JPS6260940B2 - - Google Patents

Info

Publication number
JPS6260940B2
JPS6260940B2 JP7008483A JP7008483A JPS6260940B2 JP S6260940 B2 JPS6260940 B2 JP S6260940B2 JP 7008483 A JP7008483 A JP 7008483A JP 7008483 A JP7008483 A JP 7008483A JP S6260940 B2 JPS6260940 B2 JP S6260940B2
Authority
JP
Japan
Prior art keywords
catalyst
nickel
weight
alumina
barium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7008483A
Other languages
Japanese (ja)
Other versions
JPS59196741A (en
Inventor
Koichi Fuje
Hiroo Matsuoka
Seiichi Matsuoka
Tsunekichi Yamabe
Kenji Mori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Original Assignee
JGC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp filed Critical JGC Corp
Priority to JP7008483A priority Critical patent/JPS59196741A/en
Priority to US06/528,107 priority patent/US4510264A/en
Priority to DE3333970A priority patent/DE3333970C2/en
Priority to FR8315582A priority patent/FR2533915B1/en
Priority to NL8303370A priority patent/NL191461C/en
Publication of JPS59196741A publication Critical patent/JPS59196741A/en
Publication of JPS6260940B2 publication Critical patent/JPS6260940B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/08Production of synthetic natural gas

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は酸化炭素の水素化によるメタン合成用
触媒およびその製造方法に関し、詳しくはアルミ
ナとニツケルと酸化バリウムとを特定割合で含有
する高濃度COガスからのメタン合成用触媒およ
びその製造方法に関する。 重質油や石炭をガス化して得られる高濃度CO
ガスをメタン化し、代替天然ガスを得る方法は最
近のエネルギー事情からみて非常に有望なプロセ
スである。近年、石炭ガス化ガスからのメタン合
成については多くの報告が発表されている。特に
米国においては本格的な研究が行なわれており、
日米でもサンシヤイン計画の一翼として高カロリ
ーガス化を目的としたプロジエクトが組まれてい
る。そしてCOからのメタン化触媒として、例え
ば、Ni−Mo−MgO、Ni−Mo−ZrO2、Ni−Fe−
MgAl2O4等の触媒が提案されている。このメタ
ン合成反応は、大きな反応熱の発生を伴う反応で
あり、その反応熱をエネルギー源として有効に利
用することは、メタン合成プロセスの経済性とい
う点から非常に重要である。この反応熱を有効に
利用するには高温で反応を行なわせるのが最も好
ましいが、メタン合成反応に通常用いられる触媒
をこのような高濃度COガスで使用すると熱や雰
囲気中のスチームによるシンタリングおよび炭素
質の生成等の原因で触媒が著しく劣化することが
知られている。 更に触媒上で炭素原子が結合して生成する炭素
質は時には反応管の閉塞を引き起し、反応継続を
物理的に不可能としてしまう。 例えば、通常のニツケル系のメタネーシヨン触
媒をこのようなプロセスに用いると、初期活性が
高すぎるため、非常に高い発熱による触媒の活性
劣化や装置上の除熱が問題となる。そのため触媒
を希釈して充填したり原料ガスの供給量を少なく
する等の操作が必要となる。これらの方法は技術
的、経済的に問題がある。また、数%から数十%
触媒に含有されているニツケル量を減らして初期
活性を下げることも考えられるが、ニツケル含有
量をある量以下に低減させると、初期活性の著し
い低下を招き、触媒性能が低下してしまう。 このような問題点を解決すべく従来より数多く
提案されている方法は、高熱反応を回避すべく常
に反応熱を除去し、触媒層の温度制御を維持する
ことにあつた。しかしこの方法においては反応熱
を回収し有効に利用するという利点が損われる。 本発明は、触媒層の局部的な発熱を抑制し、触
媒劣化を防止すると共に触媒性能も満足できる水
準にある実用性に優れたメタン合成用触媒および
その製造方法を提供することを目的とする。 本発明者等はこの目的に沿つて鋭意研究の結
果、アルミナとニツケルと酸化バリウムとからな
り、ニツケルの含有量がアルミナとニツケルの合
計量に対して3〜30重量%の範囲にある触媒がメ
タン合成用触媒として触媒性能が優れていること
を見い出し特願昭57−173085号を出願した。しか
し、高濃度のCOのメタネーシヨン反応は前記の
ごとく非常に高い発熱を伴うため、このような反
応に使用される触媒は一定水準の活性を維持しつ
つ安定であり、高い発熱をある程度抑制すること
が要求される。そして、本発明者等はさらに研究
の結果、ニツケルの含有量がより低いほうが、発
熱の抑制が容易で、触媒の劣化が少なくしかも触
媒性能も満足できる水準にあることから実用上好
ましいという知見を得て本発明に到達した。 すなわち本発明の触媒は、アルミナとニツケル
と酸化バリウムとからなり、ニツケルの含有量が
アルミナとニツケルの合計量に対し0.05重量%以
上から3.0重量%未満の範囲にあり、かつ酸化バ
リウムの含有量がアルミナに対し0.3重量%以上
から9.0重量%以下の範囲にあることを特徴とす
る酸化炭素の水素化によるメタン製造用触媒であ
る。 本発明の触媒は、アルミナ、ニツケルおよび酸
化バリウムよりなるが、ニツケルの含有量はアル
ミナとニツケルの合計量に対して0.05重量%以上
から3.0重量%未満の範囲にあることが、触媒性
能を満足できる水準に維持しつつ発熱の抑制が容
易であり触媒の劣化を防止するという実用性の点
から必要である。ニツケルの含有量が3.0重量%
以上では触媒性能は高いレベルにあるものの、高
い発熱を生じるため実用上に若干問題がある。ま
たニツケルの含有量が0.05重量%未満ではニツケ
ルの含有効果がなく触媒性能が劣る。 また、酸化バリウムの含有量は担体の性状によ
つて異なるが、通常はアルミナに対して0.3重量
%以上から9.0重量%以下の範囲である。0.3重量
%未満では酸化バリウムを含有させる効果がなく
触媒活性等が劣り、9.0重量%を越えて含有させ
た場合には、硝酸バリウムや水酸化バリウムの溶
解度が小さいので、通常の含浸法による担持が困
難であり、さらには担体の細孔を閉塞させたりニ
ツケル原子の被覆による活性点の減少等の原因と
なる。このことから過剰の酸化バリウムを含有さ
せることは好ましくなく、9.0重量%を越えて酸
化バリウムを含有させるメリツトに乏しい。 本発明において酸化バリウムを含有させること
によつて炭素析出が抑制され、また触媒性能が向
上する理由は必ずしも明らかではないが一つの考
察としては、酸化バリウムの含有によりアルミナ
の表面状態が変化してアルミナが安定化し、その
ためニツケルは担体と強い相互作用を持つことが
抑制され、ニツケルが低含有量でも高活性の触媒
が得られるものと推察される。 本発明においてメタン製造用触媒は、アルミナ
担体に硝酸バリウム、水酸化バリウム等のバリウ
ム塩溶液と硝酸ニツケル等のニツケル塩溶液とを
含浸法、混練法または沈澱法等の従来公知の方法
で担持させて得られる。 この場合、(1)酸化バリウムをアルミナに担持し
た後、ニツケルを担持する方法、(2)ニツケルと酸
化バリウムを同時にアルミナに担持する方法、(3)
ニツケルをアルミナに担持した後、酸化バリウム
を担持する方法の3通りの方法がある。本発明に
おいては、アルミナに、先ず酸化バリウムを酸化
バリウムの含有量がアルミナに対し0.3重量%以
上から9.0重量%以下の範囲となるように担持さ
せ、次いでニツケルをニツケルの含有量がアルミ
ナとニツケルの合計量に対し0.05重量%以上から
3.0重量%未満の範囲となるように担持させる(1)
の方法が触媒性能等の点から望ましい。 また、本発明に使用するアルミナとしてはγ−
アルミナが最も好ましく使用される。 以下、本発明を実施例、比較例および実験例に
基づき具体的に説明する。 比較例 1 成型したアルミナ担体(吸水率0.75)100gを
500c.c.のビーカーに入れ、担体を振り混ぜなが
ら、0.68mol/の硝酸ニツケル溶液75c.c.を室温
で滴下しながら含浸した。均一に担持するため、
そのまま室温で12時間静置して、その後常法によ
り乾燥器で乾燥し、電気炉にて空気中500℃、3
時間焼成してニツケル含有量2.9重量%の触媒A
を得た。 比較例 2〜4 比較例1で使用したのと同じアルミナ担体100
gを500c.c.のビーカーに入れ、硝酸ニツケル溶液
の濃度を代えた以外はすべて比較例1と同様な方
法でニツケル含有量が5.0重量%の触媒B、ニツ
ケル含有量2.0重量%の触媒Cおよびニツケル含
有量が0.5重量%の触媒Dを得た。 実施例 1 比較例1で使用したアルミナ担体100gを500c.c.
のビーカーに入れ、振り混ぜながら0.26mol/
の硝酸バリウム溶液75c.c.を室温で担体に滴下しな
がら含浸した。均一に担持するためそのまま室温
で12時間静置し、常法により乾燥器にて乾燥した
後、マツフル炉にて800℃、3時間焼成して酸化
バリウムをアルミナに対して3.0重量%担持し
た。 この酸化バリウムを担持したアルミナ担体に、
比較例1と同様に0.68mol/の硝酸ニツケル溶
液75c.c.を滴下しながら含浸した。12時間静置した
後に常法により乾燥し、電気炉にて空気中500
℃、3時間焼成してニツケル含有量2.9重量%、
酸化バリウム含有量3.0重量%の触媒Eを得た。 比較例5、実施例2〜4、および比較例6 実施例1と同様な方法で予めアルミナ担体に酸
化バリウムを3.0重量%担持させた後に、硝酸ニ
ツケル溶液の濃度を代えて実施例1と同様な方法
でニツケル含有量が5.0重量%、2.0重量%、0.5重
量%、0.05重量%および0.03重量%の触媒F、
G、H、IおよびJをそれぞれ得た。 実施例 5 比較例1で調製したニツケル含有量が2.9重量
%の触媒Aを500c.c.のビーカーに入れ、0.26mol/
の硝酸バリウム溶液75c.c.を室温で滴下しながら
含浸した。12時間室温で静置後、常法により乾燥
し、電気炉にて空気中500℃、3時間焼成し、ア
ルミナに対して3.0重量%の酸化バリウムを担持
した触媒Kを得た。 なお、このようにして得られた触媒A〜Kのニ
ツケル含有量(ニツケルとアルミナの合計量に対
する量)およひ酸化バリウム含有量(アルミナに
対する量)を第1表に表示する。 実験例 1 比較例1〜6および実施例1〜5で得られた触
媒A〜Kの初期メタネーシヨン活性(r0)を通常
の常圧固定層流通式反応装置を用いて下記の反応
条件下で測定した。触媒は10〜16メツシユに破砕
した後に触媒活性に応じて0.1〜10g用いた。反
応管は内径20mmのパイレツクスガラス管を使用
し、触媒をアルミナ担体で希釈してから充填し、
反応条件を常圧、温度290℃、H2 9/hr、CO
3/hr、H2/COが3モル比、還元処理をH2
流中500℃、1時間行ない、290℃での各触媒の初
期メタネーシヨン活性の結果を求めた。なお、触
媒層には3mmのサーモウエルが入つており触媒層
の温度を測定できるようにしてある。この測定に
おいて、測定中のCO転化率はいずれも10%以下
であり、触媒層の発熱はほとんど認められなかつ
た。初期メタネーシヨン反応速度(r0)の結果を
第1表および第1図に示した。 第1表および第1図に示されるように、酸化バ
リウムを添加することにより、初期メタネーシヨ
ン活性は増加しており、ニツケル含有量が0.5重
量%と少量でも比較的好ましい活性を示してい
る。一方、酸化バリウムを添加していない場合に
はニツケル含有量が0.5重量%ではほとんど活性
を示さない。このように酸化バリウムの添加は初
期メタネーシヨン活性に対して効果的であること
がわかる。なお、ニツケルを含有させた後、酸化
バリウムを含有させた実施例5の触媒Kは、酸化
バリウムを含有させた後にニツケルを含有させた
実施例1の触媒Eに比較して初期メタネーシヨン
活性が劣る。 実験例 2 比較例1〜6および実施例1〜5で得られた触
媒A〜Kについて、スチーム雰囲気での高温処理
によるメタネーシヨン活性変化について検討すべ
く、通常の高圧流通式固定層反応装置を用いて処
理を行なつた。処理方法は各触媒を内径16mmのス
テンレス製反応管に充填し、圧力10Kg/cm2・G、
温度600℃でH2 50/hr、H2O 80c.c./hr、H2
H2O=2モル比のガスを送入し、24時間処理を行
なつた。この24時間処理後のメタネーシヨン反応
速度(r)を第1表に示す。また、活性変化を検
討するために実験例1で得られたメタネーシヨン
反応速度(r0)との比(r/r0)を第1表および第
2図に示す。
The present invention relates to a catalyst for synthesizing methane by hydrogenating carbon oxide and a method for producing the same, and more particularly to a catalyst for synthesizing methane from highly concentrated CO gas containing alumina, nickel, and barium oxide in specific proportions, and a method for producing the same. Highly concentrated CO obtained by gasifying heavy oil and coal
The method of converting gas into methane to obtain alternative natural gas is a very promising process considering the current energy situation. In recent years, many reports have been published on methane synthesis from coal gasification gas. Particularly in the United States, full-scale research is being conducted.
In Japan and the United States, projects aimed at producing high-calorie gas are being set up as part of the Sunshine Plan. As a catalyst for methanation from CO, for example, Ni-Mo-MgO, Ni-Mo-ZrO 2 , Ni-Fe-
Catalysts such as MgAl 2 O 4 have been proposed. This methane synthesis reaction is a reaction accompanied by the generation of a large amount of reaction heat, and it is very important from the economical point of view of the methane synthesis process to effectively utilize the reaction heat as an energy source. In order to make effective use of this reaction heat, it is most preferable to carry out the reaction at a high temperature, but if the catalyst normally used for methane synthesis reaction is used with such a high concentration of CO gas, sintering due to heat and steam in the atmosphere may occur. It is known that the catalyst deteriorates significantly due to the formation of carbonaceous matter and other causes. Furthermore, carbonaceous matter produced by bonding of carbon atoms on the catalyst sometimes causes clogging of the reaction tube, making it physically impossible to continue the reaction. For example, when a normal nickel-based methanation catalyst is used in such a process, the initial activity is too high, causing problems such as deterioration of catalyst activity and heat removal from the equipment due to extremely high heat generation. Therefore, operations such as diluting the catalyst and filling it or reducing the amount of raw material gas supplied are required. These methods are technically and economically problematic. Also, from several percent to several tens of percent
Although it is possible to reduce the initial activity by reducing the amount of nickel contained in the catalyst, reducing the nickel content below a certain amount will result in a significant decrease in the initial activity, resulting in a decrease in catalyst performance. In order to solve these problems, many conventional methods have been proposed to constantly remove reaction heat and maintain temperature control of the catalyst layer in order to avoid high-temperature reactions. However, in this method, the advantage of recovering and effectively utilizing the reaction heat is lost. An object of the present invention is to provide a highly practical catalyst for methane synthesis that suppresses local heat generation in the catalyst layer, prevents catalyst deterioration, and has a satisfactory level of catalyst performance, and a method for producing the same. . As a result of intensive research in line with this objective, the present inventors have developed a catalyst consisting of alumina, nickel, and barium oxide, in which the content of nickel is in the range of 3 to 30% by weight based on the total amount of alumina and nickel. It was discovered that the catalyst had excellent catalytic performance as a catalyst for methane synthesis, and patent application No. 173085 was filed. However, as mentioned above, the methanation reaction of high concentrations of CO is accompanied by extremely high heat generation, so the catalysts used in such reactions are stable while maintaining a certain level of activity, and it is possible to suppress the high heat generation to some extent. is required. As a result of further research, the present inventors found that a lower nickel content is practically preferable because it is easier to suppress heat generation, less deterioration of the catalyst, and the catalyst performance is at a satisfactory level. As a result, the present invention was achieved. That is, the catalyst of the present invention is composed of alumina, nickel, and barium oxide, and the content of nickel is in the range of 0.05% by weight or more and less than 3.0% by weight based on the total amount of alumina and nickel, and the content of barium oxide is This is a catalyst for producing methane by hydrogenation of carbon oxide, characterized in that the content of the catalyst is in the range of 0.3% by weight or more and 9.0% by weight or less based on alumina. The catalyst of the present invention is composed of alumina, nickel, and barium oxide, and the content of nickel must be in the range of 0.05% by weight or more and less than 3.0% by weight based on the total amount of alumina and nickel to satisfy the catalyst performance. This is necessary from the practical point of view that it is easy to suppress heat generation while maintaining the same level as possible, and prevents deterioration of the catalyst. Nickel content is 3.0% by weight
Although the above catalyst performance is at a high level, it generates a high amount of heat, which poses some practical problems. Further, if the nickel content is less than 0.05% by weight, the nickel content has no effect and the catalyst performance is poor. Further, the content of barium oxide varies depending on the properties of the carrier, but is usually in the range of 0.3% by weight or more and 9.0% by weight or less based on alumina. If it is less than 0.3% by weight, there is no effect of barium oxide inclusion, resulting in poor catalytic activity, and if it is contained in excess of 9.0% by weight, the solubility of barium nitrate and barium hydroxide is low, so it cannot be supported by normal impregnation methods. Moreover, it may cause clogging of the pores of the carrier or a reduction in the number of active sites due to coating with nickel atoms. For this reason, it is not preferable to contain excessive barium oxide, and there is little merit in containing barium oxide in excess of 9.0% by weight. The reason why carbon precipitation is suppressed and catalyst performance is improved by containing barium oxide in the present invention is not necessarily clear, but one consideration is that the surface state of alumina changes due to the inclusion of barium oxide. It is surmised that alumina is stabilized, thereby suppressing nickel from having a strong interaction with the carrier, and that a highly active catalyst can be obtained even with a low nickel content. In the present invention, the catalyst for methane production is obtained by supporting a barium salt solution such as barium nitrate or barium hydroxide and a nickel salt solution such as nickel nitrate on an alumina carrier by a conventionally known method such as an impregnation method, a kneading method, or a precipitation method. can be obtained. In this case, (1) a method in which barium oxide is supported on alumina and then nickel is supported, (2) a method in which nickel and barium oxide are simultaneously supported on alumina, (3)
There are three methods of supporting barium oxide after supporting nickel on alumina. In the present invention, barium oxide is first supported on alumina so that the content of barium oxide is in the range of 0.3% by weight or more to 9.0% by weight based on the alumina, and then nickel is supported on alumina so that the content of barium oxide is in the range of 0.3% by weight or more and 9.0% by weight or less based on the alumina. From 0.05% by weight or more based on the total amount of
Loaded in a range of less than 3.0% by weight (1)
The method described above is desirable from the viewpoint of catalyst performance, etc. Furthermore, the alumina used in the present invention is γ-
Alumina is most preferably used. The present invention will be specifically described below based on Examples, Comparative Examples, and Experimental Examples. Comparative example 1 100g of molded alumina carrier (water absorption rate 0.75)
The carrier was placed in a 500 c.c. beaker, and 75 c.c. of a 0.68 mol/nickel nitrate solution was added dropwise at room temperature while shaking the carrier to impregnate it. To ensure uniform loading,
Leave it as it is at room temperature for 12 hours, then dry it in a dryer using the usual method, and heat it in the air at 500℃ in an electric furnace for 3 hours.
Catalyst A with a nickel content of 2.9% by weight after being fired for a period of time
I got it. Comparative Examples 2 to 4 Same alumina carrier 100 as used in Comparative Example 1
Catalyst B with a nickel content of 5.0% by weight and catalyst C with a nickel content of 2.0% by weight were prepared in the same manner as in Comparative Example 1 except that the concentration of the nickel nitrate solution was changed. A catalyst D having a nickel content of 0.5% by weight was obtained. Example 1 100g of alumina carrier used in Comparative Example 1 was added to 500c.c.
0.26mol/
The carrier was impregnated dropwise with 75 c.c. of barium nitrate solution at room temperature. In order to uniformly support the product, it was allowed to stand at room temperature for 12 hours, dried in a dryer using a conventional method, and then fired in a Matsufuru furnace at 800°C for 3 hours to support 3.0% by weight of barium oxide on alumina. On the alumina carrier supporting this barium oxide,
As in Comparative Example 1, 75 c.c. of a 0.68 mol/nickel nitrate solution was added dropwise to impregnate. After allowing it to stand for 12 hours, dry it using a conventional method and heat it in the air at 500℃ in an electric furnace.
℃, nickel content 2.9% by weight after firing for 3 hours.
Catalyst E having a barium oxide content of 3.0% by weight was obtained. Comparative Example 5, Examples 2 to 4, and Comparative Example 6 After preliminarily supporting 3.0% by weight of barium oxide on an alumina support in the same manner as in Example 1, the same method as in Example 1 was carried out by changing the concentration of the nickel nitrate solution. Catalyst F with a nickel content of 5.0% by weight, 2.0% by weight, 0.5% by weight, 0.05% by weight and 0.03% by weight,
G, H, I and J were obtained respectively. Example 5 Catalyst A with a nickel content of 2.9% by weight prepared in Comparative Example 1 was placed in a 500 c.c. beaker, and 0.26 mol/
of barium nitrate solution was impregnated dropwise at room temperature. After standing at room temperature for 12 hours, it was dried by a conventional method and calcined in air at 500° C. for 3 hours in an electric furnace to obtain catalyst K in which 3.0% by weight of barium oxide was supported on alumina. The nickel content (amount relative to the total amount of nickel and alumina) and barium oxide content (amount relative to alumina) of the catalysts A to K thus obtained are shown in Table 1. Experimental Example 1 The initial methanation activities (r 0 ) of catalysts A to K obtained in Comparative Examples 1 to 6 and Examples 1 to 5 were measured under the following reaction conditions using a normal atmospheric pressure fixed bed flow reactor. It was measured. The catalyst was crushed into 10 to 16 meshes and then used in an amount of 0.1 to 10 g depending on the catalyst activity. A Pyrex glass tube with an inner diameter of 20 mm was used for the reaction tube, and the catalyst was diluted with an alumina carrier before being filled.
The reaction conditions were normal pressure, temperature 290℃, H 2 9/hr, CO
3/hr, H 2 /CO at a molar ratio of 3, the reduction treatment was carried out at 500°C in a H 2 stream for 1 hour, and the results of the initial methanation activity of each catalyst at 290°C were determined. Note that a 3 mm thermowell is included in the catalyst layer so that the temperature of the catalyst layer can be measured. In this measurement, the CO conversion rate during the measurement was all below 10%, and almost no heat generation was observed in the catalyst layer. The results of the initial methanation reaction rate (r 0 ) are shown in Table 1 and FIG. As shown in Table 1 and FIG. 1, the initial methanation activity is increased by adding barium oxide, and even with a small nickel content of 0.5% by weight, relatively favorable activity is shown. On the other hand, when barium oxide is not added, there is almost no activity at a nickel content of 0.5% by weight. Thus, it can be seen that the addition of barium oxide is effective for the initial methanation activity. In addition, catalyst K of Example 5, in which barium oxide was added after barium oxide was added, has an inferior initial methanation activity compared to catalyst E of Example 1, which was added barium oxide and then nickel. . Experimental Example 2 Catalysts A to K obtained in Comparative Examples 1 to 6 and Examples 1 to 5 were examined for changes in methanation activity due to high temperature treatment in a steam atmosphere using a conventional high pressure flow type fixed bed reactor. I processed it. The treatment method involved filling each catalyst into a stainless steel reaction tube with an inner diameter of 16 mm, and applying a pressure of 10 kg/cm 2 G.
H 2 50/hr, H 2 O 80c.c./hr, H 2 / at temperature 600℃
A gas having a molar ratio of H 2 O=2 was introduced and the treatment was carried out for 24 hours. The methanation reaction rate (r) after this 24 hour treatment is shown in Table 1. In addition, in order to examine changes in activity, the ratio (r/r 0 ) to the methanation reaction rate (r 0 ) obtained in Experimental Example 1 is shown in Table 1 and FIG.

【表】 第1表および第2図から明らかなように、酸化
バリウムを含有しない触媒A〜Dはスチーム雰囲
気での高温処理後のメタネーシヨン反応速度が著
しく低下する。特にニツケル含有量の少ない触媒
CおよびDにおいて顕著である。これに対して、
酸化バリウムを含有する触媒E〜Iにおいては、
処理後もメタネーシヨン反応速度が高い水準にあ
りメタネーシヨン活性の安定性に優れていること
がわかる。この触媒E〜Iのr/r0はニツケル含
有量が多いほど高い値を示すが、ニツケルが少量
含有されている触媒G〜Iにおいても所望のメタ
ネーシヨン活性を示し、酸化バリウムを含有しな
い触媒C〜Dのような触媒活性の著しい低下を示
さない。ニツケルを5重量%含有させた触媒Fは
初期活性も処理後の活性も高い値を示すが初期活
性がかなり高いため発熱という面で問題があり、
実用性に若干乏しい。また、触媒Kは処理後の活
性においても触媒Eに劣る。 以上説明のごとく、重質油や石炭をガス化して
得られる高濃度COガスをメタン化するプロセス
は非常に有望であるが、未だこのようなプロセス
における苛酷な反応条件下で使用できる好適な触
媒は得られていない。アルミナ、ニツケル、酸化
バリウムを特定範囲含有してなる本発明の触媒
は、反応における発熱の抑制を容易にすることが
可能であり、またCOガスをメタン化する際のメ
タネーシヨン活性も満足すべきものであることか
ら、メタン合成用触媒として好適に利用される。
[Table] As is clear from Table 1 and FIG. 2, the methanation reaction rate of catalysts A to D not containing barium oxide after high-temperature treatment in a steam atmosphere is significantly reduced. This is particularly noticeable in catalysts C and D, which have a low nickel content. On the contrary,
In catalysts E to I containing barium oxide,
It can be seen that the methanation reaction rate remains at a high level even after treatment, indicating that the stability of methanation activity is excellent. The r/r 0 of these catalysts E to I shows a higher value as the nickel content increases, but the catalysts G to I containing a small amount of nickel also show the desired methanation activity, and the catalyst C which does not contain barium oxide shows the desired methanation activity. ~D does not show a significant decrease in catalyst activity. Catalyst F containing 5% by weight of nickel shows high initial activity and post-treatment activity, but because the initial activity is quite high, there is a problem in terms of heat generation.
Slightly lacking in practicality. Catalyst K is also inferior to catalyst E in activity after treatment. As explained above, the process of methanating highly concentrated CO gas obtained by gasifying heavy oil or coal is very promising, but there is still no suitable catalyst that can be used under the harsh reaction conditions in such a process. has not been obtained. The catalyst of the present invention, which contains alumina, nickel, and barium oxide in a specific range, can easily suppress heat generation in the reaction, and also has satisfactory methanation activity when converting CO gas to methanation. Therefore, it is suitably used as a catalyst for methane synthesis.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実験例1における触媒A〜Iの初期メ
タネーシヨン反応速度(r0)とニツケル含有量
(重量%)との関係を示す図、および第2図は触
媒A〜Iの初期メタネーシヨン反応速度(r0)お
よび処理後メタネーシヨン反応速度(r)の比
(r/r0)とニツケル含有量(重量%)との関係を
示す図である。
Figure 1 shows the relationship between the initial methanation reaction rate (r 0 ) and the nickel content (wt%) of catalysts A to I in Experimental Example 1, and Figure 2 shows the initial methanation reaction rate of catalysts A to I. FIG. 2 is a diagram showing the relationship between the ratio (r/r 0 ) of (r 0 ) and post-treatment methanation reaction rate (r) and the nickel content (wt%).

Claims (1)

【特許請求の範囲】 1 アルミナとニツケルと酸化バリウムとからな
り、ニツケルの含有量がアルミナとニツケルの合
計量に対し0.05重量%以上から3.0重量%未満の
範囲にあり、かつ酸化バリウムの含有量がアルミ
ナに対し0.3重量%以上から9.0重量%以下の範囲
にあることを特徴とする酸化炭素の水素化による
メタン合成用触媒。 2 アルミナに、先ず酸化バリウムを酸化バリウ
ムの含有量がアルミナに対し0.3重量%以上から
9.0重量%以下の範囲となるように担持させ、次
いでニツケルをニツケルの含有量がアルミナとニ
ツケルの合計量に対し0.05重量%以上から3.0重
量%未満の範囲となるように担持させることを特
徴とする酸化炭素の水素化によるメタン合成用触
媒の製造方法。
[Claims] 1. Consisting of alumina, nickel, and barium oxide, the content of nickel is in the range of 0.05% by weight or more to less than 3.0% by weight based on the total amount of alumina and nickel, and the content of barium oxide is A catalyst for methane synthesis by hydrogenation of carbon oxide, characterized in that the content of alumina is from 0.3% by weight to 9.0% by weight. 2. First, add barium oxide to alumina so that the barium oxide content is 0.3% by weight or more based on the alumina.
It is characterized by supporting nickel in a range of 9.0% by weight or less, and then supporting nickel in such a way that the nickel content is in a range of 0.05% by weight or more to less than 3.0% by weight based on the total amount of alumina and nickel. A method for producing a catalyst for methane synthesis by hydrogenating carbon oxide.
JP7008483A 1982-10-01 1983-04-22 Catalyst for synthesis of methane and its preparation Granted JPS59196741A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP7008483A JPS59196741A (en) 1983-04-22 1983-04-22 Catalyst for synthesis of methane and its preparation
US06/528,107 US4510264A (en) 1982-10-01 1983-08-31 Process for the preparation of a catalyst for the synthesis of methane
DE3333970A DE3333970C2 (en) 1982-10-01 1983-09-20 Catalyst and its use
FR8315582A FR2533915B1 (en) 1982-10-01 1983-09-30 CATALYST FOR METHANE SYNTHESIS AND PROCESS FOR PREPARING THE SAME
NL8303370A NL191461C (en) 1982-10-01 1983-09-30 Process for preparing methane.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7008483A JPS59196741A (en) 1983-04-22 1983-04-22 Catalyst for synthesis of methane and its preparation

Publications (2)

Publication Number Publication Date
JPS59196741A JPS59196741A (en) 1984-11-08
JPS6260940B2 true JPS6260940B2 (en) 1987-12-18

Family

ID=13421316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7008483A Granted JPS59196741A (en) 1982-10-01 1983-04-22 Catalyst for synthesis of methane and its preparation

Country Status (1)

Country Link
JP (1) JPS59196741A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5360972B2 (en) * 2009-04-09 2013-12-04 国立大学法人群馬大学 Catalyst and method for producing the same

Also Published As

Publication number Publication date
JPS59196741A (en) 1984-11-08

Similar Documents

Publication Publication Date Title
US4326992A (en) Process for preparing a supported molybdenum carbide composition
US4250057A (en) Process for producing a catalyst comprising a graphite containing carbon, a transitional metal and a modifying metal ion
US4670414A (en) Activated cobalt catalyst and synthesis gas conversion using same
JP4933014B2 (en) Highly active Fischer-Tropsch synthesis using doped and thermally stable catalyst supports
US4605679A (en) Activated cobalt catalyst and synthesis gas conversion using same
RU2247600C2 (en) Catalyst and ammonia synthesis method
JPS62117630A (en) Supported metal catalyst and its use
US4476250A (en) Catalytic process for the production of methanol
KR100264160B1 (en) Alumina aerogel carrier for carbon dioxide reforming of methane and prepartion method for nickel-alumina aerogel catalysts
JP5402354B2 (en) Aromatic compound production method
KR101480801B1 (en) Monolith type reforming catalyst, preparation method thereof and process for syn gas
JPS6260940B2 (en)
JPS58120501A (en) Manufacture of synthetic gas
CA1209804A (en) Methanol conversion process
JP4399790B2 (en) Propylene production method
JP4203326B2 (en) Operation method of synthesis gas production
JPS6260939B2 (en)
KR20150129566A (en) Ni-based catalysts for combined steam and carbon dioxide reforming with natural gas
JPS638810B2 (en)
JPS6150640A (en) Catalyst for preparing methane-containing gas
JP2007061679A (en) Dewaxing catalyst and its manufacturing method, and dewaxing method
SU1204252A1 (en) Method of preparing nickel catalyst for conversion of natural gas with steam
JP2023157643A (en) Carbon dioxide occlusion reduction type catalyst
JPH0322213B2 (en)
JPS632938B2 (en)