JPS625998B2 - - Google Patents

Info

Publication number
JPS625998B2
JPS625998B2 JP55082833A JP8283380A JPS625998B2 JP S625998 B2 JPS625998 B2 JP S625998B2 JP 55082833 A JP55082833 A JP 55082833A JP 8283380 A JP8283380 A JP 8283380A JP S625998 B2 JPS625998 B2 JP S625998B2
Authority
JP
Japan
Prior art keywords
ion exchange
exchange membrane
electrolysis
cathode
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55082833A
Other languages
Japanese (ja)
Other versions
JPS579887A (en
Inventor
Yoshio Oda
Takeshi Morimoto
Manabu Kazuhara
Yasuo Sajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP8283380A priority Critical patent/JPS579887A/en
Publication of JPS579887A publication Critical patent/JPS579887A/en
Publication of JPS625998B2 publication Critical patent/JPS625998B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • C25B1/46Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis in diaphragm cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は苛性アルカリの製造方法、特にイオン
交換膜を用いて塩化アルカリ水溶液を低電圧で電
解して苛性アルカリを製造する方法に係るもので
ある。 塩化アルカリ水溶液を隔膜法により電解して苛
性アルカリを得る方法は、隔膜としてアスベスト
を用いる方法に代り、より高純度、高濃度の苛性
アルカリを得る目的でイオン交換膜を用いる方法
がいくつか提案されている。 他方、近年省エネルギーが世界的に進行しつつ
あり、この観点からこの種技術においては、電解
電圧を極力低くすることが望まれる。 電解電圧の低下手段としては、従来陽極や陰極
の材質、組成及び形状等を考慮したり、或は用い
るイオン交換膜の組成やイオン交換基の種類を特
定化する等種々の提案がなされている。 これらの方法においては、何れもそれなりの効
果はあるものの、大多数のものは得られる苛性ア
ルカリの濃度がそれ程高くない処に上限を有し、
これを超えると急激に電解電圧の上昇や、電流効
率の低下を来たし、或は電解電圧低下現象の持続
性、耐久性等が劣る等必ずしも工業的に十分満足
し得るものばかりではなかつた。 又、イオン交換基としてスルホン酸基を有する
イオン交換膜を用いた苛性アルカリの製法におい
て、被電解液である塩化アルカリ水溶液中に不純
物として残存するカルシウムイオン等の多価陽イ
オンに対し、これと不溶性のゲルを形成し得る燐
酸基等の陰イオンを含む化合物を添加することに
より、高電流効率、低電圧で苛性アルカリを得る
方法が提案されている。(特公昭52−38519号公報
参照) しかしながら、この方法は、上記公報に明示さ
れているように、塩化アルカリ水溶液中に不純物
として含まれる多価陽イオンが、イオン交換膜内
に貫入するのを防止することにより、アルカリ金
属イオンの移動能が阻害されるのを防いだり、膜
に亀裂が生じるのを防ぐ等、膜の劣化を防止し、
膜の初期性能を維持することにより、電流効率の
低下、電解電圧の上昇を防止するものであり、従
つて、低電圧での電解を必ずしも可能にする積極
的手段ではない。 更に、最近、含弗素陽イオン交換膜の表面に、
ガス及び液透過性の陽極や陰極を密着せしめて塩
化アルカリ水溶液を電解し、苛性アルカリを得る
方法が提案されている。(特開昭54−112398号公
報参照) この方法は、従来この種技術においては避け難
いと考えられていた被電解液による電気抵抗や、
発生する水素や塩素ガスに基づく泡による電気抵
抗を極力減らせる為、従来より一層低電圧で電解
し得る手段として優れた方法である。 この方法における電極は、イオン交換膜の表面
に直接結合し、埋め込むように設けられ、そして
膜と電極との接触界面で電解により発生したガス
は電極から容易に離脱し、且電解液が浸透し得る
ようにガス及び液透過性にされている。 この様な多孔質電極は、通常陽極や陰極として
の活性粒子と、これを結合する物質、更に好まし
くは黒鉛その他の導電材料が均一に混合され、薄
層状に成形されている。 しかしながら、本発明者の検討によると、この
様に電極を直接イオン交換膜に結合せしめると、
例えば陽極の場合、陰極室から逆拡散する水酸イ
オンと接触する為、従来の耐塩素性と共に耐アル
カリ性が要求され、必然的に特殊、高価な材質を
選ばねばならない。 又、電極とイオン交換膜とが結合されている場
合には、そこで電極反応に伴なつてガスが発生す
る為、陽イオン交換膜に膨れ等の現象が生起し、
膜性能に劣化を生じ、長期にわたり、安定した操
業が期待出来なくなる虞れのあることが判明し
た。 本発明者は、これらの点に鑑み、出来るだけ低
電圧で塩化アルカリ水溶液を電解して苛性アルカ
リを得る手段を見出すことを目的として種種研
究、検討した結果、イオン交換膜によつて仕切ら
れた陽極室と陰極室とを有する電解槽の該陽極室
に塩化アルカリ水溶液を導入して電解し、陰極室
に苛性アルカリを製造する方法において、イオン
交換膜の陰極室側面にガス及び液透過性の電極活
性を有しない多孔層を形成し、該多孔層を介して
陰極を配置せしめ、且つ前記塩化アルカリ水溶液
中にPH1〜5にて水酸化物を形成しうる金属又は
金属イオンを添加して陽極室側に面したイオン交
換膜面に金属の水酸化物の薄層を形成、存在せし
めて電解を実施することにより、前記目的を達成
し得ることを見出した。 そして、本発明に従うと、特定のイオン交換基
の種類と、イオン交換基濃度とを有するイオン交
換膜を用いる際には、例えば特公昭52−38519号
公報においては、障害になるとされている多価陽
イオンのうち、特定の種類のものは、これをむし
ろ積極的に外部から添加せしめ、逆にこれと化合
物を形成させる為のみに用いられる燐酸等の陰イ
オンは、外部から加えることなく、電解電圧を効
果的に低下せしめることが出来、しかも電流効率
の何らの低下も来たさないと云う意外な事実が見
出された。 又、本発明によると、陰極は、前記電極活性を
有しないガス及び液透過性の多孔質層を介して配
置されるので、膜と直接に接触することがない。
従つて、電解時に発生するガスは、イオン交換膜
と電極との接触界面で発生しないので、ガスの発
生に基づくイオン交換膜の膨れが生ずることがな
い。又、陽極はイオン交換膜と直接に接触する必
要がないので、大なる耐アルカリ性は要求され
ず、陽極材質の選択の幅が広く出来る。 本発明において、イオン交換膜面に形成される
ガス及び液透過性の電極活性を有しない多孔質層
としては、これを介して配置される陰極より水素
過電圧の高い物質、例えば非導電性物質が採用さ
れる。かゝる性質を満足する限り如何なる材質か
ら形成してもよいが、耐触性からして好ましく
は、周期律―A族、―B族、―B族、―
B族、鉄族の金属、更には、銀、ベリリウム、ア
ルミニウム、ガリリウム、インジウム、イツトリ
ウム、アンチモン、ビスマス、セレン、マンガン
又はランタン、セリウム、トリウムなど希土類元
素等の酸化物、水酸化物、窒化物、炭化物の単独
或は二種類以上の混合物が挙げられる。 そして、これらのうち、チタン、ジルコニウ
ム、ニオブ、タンタル、バナジウム、マンガン、
モリブデン、スズ、アンチモン、タングステン、
ビスマスの酸化物、水酸化物、窒化物、炭化物を
採用する場合には、長期にわたり安定した性能が
得られるので特に好ましい。 これらの材料を用いて、膜面に多孔質層を形成
するには、該材料の粉末乃至粒状体を、好ましく
はポリテトラフルオロエチレン等の含弗素重合体
の懸濁液によつて結合することにより達成され
る。この場合用いられる含弗素重合体の含有量
は、通常1.5〜50重量%、特に2.0〜30重量%が好
ましい。又、必要に応じ、両者の混合を均一にす
る為、適宜な界面活性剤を加えたり、その他造孔
剤等の添加物を加えることが出来る。多孔質中に
おける前記電極活性を有さない物質の含有量は、
0.01〜30mg/cm2、特に0.1〜15mg/cm2が好まし
い。 これら多孔質層のイオン交換膜面への形成は、
これを介して配置される電極が、電極粒子を含む
多孔質層である場合、実質上これと同様に行なわ
れる。即ち、特開昭54−112398号公報に記載され
た方法と同様に調製され、且加熱加圧によつて膜
面に結合され、好ましくは一部が埋め込まれる。
しかし、多孔質層が自己支持性を有する場合に
は、必ずしも膜面に一体に結合される必要はな
く、単なる接触であつてもよい。膜面に形成され
る多孔質層は、平均細孔径0.01〜2000μ、多孔率
10〜99%を有するのが適当である。これら物性が
前記範囲を逸脱する場合には、物質移動が阻害さ
れたり、多孔質層を付着させる効果を低減するの
で好ましくない。そして、これら範囲のうち、平
均細孔径0.1〜1000μ、多孔率20〜95%を採用す
る場合には、本発明の所期の目的を長期にわたり
安定して継続し得るので特に好ましい。 多孔質層の厚さは、これを形成する材質や上記
物性により厳密には決定されるが、一般に0.1〜
300μ、好ましくは1〜100μを採用するのが適当
である。厚みが前記範囲を逸脱すると、本発明の
目的が十分に達成されなかつたり、多孔質層を通
してガスの離脱や電解液の移動が困難となる虞れ
があるので好ましくない。 本発明において、上記多孔質層を介して配置さ
れる陰極としては、多孔板、網又はエキスパンデ
ツトメタル等の空隙性の電極、又は陰極活性を有
するガス及び液透過性の多孔質層から成る電極が
何れも使用出来る。空隙性又は多孔質層の何れの
陰極を用いる場合も、その材質は、水素過電圧の
低いものが選ばれる。例えば、白金族金属やその
合金及びこれら金属や合金の導電性酸化物、或は
鉄族金属等が用いられる。白金族金属としては、
白金、ロジウム、ルテニウム、パラジウム、イリ
ジウムが例示され、又、鉄族金属としては、鉄、
コバルト、ニツケル、ラネーニツケル、安定化ラ
ネーニツケルが例示される。 一方、陰極がガス及び液透過性の多孔質体から
構成される場合には、例えば、特開昭54−112398
号公報に記載された多孔性を有する陰極を得る場
合と同様に行なわれる。即ち、前記陰極形成物質
の粉末乃至粒状物を、必要に応じ黒鉛等の導電性
物質や造孔剤等と共にポリテトラフルオロエチレ
ン等の含弗素重合体から成る結合剤が用いられ、
薄層状に形成される。 一方、陽極は、その材質及び形状共に従来のイ
オン交換膜法による塩化アルカリ水溶液の電解に
用いられているそれらと同様であり、又、イオン
交換膜と適当な間隔が保持されて用いられる。 次に、本発明に用いられるイオン交換膜として
は、例えばカルボキシル基、スルホン酸基、ホス
ホン酸基、フエノール性水酸基等の陽イオン交換
基を含有する重合体から成り、かかる重合体とし
ては、含弗素重合体を採用するのが特に好まし
い。イオン交換基含有の含弗素重合体としては、
例えばテトラフルオロエチレン、クロロトリフル
オロエチレン等のビニルモノマーとカルボン酸、
スルホン酸、燐酸基等のイオン交換基を有するパ
ーフルオロのビニルモノマーとの共重合体が好ま
しい。 又、トリフルオロスチレンの膜状重合体にスル
ホン酸基等のイオン交換基を導入したもの等も使
用し得る。 そして、これらのうち夫々以下の構造を有する
重合体を用いる場合には、比較的高い電流効率
で、しかも低い電解電圧で高純度の苛性アルカリ
を得ることが出来るので、本発明に用いられる陽
イオン交換膜としては特に好ましい。 ここでXはF,Cl,H又は−CF3であり、X′は
X又はCF3(CF2)mであり、mは1〜5であ
り、Yは次のものから選ばれる。 (―CF2)―x―A,―O(―CF2)―x―A,
The present invention relates to a method for producing caustic alkali, and particularly to a method for producing caustic alkali by electrolyzing an aqueous alkali chloride solution at low voltage using an ion exchange membrane. Instead of using asbestos as a diaphragm to obtain caustic alkali by electrolyzing an aqueous alkali chloride solution using a diaphragm method, several methods have been proposed that use ion exchange membranes to obtain caustic alkali with higher purity and concentration. ing. On the other hand, energy conservation has been progressing worldwide in recent years, and from this point of view, in this type of technology, it is desired to reduce the electrolysis voltage as much as possible. Various proposals have been made as means for lowering the electrolytic voltage, such as considering the material, composition, shape, etc. of the anode and cathode, or specifying the composition of the ion exchange membrane used and the type of ion exchange group. . Although all of these methods have certain effects, most of them have an upper limit where the concentration of the caustic alkali obtained is not so high.
If this value is exceeded, the electrolytic voltage will suddenly increase, the current efficiency will decrease, or the sustainability and durability of the electrolytic voltage drop phenomenon will be poor. In addition, in the production of caustic alkali using an ion exchange membrane having a sulfonic acid group as an ion exchange group, polyvalent cations such as calcium ions remaining as impurities in the aqueous alkali chloride solution that is the electrolyte are A method has been proposed for obtaining caustic alkali with high current efficiency and low voltage by adding a compound containing an anion such as a phosphate group that can form an insoluble gel. (Refer to Japanese Patent Publication No. 52-38519.) However, as clearly stated in the above publication, this method prevents polyvalent cations contained as impurities in the aqueous alkali chloride solution from penetrating into the ion exchange membrane. By preventing the deterioration of the membrane, such as preventing the mobility of alkali metal ions from being inhibited and preventing the formation of cracks in the membrane,
By maintaining the initial performance of the membrane, a decrease in current efficiency and an increase in electrolytic voltage are prevented, and therefore, it is not an active means that necessarily enables electrolysis at low voltage. Furthermore, recently, on the surface of fluorine-containing cation exchange membrane,
A method has been proposed in which an aqueous alkali chloride solution is electrolyzed by bringing gas and liquid permeable anodes and cathodes into close contact to obtain caustic alkali. (Refer to Japanese Patent Application Laid-open No. 54-112398.) This method eliminates the electrical resistance caused by the electrolyte, which was previously thought to be unavoidable in this type of technology.
This is an excellent method for electrolysis at a lower voltage than conventional methods, as it can minimize the electrical resistance caused by bubbles generated from hydrogen and chlorine gas. The electrode in this method is directly bonded to and embedded in the surface of the ion exchange membrane, and the gas generated by electrolysis at the contact interface between the membrane and the electrode easily leaves the electrode, and the electrolyte permeates through it. It is made permeable to gases and liquids. Such porous electrodes are usually formed into a thin layer by uniformly mixing active particles as an anode or a cathode with a substance that binds them, preferably graphite or other conductive material. However, according to the inventor's study, when the electrode is directly bonded to the ion exchange membrane in this way,
For example, in the case of an anode, since it comes into contact with hydroxide ions that diffuse back from the cathode chamber, it is required to have alkali resistance as well as the conventional chlorine resistance, and a special and expensive material must necessarily be selected. In addition, when the electrode and ion exchange membrane are combined, gas is generated as a result of the electrode reaction, causing phenomena such as swelling in the cation exchange membrane.
It was found that membrane performance deteriorated and there was a risk that stable operation could not be expected for a long period of time. In view of these points, the present inventor conducted various research and examinations with the aim of finding a means to obtain caustic alkali by electrolyzing an aqueous alkali chloride solution at as low a voltage as possible. In a method of introducing an aqueous alkali chloride solution into the anode chamber of an electrolytic cell having an anode chamber and a cathode chamber and electrolyzing it to produce caustic alkali in the cathode chamber, a gas- and liquid-permeable membrane is provided on the side of the cathode chamber of the ion exchange membrane. A porous layer having no electrode activity is formed, a cathode is disposed through the porous layer, and a metal or metal ion capable of forming a hydroxide at pH 1 to 5 is added to the aqueous alkali chloride solution to form an anode. It has been found that the above object can be achieved by forming and allowing a thin layer of metal hydroxide to exist on the surface of the ion exchange membrane facing the chamber and performing electrolysis. According to the present invention, when using an ion exchange membrane having a specific type of ion exchange group and concentration of ion exchange groups, for example, in Japanese Patent Publication No. 52-38519, it is necessary to Among valent cations, certain types of cations are rather actively added from the outside, while anions such as phosphoric acid, which are used only to form compounds with them, are not added from the outside. It has been surprisingly discovered that the electrolysis voltage can be effectively lowered without causing any decrease in current efficiency. Further, according to the present invention, the cathode is disposed through the gas- and liquid-permeable porous layer that does not have electrode activity, so that it does not come into direct contact with the membrane.
Therefore, gas generated during electrolysis is not generated at the contact interface between the ion exchange membrane and the electrode, so that the ion exchange membrane does not bulge due to gas generation. Furthermore, since the anode does not need to be in direct contact with the ion exchange membrane, great alkali resistance is not required, allowing a wide range of choices for the anode material. In the present invention, the porous layer that is permeable to gas and liquid and has no electrode activity formed on the surface of the ion exchange membrane is made of a material that has a higher hydrogen overvoltage than the cathode disposed through the layer, such as a non-conductive material. Adopted. It may be formed from any material as long as it satisfies these properties, but from the viewpoint of corrosion resistance, it is preferably made of periodic law group A, group B, group B, and
Oxides, hydroxides, and nitrides of group B and iron group metals, as well as rare earth elements such as silver, beryllium, aluminum, gallium, indium, yttrium, antimony, bismuth, selenium, manganese, or lanthanum, cerium, and thorium. , carbide may be used alone or in a mixture of two or more types. Among these, titanium, zirconium, niobium, tantalum, vanadium, manganese,
molybdenum, tin, antimony, tungsten,
It is particularly preferable to use bismuth oxide, hydroxide, nitride, or carbide because stable performance can be obtained over a long period of time. In order to form a porous layer on the membrane surface using these materials, powders or granules of the materials are preferably bonded with a suspension of a fluorine-containing polymer such as polytetrafluoroethylene. This is achieved by The content of the fluorine-containing polymer used in this case is usually 1.5 to 50% by weight, particularly preferably 2.0 to 30% by weight. Further, if necessary, in order to make the mixture of the two uniform, an appropriate surfactant or other additives such as a pore-forming agent may be added. The content of the substance having no electrode activity in the porous material is
0.01 to 30 mg/cm 2 , particularly 0.1 to 15 mg/cm 2 is preferred. The formation of these porous layers on the ion exchange membrane surface is
When the electrode disposed through this is a porous layer containing electrode particles, the procedure is substantially the same. That is, it is prepared in the same manner as the method described in JP-A-54-112398, and is bonded to the membrane surface by heating and pressing, preferably partially embedded.
However, if the porous layer has self-supporting properties, it does not necessarily need to be integrally bonded to the membrane surface, and may simply be in contact with it. The porous layer formed on the membrane surface has an average pore diameter of 0.01~2000μ and a porosity of
It is suitable to have a content of 10 to 99%. When these physical properties deviate from the above range, it is not preferable because mass transfer is inhibited or the effect of attaching the porous layer is reduced. Among these ranges, it is particularly preferable to use an average pore diameter of 0.1 to 1000 μm and a porosity of 20 to 95%, since the intended purpose of the present invention can be stably maintained over a long period of time. The thickness of the porous layer is strictly determined by the material forming it and the above-mentioned physical properties, but it is generally 0.1~
It is appropriate to employ 300μ, preferably 1 to 100μ. If the thickness deviates from the above range, the object of the present invention may not be fully achieved or it may become difficult for gas to escape or for the electrolyte to move through the porous layer, which is not preferable. In the present invention, the cathode disposed through the porous layer is composed of a porous electrode such as a porous plate, a mesh, or an expanded metal, or a gas- and liquid-permeable porous layer having cathodic activity. Any electrode can be used. When using either a porous cathode or a porous cathode, the material is selected to have a low hydrogen overvoltage. For example, platinum group metals, alloys thereof, conductive oxides of these metals and alloys, or iron group metals are used. As platinum group metals,
Examples include platinum, rhodium, ruthenium, palladium, and iridium, and iron group metals include iron,
Examples include cobalt, nickel, Raney nickel, and stabilized Raney nickel. On the other hand, when the cathode is composed of a porous material that is permeable to gas and liquid, for example,
This is carried out in the same manner as in the case of obtaining a porous cathode as described in the above publication. That is, the powder or granules of the cathode-forming material are combined with a binder made of a fluorine-containing polymer such as polytetrafluoroethylene together with a conductive material such as graphite, a pore-forming agent, etc. as necessary, and
Formed in a thin layer. On the other hand, the material and shape of the anode are similar to those used in the electrolysis of aqueous alkali chloride solutions using the conventional ion exchange membrane method, and an appropriate distance from the ion exchange membrane is maintained. Next, the ion exchange membrane used in the present invention is made of a polymer containing a cation exchange group such as a carboxyl group, a sulfonic acid group, a phosphonic acid group, or a phenolic hydroxyl group. Particular preference is given to employing fluoropolymers. As a fluorine-containing polymer containing an ion exchange group,
For example, vinyl monomers such as tetrafluoroethylene and chlorotrifluoroethylene and carboxylic acids,
A copolymer with a perfluorinated vinyl monomer having an ion exchange group such as a sulfonic acid or phosphoric acid group is preferred. Furthermore, a film-like polymer of trifluorostyrene into which an ion exchange group such as a sulfonic acid group is introduced may also be used. Among these, when using polymers having the following structures, high purity caustic alkali can be obtained with relatively high current efficiency and low electrolytic voltage. It is particularly preferred as an exchange membrane. Here, X is F, Cl, H or -CF3 , X' is X or CF3 ( CF2 )m, m is 1 to 5, and Y is selected from the following. (-CF 2 )- x -A, -O (-CF 2 )- x -A,

【式】【formula】

x,y,zは共に0〜10であり、Z,Rfは−
F又はC1〜10のパーフルオロアルキル基から選
ばれる。又、Aは−SO3M,―COOM又は加水分
解によりこれらの基に転化せしめ得る―SO2F,
―CN,―COF又は―COORであり、Mは水素又
はアルカリ金属、RはC1〜10のアルキル基であ
る。 本発明において用いられる陽イオン交換膜は、
イオン交換容量が0.5〜4.0ミリ当量/グラム乾燥
樹脂、特に0.8〜2.0ミリ当量/グラム乾燥樹脂を
有するのが好ましい。 かかるイオン交換容量を与える為、上記M及び
Nの構造を有する重合体から成るイオン交換膜の
場合、好ましくはNの重合単位が、1〜40モル
%、特に3〜25モル%であるのが適当である。 又、本発明に用いられる陽イオン交換膜は、必
ずしも一種類の重合体から形成される必要はな
く、又一種類のイオン交換基だけを有する必要も
ない。例えばイオン交換基として、陰極側がより
小さい二種類の重合体の積層膜、陰極側がカルボ
ン酸基等の弱酸性交換基で、陽極側がスルホン酸
基等の強酸性交換基をもつイオン交換膜も用いら
れる。 これらのイオン交換膜は、公知の種々の方法で
製造される。又、これらのイオン交換膜は、必要
に応じ、好ましくはポリテトラフルオロエチレン
等の含弗素重合体から成る布、網等の織物、不織
布又は金属製のメツシユ、多孔体等で補強するこ
とが出来る。 又、イオン交換膜の厚さは、20〜500μ、好ま
しくは50〜400μが採用される。 これらイオン交換膜の表面に、前記電極活性を
有さない多孔層を形成するには、イオン交換膜が
有するイオン交換基の分解を招かないように、適
宜なイオン交換基の形態、例えばカルボン酸基の
場合には、そのエステル型で、スルホン酸基の場
合には、―SO2F型で、圧力及び熱の作用によつ
て結合される。 次に、本発明において、イオン交換膜の陽極側
の面には、金属の水酸化物を含む薄層が形成され
るように、陽極室に供給される塩化アルカリ水溶
液中にPH1〜5にて水酸化物を形成しうる金属又
は金属イオンが添加される。かかる水酸化物を形
成する為に用いられる金属としては、例えば、
鉄、ニツケル、コバルトから成る鉄族金属、チタ
ニウム、ジルコニウム、ハフニウムから成る―
B族金属、アルミニウム、ルテニウム、パラジウ
ム、ベリリウム、セリウム、錫、ニオブ、銅、ス
カンジウム、イツトリウム等の金属が挙げられ、
これらは適宜一種或は二種以上を用いることが出
来る。そして、この様な金属は、用いられるイオ
ン交換膜の有するイオン交換基がカルボン酸基、
特に前記した好ましい含弗素重合体構造を有する
イオン交換膜が用いられる場合には、これら金属
を粉体として陽極液中に添加するのみで、低電圧
電解を効果的に実施し得る水酸化物乃至酸化物の
薄層を陽極室に面したイオン交換膜面に形成せし
めることが出来る。かかる以外の陽イオン交換膜
に対しては、前記と同様に陽極室に金属粉末を添
加することにより、本発明の目的を一応達成し得
るが、更に、例えばこれら金属の燐酸塩、塩化
物、硫酸塩、水酸化物、炭酸塩、硝酸塩等の陰イ
オンを含む化合物、或はこれら金属と反応して化
合物を形成するような、例えば燐酸ソーダ等の有
害とならない他の陽イオンとの化合物を添加する
と有効な場合がある。 かかる金属又は金属イオンの塩化アルカリ水溶
液中への添加により、イオン交換膜面に形成され
る金属水酸化物薄層の存在量は、厳密には用いら
れる金属の種類により多少異なるが、通常陽イオ
ン交換膜1cm2当り金属が0.005〜50mg程度存在せ
しめるのが適当である。 膜面における存在量が前記範囲に満たない場合
には、安定した低電圧での電解操業及びその持続
性が不十分となり、逆に前記範囲を超える場合に
は、最早やそれ以上の効果を期待し得ず、逆に電
気抵抗が高くなり、本発明の所期の目的を達成し
得なくなる虞れがあるので好ましくない。そし
て、これら範囲のうち、陽イオン交換膜1cm2当り
金属が0.01〜20mgを採用する場合には、長期にわ
たり安定して低電圧での電解操業を期待し得るの
で特に好ましい。 次に、陽イオン交換膜面に前記薄層を形成せし
める手段は、通常陽極室へ導入される被電解液で
ある塩化アルカリ水溶液中に該層を形成し得る前
記金属乃至化合物を添加して、塩化アルカリの電
解を実施することにより達成される。 又、前記薄層を形成せしめる金属や化合物は、
これを電解操業中継続して供給し続ける必要は必
ずしもなく、前述の如き存在量が維持される限
り、電解の初期のみ、或は断続的に供給すること
が出来る。 更に、この様な薄層を存在せしめるには、陽極
液である塩化アルカリ水溶液のPHが大きく関与す
る。 PHは、存在せしめようとする薄層の種類及び塩
化アルカリ水溶液の種類等により厳密には決定さ
れるが、一般にはPH1〜7程度が適当である。 PHが前記範囲より低い場合には、有効に薄層が
形成されず、逆に前記範囲より高い場合には、イ
オン交換膜面への薄層の付着強度が不十分とな
り、電圧低減効果が阻害される虞れがあるので何
れも好ましくない。 そして、前記PH範囲のうち、PH1〜5を採用す
る場合には、有効に薄層が形成され、安定して低
電圧での電解操業を持続し得るので特に好まし
い。 本発明において塩化アルカリ水溶液の電解を行
なうその他の条件としては、適宜公知の条件が採
用される。例えば、陽極室には2.5〜4.5Nの塩化
アルカリ水溶液が供給され、陰極室には水又は稀
釈された水酸化アルカリが供給され、好ましくは
80〜120℃において、電流密度10〜50A/dm2
おいて電解される。 本発明方法が採用されると、通常実施されてい
るイオン交換膜法を用いた苛性アルカリの製造法
に比して0.1〜0.9V程度電解電圧が低減される。 本発明において電解に供される塩化アルカリと
しては、通常食塩であるが、この他塩化カリウ
ム、塩化リチウム等のアルカリ金属の塩化物を適
宜用い得る。 実施例 1 粒径44μ以下の酸化チタンの粉末73mgを水50c.c.
中に懸濁させ、これにポリテトラフロオロエチレ
ン(PTFE)の懸濁液(デユポン社商品名テフロ
ン30J)をPTFEが7.3mgになるように加え、これ
に非イオン系界面活性剤(ローム&ハース社商品
名トライトンX―100)を一滴滴下後、永冷下で
撹拌後、多孔性PTFE膜上に吸引過し、多孔質
層を得た。該薄層は厚さ31μ、多孔率75%を有
し、酸化チタンが5mg/cm2含まれていた。 次にこの薄層をイオン交換容量が1.45meq/g
樹脂、厚さ250μを有するテトラフロオロエチレ
ンとCF2=CFO(CF23COOCH3の共重合体から
成るイオン交換膜の片面に、多孔性PTFE膜がイ
オン交換膜に対し、外側になるように積層し、温
度160℃、圧力60Kg/cm2の条件で加圧し酸化チタ
ンの薄層をイオン交換膜に付着させ、その後
PTFE膜を取り除き、イオン交換膜の片面に酸化
チタンの多孔層が密着されたイオン交換膜を得
た。 該イオン交換膜を90℃25重量%の苛性ソーダ水
溶液中に16時間浸漬して加水分解した。 その後イオン膜の酸化チタンの側に長径5mm短
径2.5mmのニツケルエクスパンドメタルを、反対
側に酸化ルテニム、酸化イリジウム、酸化チタン
を3:1:4の割合で含む被覆層を有する長径5
mm、短径2.5mmのチタンエクスパンドメタルを加
圧接触させた後、チタンエクスパンドメタル側を
陽極とし、ニツケルエクスパンドメタル側を陰極
として、該イオン構造体を使用して電解槽を組み
立てた。そして電解槽の陽極室に5Nの食塩水に
鉄が2mg/l含まれるように塩化第2鉄を溶解さ
せて供給し、陽極室の食塩水溶液を4Nの濃度PH
=2に保ち、また陰極室に水を供給して陰極液中
の苛性ソーダ濃度を35重量%に保ちつつ90℃で電
解を行い、以下の結果を得た。 電流密度(A/dm2) 槽電圧(V) 20 3.02 40 3.41 また、20A/dm2の電流密度で電解を30日間行
つたところ、槽電圧は3.03Vであり、電圧の上昇
は実質的に認められなかつた。またこの間の苛性
ソーダ生成の電流効率は93%と、一定の値を示し
ていた。 上記電解後のイオン交換膜を分析したところ、
膜面1cm2当り、0.140mgの鉄が検出され、鉄は水
酸化物であつた。 比較例 1 実施例1おいて、鉄を含まない食塩水を供給し
た以外は、実施例1と全く同様にして電解を行
い、以下の結果を得た。 電流密度(A/dm2) 槽電圧(V) 20 3.23 40 3.69 実施例 2 実施例1において、5Nの食塩水にジルコニウ
ムが2mg/l含まれるように塩化ジルコニルを溶
解させて陽極室に供給し、陽極液のPHを4に保つ
た以外は実施例1と全く同様な方法条件で電解を
行い、以下の結果を得た。 電流密度(A/dm2) 槽電圧 20 3.05 40 3.43 また、20A/dm2の電流密度で電解を30日間行
つたところ、槽電圧は3.06Vであり、電圧の上昇
は実質的に認められなかつた。またこの間の苛性
ソーダ生成の電流効率は94%と一定の値を示して
いた。 上記電解後のイオン交換膜を分析したところ、
膜面1cm2当り、0.158mgのジルコニウムが検出さ
れ、ジルコニウムは水酸化物を形成していた。 実施例 3 実施例1において、イオン膜の陰極側に酸化チ
タンの代りに、五酸化ニオブを2mg/cm2の割合で
含む多孔質層を付着させ、さらに供給塩水中に
Hcl添加をせず、PH4.5に保持するとともに、金属
アルミニウムの粉末を1mg/lになる様連続添加
しつつ電解を行ない、14日間継続後、アルミニウ
ムの供給を停止したこと以外は実施例1と全く同
様にして、以下の結果を得た。 電流密度(A/dm2) 槽電圧(V) 20 3.07 40 3.40 また、40A/dm2で電解を継続した場合の苛性
ソーダ生成の電流効率は93.0%であり、115日運
転後、膜1cm2当り、0.183mgのアルミニウムが検
出された。 実施例 4 実施例1において、イオン膜の陰極側に酸化チ
タンの代りに酸化鉄を1mg/cm2の割合で含む多孔
質層を付着させ、さらに供給塩水中にHcl添加せ
ずPH4.5に保持するとともに、銅粉末を1mg/l
になる様連続添加しつつ電解を行ない、14日間継
続後、銅の供給を停止したこと以外は実施例1と
全く同様にして、以下の結果を得た。 電流密度(A/dm2) 槽電圧(V) 20 3.06 40 3.38 また、40A/dm2で電解を継続した場合の苛性
ソーダ生成の電流効率は93.5%であり、109日運
転後、膜1cm2当り0.245mgの銅が検出された。
x, y, z are all 0 to 10, and Z, Rf are -
selected from F or C1-10 perfluoroalkyl groups. Also, A is -SO 3 M, -COOM or -SO 2 F, which can be converted into these groups by hydrolysis.
-CN, -COF or -COOR, M is hydrogen or an alkali metal, and R is a C1-10 alkyl group. The cation exchange membrane used in the present invention is
It is preferred to have an ion exchange capacity of 0.5 to 4.0 meq/g dry resin, especially 0.8 to 2.0 meq/g dry resin. In order to provide such an ion exchange capacity, in the case of an ion exchange membrane made of a polymer having the above-mentioned M and N structures, the polymerized units of N are preferably 1 to 40 mol%, particularly 3 to 25 mol%. Appropriate. Further, the cation exchange membrane used in the present invention does not necessarily need to be formed from one type of polymer, nor does it need to have only one type of ion exchange group. For example, as an ion exchange group, an ion exchange membrane can be used in which the cathode side has a weakly acidic exchange group such as a carboxylic acid group and the anode side has a strongly acidic exchange group such as a sulfonic acid group. It will be done. These ion exchange membranes are manufactured by various known methods. In addition, these ion exchange membranes can be reinforced, if necessary, with a cloth, a woven fabric such as a net, a nonwoven fabric or a metal mesh, a porous body, etc., preferably made of a fluorine-containing polymer such as polytetrafluoroethylene. . Further, the thickness of the ion exchange membrane is 20 to 500μ, preferably 50 to 400μ. In order to form a porous layer having no electrode activity on the surface of these ion exchange membranes, an appropriate form of ion exchange group, such as a carboxylic acid In the case of radicals, they are bonded in their ester form, and in the case of sulfonic acid groups, in their --SO 2 F form, by the action of pressure and heat. Next, in the present invention, the alkali chloride aqueous solution supplied to the anode chamber is heated to pH 1 to 5 so that a thin layer containing metal hydroxide is formed on the anode side surface of the ion exchange membrane. A metal or metal ion capable of forming a hydroxide is added. Examples of metals used to form such hydroxides include:
Iron group metals consisting of iron, nickel, and cobalt; consisting of titanium, zirconium, and hafnium.
Group B metals include metals such as aluminum, ruthenium, palladium, beryllium, cerium, tin, niobium, copper, scandium, and yttrium.
These can be used alone or in combination of two or more. In addition, in such metals, the ion exchange group of the ion exchange membrane used is a carboxylic acid group,
Particularly when an ion exchange membrane having the above-mentioned preferred fluorine-containing polymer structure is used, hydroxides or hydroxides that can effectively carry out low voltage electrolysis simply by adding these metals as powder to the anolyte. A thin layer of oxide can be formed on the side of the ion exchange membrane facing the anode chamber. For cation exchange membranes other than those mentioned above, the object of the present invention can be achieved to some extent by adding metal powder to the anode chamber in the same manner as described above, but in addition, for example, phosphates, chlorides, Compounds containing anions, such as sulfates, hydroxides, carbonates, and nitrates, or compounds with other non-hazardous cations, such as sodium phosphate, that react with these metals to form compounds. It may be effective to add it. The amount of metal hydroxide thin layer formed on the ion exchange membrane surface by adding such metals or metal ions to an aqueous alkali chloride solution varies somewhat depending on the type of metal used, but usually cations It is appropriate for the metal to be present in an amount of about 0.005 to 50 mg per 1 cm 2 of the exchange membrane. If the amount present on the membrane surface is less than the above range, stable low-voltage electrolysis operation and its sustainability will be insufficient; on the other hand, if it exceeds the above range, it is no longer possible to expect better effects. On the contrary, the electrical resistance may become high, and the intended purpose of the present invention may not be achieved, which is not preferable. Among these ranges, it is particularly preferable to adopt a metal content of 0.01 to 20 mg per cm 2 of the cation exchange membrane, since stable electrolysis operation at low voltage can be expected over a long period of time. Next, the means for forming the thin layer on the surface of the cation exchange membrane is to add the metal or compound capable of forming the layer to an aqueous alkali chloride solution, which is an electrolyte solution, which is normally introduced into the anode chamber. This is achieved by carrying out electrolysis of alkali chloride. Further, the metal or compound forming the thin layer is
It is not necessarily necessary to continuously supply this during electrolysis operation, and as long as the above-mentioned amount is maintained, it can be supplied only at the beginning of electrolysis or intermittently. Furthermore, in order for such a thin layer to exist, the pH of the aqueous alkali chloride solution, which is the anolyte, plays a large role. The pH is strictly determined depending on the type of thin layer to be made and the type of aqueous alkali chloride solution, but generally a pH of about 1 to 7 is appropriate. If the pH is lower than the above range, a thin layer will not be formed effectively, and if it is higher than the above range, the adhesion strength of the thin layer to the ion exchange membrane surface will be insufficient, inhibiting the voltage reduction effect. Both are undesirable as there is a risk of being exposed. Of the PH range, it is particularly preferable to use PH 1 to 5 because a thin layer can be effectively formed and electrolysis operation can be stably maintained at low voltage. As other conditions for electrolyzing an aqueous alkali chloride solution in the present invention, known conditions may be employed as appropriate. For example, the anode chamber is supplied with a 2.5-4.5N aqueous alkali chloride solution, and the cathode chamber is supplied with water or diluted alkali hydroxide, preferably
Electrolysis is carried out at a temperature of 80-120° C. and a current density of 10-50 A/dm 2 . When the method of the present invention is employed, the electrolytic voltage is reduced by about 0.1 to 0.9 V compared to the commonly practiced method for producing caustic alkali using an ion exchange membrane method. In the present invention, the alkali chloride to be subjected to electrolysis is usually common salt, but other alkali metal chlorides such as potassium chloride and lithium chloride may be used as appropriate. Example 1 73mg of titanium oxide powder with a particle size of 44μ or less was added to 50c.c. of water.
To this was added a suspension of polytetrafluoroethylene (PTFE) (trade name: Teflon 30J, manufactured by Dupont) so that the amount of PTFE was 7.3 mg, and to this was added a nonionic surfactant (ROHM& One drop of TRITON The thin layer had a thickness of 31μ, a porosity of 75%, and contained 5mg/cm 2 of titanium oxide. Next, this thin layer has an ion exchange capacity of 1.45 meq/g.
A porous PTFE membrane is placed on one side of an ion exchange membrane made of a copolymer of tetrafluoroethylene and CF 2 = CFO (CF 2 ) 3 COOCH 3 with a thickness of 250μ, and a porous PTFE membrane is placed on the outside of the ion exchange membrane. The thin layer of titanium oxide is attached to the ion exchange membrane by applying pressure at a temperature of 160℃ and a pressure of 60Kg/ cm2 , and then
The PTFE membrane was removed to obtain an ion exchange membrane in which a porous layer of titanium oxide was adhered to one side of the ion exchange membrane. The ion exchange membrane was immersed in a 25% by weight aqueous sodium hydroxide solution at 90°C for 16 hours for hydrolysis. After that, on the titanium oxide side of the ion membrane, there is a nickel expanded metal with a major axis of 5 mm and a minor axis of 2.5 mm, and on the other side there is a coating layer containing ruthenium oxide, iridium oxide, and titanium oxide in a ratio of 3:1:4.
After bringing titanium expanded metal with a diameter of 2.5 mm into pressure contact, the ionic structure was used to assemble an electrolytic cell, with the titanium expanded metal side serving as an anode and the nickel expanded metal side serving as a cathode. Ferric chloride is dissolved and supplied to the anode chamber of the electrolytic cell so that 5N saline solution contains 2 mg/l of iron, and the saline solution in the anode chamber has a concentration of 4N PH.
Electrolysis was carried out at 90° C. while maintaining the concentration of caustic soda in the catholyte at 35% by weight by supplying water to the cathode chamber, and the following results were obtained. Current density (A/dm 2 ) Cell voltage (V) 20 3.02 40 3.41 Also, when electrolysis was carried out at a current density of 20 A/dm 2 for 30 days, the cell voltage was 3.03 V, and the increase in voltage was practically It wasn't recognized. Additionally, the current efficiency for caustic soda generation during this period remained constant at 93%. Analysis of the ion exchange membrane after the above electrolysis showed that
0.140 mg of iron was detected per 1 cm 2 of the membrane surface, and iron was a hydroxide. Comparative Example 1 Electrolysis was carried out in exactly the same manner as in Example 1, except that iron-free saline solution was supplied, and the following results were obtained. Current density (A/dm 2 ) Cell voltage (V) 20 3.23 40 3.69 Example 2 In Example 1, zirconyl chloride was dissolved in 5N saline solution so that it contained 2 mg/l of zirconium, and the solution was supplied to the anode chamber. Electrolysis was carried out under exactly the same conditions as in Example 1, except that the pH of the anolyte was kept at 4, and the following results were obtained. Current density (A/dm 2 ) Cell voltage 20 3.05 40 3.43 Furthermore, when electrolysis was carried out at a current density of 20 A/dm 2 for 30 days, the cell voltage was 3.06 V, with virtually no increase in voltage observed. Ta. During this period, the current efficiency for caustic soda production remained constant at 94%. Analysis of the ion exchange membrane after the above electrolysis showed that
0.158 mg of zirconium was detected per 1 cm 2 of the membrane surface, and the zirconium formed a hydroxide. Example 3 In Example 1, instead of titanium oxide, a porous layer containing niobium pentoxide at a ratio of 2 mg/cm 2 was attached to the cathode side of the ion membrane, and the porous layer was further added to the supplied brine.
Example 1 except that no HCl was added, the pH was maintained at 4.5, and electrolysis was performed while continuously adding metal aluminum powder to a concentration of 1 mg/l, and after 14 days, the supply of aluminum was stopped. In exactly the same manner, the following results were obtained. Current density (A/dm 2 ) Cell voltage (V) 20 3.07 40 3.40 In addition, the current efficiency of caustic soda production when electrolysis is continued at 40 A/dm 2 is 93.0%, and after 115 days of operation, the current efficiency for generating caustic soda per 1 cm 2 of membrane , 0.183mg of aluminum was detected. Example 4 In Example 1, a porous layer containing iron oxide at a ratio of 1 mg/cm 2 was attached to the cathode side of the ion membrane instead of titanium oxide, and the pH was adjusted to 4.5 without adding HCl to the supplied brine. Copper powder at 1mg/l
The following results were obtained in exactly the same manner as in Example 1, except that electrolysis was carried out while continuously adding copper so that the amount of copper was continuously added, and after 14 days, the supply of copper was stopped. Current density (A/dm 2 ) Cell voltage (V) 20 3.06 40 3.38 In addition, the current efficiency of caustic soda production when electrolysis is continued at 40 A/dm 2 is 93.5%, and after 109 days of operation, the current efficiency for generating caustic soda is 93.5 % . 0.245 mg of copper was detected.

Claims (1)

【特許請求の範囲】[Claims] 1 イオン交換膜によつて仕切られた陽極室と陰
極室とを有する電解槽の陽極室に塩化アルカリ水
溶液を導入して電解し、陰極室に苛性アルカリを
製造する方法において、イオン交換膜の陰極側側
面に、ガス及び液透過性の電極活性を有さない多
孔層を形成し、該多孔層を介して陰極を配置せし
め、且つ前記塩化アルカリ水溶液中にPH1〜5に
て水酸化物を形成しうる金属又は金属イオンを添
加して電解することを特徴とする苛性アルカリの
製造方法。
1. In a method of introducing an aqueous alkali chloride solution into the anode chamber of an electrolytic cell having an anode chamber and a cathode chamber separated by an ion exchange membrane and electrolyzing it to produce caustic alkali in the cathode chamber, the cathode of the ion exchange membrane A gas and liquid permeable porous layer having no electrode activity is formed on the side surface, a cathode is disposed through the porous layer, and hydroxide is formed in the aqueous alkali chloride solution at pH 1 to 5. 1. A method for producing caustic alkali, which comprises adding a metal or metal ion that can be used for electrolysis.
JP8283380A 1980-06-20 1980-06-20 Production of caustic alkali Granted JPS579887A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8283380A JPS579887A (en) 1980-06-20 1980-06-20 Production of caustic alkali

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8283380A JPS579887A (en) 1980-06-20 1980-06-20 Production of caustic alkali

Publications (2)

Publication Number Publication Date
JPS579887A JPS579887A (en) 1982-01-19
JPS625998B2 true JPS625998B2 (en) 1987-02-07

Family

ID=13785401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8283380A Granted JPS579887A (en) 1980-06-20 1980-06-20 Production of caustic alkali

Country Status (1)

Country Link
JP (1) JPS579887A (en)

Also Published As

Publication number Publication date
JPS579887A (en) 1982-01-19

Similar Documents

Publication Publication Date Title
US4062753A (en) Electrolysis method and apparatus
NO802980L (en) CLORAL CALCIUM PROCESS AND ELECTROLYTIC CELL WITH SOLID POLYMER ELECTROLYT.
JPH0116630B2 (en)
JPS607710B2 (en) Electrolysis method of alkali metal chloride using diaphragm electrolyzer
KR950000713B1 (en) Method of producing alkali metal hydroxide
JPS6259185B2 (en)
JPH0586971B2 (en)
JPS6223075B2 (en)
JPS62214189A (en) Dehalogenation of chloroacetic acid and bromoacetic acid
EP0039189B1 (en) Process for producing alkali metal hydroxide
JPS625998B2 (en)
JPS6120634B2 (en)
US4528077A (en) Membrane electrolytic cell for minimizing hypochlorite and chlorate formation
JPS5940231B2 (en) Method for producing alkali hydroxide
JPS6122035B2 (en)
JPS623236B2 (en)
JPS6223073B2 (en)
JPS6223076B2 (en)
JPS6221074B2 (en)
JP4447081B2 (en) Method for producing polysulfide
JP3112039B2 (en) How to restart the electrolytic cell
JPS58181879A (en) Halogen electrolysis manufacture
JPS6343473B2 (en)
JPS6214036B2 (en)
JPS63310987A (en) Electrochemical manufacture of fluorinated hydrocarbon