該電極基板上
に、一般式Si(OR14とTi(OR24とSi
(OR33R4(R1、R2、R3:C1〜C8のアルキル基、
R4:エポキシ基を含む有機基を示す)を含む有
機溶媒を塗布後、250℃以下で加水分解反応させ
被膜形成後、一定方向にラビングして水平配向せ
しめたことを特徴とする液晶パネルの配向処理方
法。
1. In a liquid crystal panel comprising an electrode on an insulating substrate, at least one of which is transparent, and a liquid crystal sandwiched between the substrates and horizontally aligned between the substrates, on the electrode substrate, Si(OR 1 ) 4 and Ti(OR 2 ) 4 and Si
(OR 3 ) 3 R 4 (R 1 , R 2 , R 3 : C 1 to C 8 alkyl group,
R 4 : indicates an organic group including an epoxy group) is coated, a film is formed by hydrolysis reaction at 250°C or lower, and then the liquid crystal panel is horizontally aligned by rubbing in a certain direction. Orientation processing method.
JP17843880A 1980-12-17 1980-12-17 Orienting method for liquid crystal panel Granted JPS57101817A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17843880A JPS57101817A (en) 1980-12-17 1980-12-17 Orienting method for liquid crystal panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17843880A JPS57101817A (en) 1980-12-17 1980-12-17 Orienting method for liquid crystal panel

Publications (2)

Publication Number Publication Date
JPS57101817A JPS57101817A (en) 1982-06-24
JPS6261244B2 true JPS6261244B2 (en) 1987-12-21

Family

ID=16048513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17843880A Granted JPS57101817A (en) 1980-12-17 1980-12-17 Orienting method for liquid crystal panel

Country Status (1)

Country Link
JP (1) JPS57101817A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59121023A (en) * 1982-12-28 1984-07-12 Casio Comput Co Ltd Formation of liquid crystal orienting film
US4802740A (en) * 1985-02-13 1989-02-07 Canon Kabushiki Kaisha Liquid crystal alignment layer containing polyvinyl-alcohol and titanium-alkoxide

Also Published As

Publication number Publication date
JPS57101817A (en) 1982-06-24

Similar Documents

Publication Publication Date Title
EP0040975A1 (en) Method of preparation of a substrate for a liquid crystal display device, a positive display type liquid crystal display device, and a method of constructing such a device
JPH0718995B2 (en) Liquid crystal element
KR0146919B1 (en) Liquid crystal device and display apparatus
JPS6261244B2 (en)
JPH0650368B2 (en) Liquid crystal element
US4812018A (en) Liquid crystal display element having alignment film formed of plasma-polymerized acetonitrile
JPH05150246A (en) Liquid crystal display element with plastic substrate
JPS5823609B2 (en) Panel glass for liquid crystal display
US4615919A (en) Liquid crystal device
JPH05281551A (en) Liquid crystal orientation film
JPS5836887B2 (en) Vertically aligned electrode substrate for liquid crystal display
JPH05313169A (en) Liquid crystal oriented film
JPH06180456A (en) Spacer for liquid crystal device and liquid crystal device using same
JPH0774867B2 (en) Liquid crystal element
KR19980043945A (en) LCD Display
JPH05341288A (en) Ferroelectric liquid crystal device
JPS63234224A (en) Liquid crystal display device
JPS602651B2 (en) Vertically aligned electrode substrate for liquid crystal display
JPH08262453A (en) Spacer for liquid crystal display element and liquid crystal display element
JPS6333126B2 (en)
JP2819814B2 (en) Ferroelectric liquid crystal panel
JP3605346B2 (en) Liquid crystal element
JPH0612385B2 (en) Liquid crystal element
JPH028292B2 (en)
JPS6253810B2 (en)