JPS6259831B2 - - Google Patents

Info

Publication number
JPS6259831B2
JPS6259831B2 JP54140564A JP14056479A JPS6259831B2 JP S6259831 B2 JPS6259831 B2 JP S6259831B2 JP 54140564 A JP54140564 A JP 54140564A JP 14056479 A JP14056479 A JP 14056479A JP S6259831 B2 JPS6259831 B2 JP S6259831B2
Authority
JP
Japan
Prior art keywords
signal
light emitting
check
time
predetermined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54140564A
Other languages
Japanese (ja)
Other versions
JPS5665270A (en
Inventor
Ichiro Urano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP14056479A priority Critical patent/JPS5665270A/en
Publication of JPS5665270A publication Critical patent/JPS5665270A/en
Publication of JPS6259831B2 publication Critical patent/JPS6259831B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は光学マーク読取装置等における光電系
に不良を検出する光電系チエツク回路に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a photoelectric system check circuit for detecting defects in a photoelectric system in an optical mark reading device or the like.

従来、光学マーク読取装置の多くは、発光源お
よび光電変換手段からなる光電系において、読み
取りの信頼度を上げるために、発光源が全く点灯
しないような固定障害を検出する光電系チエツク
回路が付いている。しかし一般的に光電系が固定
障害を発生する前に、応答性不良を発生するのが
普通で、しかもこの応答性不良により読み取りエ
ラーを発生する可能性が多分にある。しかし、従
来の光電系チエツク回路ではこの種の応答性不良
を検出出来ないと言う欠点があつた。
Conventionally, most optical mark reading devices have been equipped with a photoelectric system check circuit that detects a fixed failure, such as when the light source does not light up, in order to increase the reliability of reading in the photoelectric system, which consists of a light emitting source and a photoelectric conversion means. ing. However, in general, before a fixed failure occurs in a photoelectric system, poor responsiveness usually occurs, and there is a high possibility that a reading error will occur due to this poor responsiveness. However, conventional photoelectric check circuits have the disadvantage of not being able to detect this type of poor response.

本発明は光電系の応答性不良、固定障害を検出
できる光電系チエツク回路を提供するものであ
る。
The present invention provides a photoelectric system check circuit that can detect poor responsiveness and fixed failures in the photoelectric system.

本発明によれば、発光源と、この発光源を点灯
状態から滅灯したのち再び点灯させる電源制御信
号を発生しこの電源制御信号により前記発光源が
滅灯してから所定の時間の後に第1のチエツクタ
イミング信号を発生し前記電源制御信号により前
記発光源が点灯してから所定の時間の後に第2の
チエツクタイミング信号を発生させるタイミング
発生手段と、前記発光源の光を受けているときに
第1の状態となり受けていないときに第2の状態
となる整形信号を出力する光電変換手段と、前記
第1のチエツクタイミング信号が発生したときに
前記整形信号が第1の状態である場合に所定の信
号を出力する第1のチエツク手段と、前記第2の
チエツクタイミング信号が発生したときに前期整
形信号が第2の状態である場合に所定の信号を出
力する第2のチエツク手段とを含むことを特徴と
する光電系チエツク回路が得られる。
According to the present invention, a light emitting source and a power control signal are generated to turn the light emitting source off from a lighting state and then back on again, and the power source control signal causes the light emitting source to turn off after a predetermined period of time. timing generation means for generating a second check timing signal after a predetermined time after the light emitting source is turned on by the power supply control signal; and when receiving light from the light emitting source. a photoelectric conversion means for outputting a shaping signal which is in a first state when the signal is received and is in a second state when the signal is not received; and when the shaping signal is in the first state when the first check timing signal is generated. a first check means for outputting a predetermined signal when the second check timing signal is generated; and a second check means for outputting a predetermined signal if the first shaping signal is in a second state when the second check timing signal is generated. A photoelectric check circuit is obtained, which is characterized in that it includes the following.

次に本発明の実施例について図面を参照して説
明する。
Next, embodiments of the present invention will be described with reference to the drawings.

第1図はマークカード読取装置における本発明
の一実施例で、1はタイミング発生回路、2は電
源制御信号102によつて出力のオン・オフが可
能な電源回路、3は12入力のNAND回路、4は12
入力のOR回路、5と6は第1および第2のチエ
ツク手段であるフリツプフロツプ、11〜12は
発光源となる発光ダイオード、31〜42は受光
素子、51〜62は受光素子31〜42の信号1
11〜122を増巾・整形する増巾・整形回路で
ある。第2図にマークカード200のデータ禁止
エリア201である0カラムの位置を示す。
FIG. 1 shows an embodiment of the present invention in a mark card reading device, in which 1 is a timing generation circuit, 2 is a power supply circuit whose output can be turned on and off by the power supply control signal 102, and 3 is a 12-input NAND circuit. , 4 is 12
Input OR circuit, 5 and 6 are flip-flops as first and second check means, 11-12 are light emitting diodes serving as light emission sources, 31-42 are light-receiving elements, 51-62 are signals of the light-receiving elements 31-42. 1
This is a widening/shaping circuit that widens/shapes 11 to 122. FIG. 2 shows the position of the 0 column, which is the data prohibited area 201 of the mark card 200.

マーク読取装置にマークカード200がセツト
され、フイード命令によつてマークカード200
が送られ、リードステーシヨンまでデータ禁止エ
リア201である0カラムが来ると、カラス位置
検出回路(ここでは特に説明せず)によつてカラ
ム0信号101が、タイミング発生回路1に供給
される。タイミング発生回路1ではカラム0信号
101の立ち上がりを基準にして第3図に示すよ
うに、電源制御信号102を所定の時間だけ
“0”とし、チエツクタイミング信号103と1
04を発生する。ここで電源制御信号102の立
ち下がりからチエツクタイミング信号103の立
ち上がりまでの時間t1及び電源制御信号102の
立ち上がりからチエツクタイミング信号104の
立ち上がりまでの時間t2は、正常な場合の受光素
子31〜32の立ち上がり、立ち下がりの応答最
大時間より少し長い時間に設定されている。
The mark card 200 is set in the mark reading device, and the mark card 200 is read by the feed command.
is sent, and when the 0 column, which is the data prohibited area 201, reaches the read station, a column 0 signal 101 is supplied to the timing generation circuit 1 by a crow position detection circuit (not specifically explained here). In the timing generation circuit 1, the power supply control signal 102 is set to "0" for a predetermined period of time as shown in FIG.
04 is generated. Here, the time t 1 from the fall of the power supply control signal 102 to the rise of the check timing signal 103 and the time t 2 from the rise of the power supply control signal 102 to the rise of the check timing signal 104 are the times when the light receiving elements 31 to 104 are normal. The time is set to be slightly longer than the maximum response time for the rise and fall of 32.

第3図を参照して第1図に示す実施例の正常な
動作を説明する。ここで、簡単にするため受光素
子31〜42は、ばらつきなく同一の波形を発生
するものとする。電源制御信号102が“0”に
なると、電源回路2は出力電圧105を0Vに
し、発光ダイオード11〜22は点灯から滅灯へ
変化する。一方受光素子31〜42は発光ダイオ
ード11〜22からの光を受けて第3図に示す信
号111〜122を出力する。増巾整形回路51
〜62は信号111〜122を入力し、信号11
1〜122が一定値以下のとき“1”で、一定値
以上のとき“0”である整形信号131〜142
を出力する。整形信号131〜142を入力する
NAND回路3及びOR回路4により、オールライ
ト信号107、オールダーク信号106が出力さ
れる。そしてフリツプフロツプ5,6の出力信号
108,109は、初め“0”にリセツトされて
おり、チエツクタイミング信号103,104の
立ち上がりで、その時のオールダーク信号10
6、オールライト信号107の値にセツトされ
る。正常な場合、チエツクタイミング信号103
の立ち上り時には、第3図に示す様にオールダー
ク信号106は“0”であるためフリツプフロツ
プ5の出力信号108は“0”を保持する。次に
電源制御信号102が“0”から“1”に復帰す
るとそれに伴ない電源回路2の出力電圧105も
従来のレベルに復帰し、発光ダイオード11〜2
2は、再度点灯する。そして、受光素子31〜4
2の出力信号111〜122は白レベルまで立ち
上がり、131〜152の整形信号は“1”から
“0”へ変化する。チエツクタイミング信号10
4の立ち上がり時には、既に整形信号131〜1
42は全て“0”で、これによりオールライト信
号107が“0”になつているためフリツプフロ
ツプ6の出力信号109は“0”を保持してい
る。
The normal operation of the embodiment shown in FIG. 1 will be explained with reference to FIG. Here, for the sake of simplicity, it is assumed that the light receiving elements 31 to 42 generate the same waveform without variation. When the power supply control signal 102 becomes "0", the power supply circuit 2 sets the output voltage 105 to 0V, and the light emitting diodes 11 to 22 change from lighting to extinguishing. On the other hand, the light receiving elements 31-42 receive the light from the light emitting diodes 11-22 and output signals 111-122 shown in FIG. 3. Width shaping circuit 51
~62 inputs signals 111~122, and inputs signal 11
Shaping signals 131 to 142 that are “1” when 1 to 122 are below a certain value and “0” when they are above a certain value
Output. Input the shaping signals 131 to 142
The NAND circuit 3 and OR circuit 4 output an all-write signal 107 and an all-dark signal 106. The output signals 108 and 109 of the flip-flops 5 and 6 are initially reset to "0", and at the rise of the check timing signals 103 and 104, the all dark signal 10 at that time is reset.
6. Set to the value of the all write signal 107. If normal, check timing signal 103
At the rising edge of , the all dark signal 106 is "0" as shown in FIG. 3, so the output signal 108 of the flip-flop 5 remains "0". Next, when the power supply control signal 102 returns from "0" to "1", the output voltage 105 of the power supply circuit 2 also returns to the conventional level, and the light emitting diodes 11 to 2
2 lights up again. And the light receiving elements 31 to 4
The output signals 111-122 of No. 2 rise to the white level, and the shaping signals 131-152 change from "1" to "0". Check timing signal 10
At the rise of 4, the shaping signals 131 to 1 are already
42 are all "0", which causes the all write signal 107 to become "0", so the output signal 109 of the flip-flop 6 holds "0".

以上に対し、応答性に不良がある場合の動作を
第4図を参照して説明する。発光ダイオード12
〜22、受光素子32〜42および増巾整形回路
52〜62すべてが正常で発光ダイオード12〜
22の点灯→滅灯→点灯の変化により信号112
〜122と整形信号132〜142が出力され、
発光ダイオード11、受光素子31のいずれかが
不良で、出力信号111′と整形信号131′が出
されているとする。するとNAND回路3によつて
出力されるオールダーク信号106′は第3図に
示す信号106と比べ“0”の時間が短くなり、
一方、OR回路4によつてつくられるオールライ
ト信号107′は“1”の時間が長くなる。結
局、光電系の不良により発光ダイオード滅灯時の
整形信号131′の応答性が悪く、チエツクタイ
ミング信号103の立ち上がり時にオールダーク
信号106′は未だ“1”であるため、フリツプ
フロツプ5の出力信号108′は“1”に変る。
この様にして発光ダイオード滅灯時の光電系の応
答性不良が検出される。また同様に発光ダイオー
ド点灯時の整形信号131′の応答が悪く、チエ
ツクタイミング信号104の立ち上がり時に、オ
ールライト信号107は未だ“1”であるため、
フリツプフロツプ6の出力信号109′は“1”
に変る。これによつて発光ダイオード点灯時の光
電系の応答性不良が検出される。
In contrast to the above, the operation when the response is poor will be explained with reference to FIG. 4. light emitting diode 12
~22, light receiving elements 32~42 and width shaping circuits 52~62 are all normal and light emitting diode 12~
Signal 112 due to the change of 22 lighting → off → lighting
~122 and shaping signals 132~142 are output,
Assume that either the light emitting diode 11 or the light receiving element 31 is defective, and an output signal 111' and a shaping signal 131' are output. Then, the all-dark signal 106' output by the NAND circuit 3 has a shorter "0" time than the signal 106 shown in FIG.
On the other hand, the all-write signal 107' generated by the OR circuit 4 remains "1" for a long time. In the end, due to a defect in the photoelectric system, the response of the shaping signal 131' when the light emitting diode is turned off is poor, and the all-dark signal 106' is still "1" when the check timing signal 103 rises, so the output signal 108 of the flip-flop 5 ' changes to "1".
In this way, poor responsiveness of the photoelectric system when the light emitting diode goes out is detected. Similarly, the response of the shaping signal 131' when the light emitting diode is turned on is poor, and the all-write signal 107 is still "1" at the rise of the check timing signal 104.
The output signal 109' of flip-flop 6 is "1"
Changes to As a result, poor responsiveness of the photoelectric system when the light emitting diode is turned on is detected.

また、従来の検出回路でチエツクされていた光
電系の固定障害に関しては、応答性不良の応答時
間が無限大になつた状態と同じであるので、本発
明の光電系チエツク回路でも検出出来る事は勿論
である。
Furthermore, regarding fixed faults in the photoelectric system that were checked by conventional detection circuits, the situation is the same as when the response time of poor response becomes infinite, so the photoelectric system check circuit of the present invention cannot detect them. Of course.

また本実施例において、特に説明をしないがデ
ータ禁止エリア201である0カラム目にマーク
データがある媒体不良も、セルの固定障害の時と
同様に検出される。
Further, in this embodiment, although not specifically explained, a medium failure in which there is mark data in the 0th column, which is the data prohibited area 201, is also detected in the same way as a fixed cell failure.

本発明は以上説明したように、発光源を点灯→
滅灯→点灯させる事により、光電系の固定障害、
応答性不良を検出できる効果がある。
As explained above, the present invention turns on the light emitting source→
By turning the light off → on, a fixed failure of the photoelectric system,
This has the effect of detecting poor responsiveness.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のブロツク図、第2
図はマークカード200のデータ禁止エリア20
1を示す図、第3図は第1図に示す実施例の正常
な動作を説明する図、第4図は不良がある場合の
第1図に示す実施例の動作を説明する図である。 1……タイミング発生回路、2……電源回路、
3……NAND回路、4……OR回路、5,6……
フリツプフロツプ、11〜22……発光ダイオー
ド、31〜42……受光素子、51〜62……増
巾・整形回路、200……マークカード。
FIG. 1 is a block diagram of one embodiment of the present invention, and FIG.
The figure shows the data prohibited area 20 of the mark card 200.
1, FIG. 3 is a diagram for explaining the normal operation of the embodiment shown in FIG. 1, and FIG. 4 is a diagram for explaining the operation of the embodiment shown in FIG. 1 when there is a defect. 1... Timing generation circuit, 2... Power supply circuit,
3...NAND circuit, 4...OR circuit, 5, 6...
Flip-flop, 11-22...Light emitting diode, 31-42...Light receiving element, 51-62...Width amplification/shaping circuit, 200...Mark card.

Claims (1)

【特許請求の範囲】[Claims] 1 少なくとも1つの発光源と、前記発光源に点
灯指示および滅灯指示を行なう電源制御信号を発
生しチエツク時に該電源制御信号により前記発光
源に該滅灯指示を行つた時点から予め定めた第1
の応答最大時間だけ経過した時点で第1のチエツ
クタイミング信号を発生し該電源制御信号により
前記発光源に該点灯指示を行つた時点から予め定
めた第2の応答最大時間だけ経過した時点で第2
のチエツクタイミング信号を発生するタイミング
発生手段と、前記発光源からの光信号レベルを電
気信号レベルに変換する光電変換手段と、前記第
1のチエツクタイミング信号が発生した時点で前
記電気信号レベルが予め定めた第1のレベル以上
であるとき所定の信号を出力する第1のチエツク
手段と、前記第2のチエツクタイミング信号が発
生した時点で前記電気信号レベルが予め定めた第
2のレベル以下であるとき所定の信号を出力する
第2のチエツク手段とを含むことを特徴とする光
電系チエツク回路。
1 Generates at least one light emitting source and a power control signal that instructs the light emitting source to turn on and turn off, and at the time of checking, a predetermined period starts from the time when the power control signal instructs the light emitting source to turn off the light. 1
A first check timing signal is generated when a predetermined second maximum response time has elapsed from the time when the power supply control signal instructs the light emitting source to turn on. 2
a timing generation means for generating a check timing signal; a photoelectric conversion means for converting an optical signal level from the light emitting source into an electric signal level; a first check means for outputting a predetermined signal when the electric signal level is equal to or higher than a predetermined first level; and the electric signal level is equal to or lower than a predetermined second level at the time when the second check timing signal is generated. 1. A photoelectric system check circuit comprising: second check means for outputting a predetermined signal when
JP14056479A 1979-10-31 1979-10-31 Photoelectric system check circuit Granted JPS5665270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14056479A JPS5665270A (en) 1979-10-31 1979-10-31 Photoelectric system check circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14056479A JPS5665270A (en) 1979-10-31 1979-10-31 Photoelectric system check circuit

Publications (2)

Publication Number Publication Date
JPS5665270A JPS5665270A (en) 1981-06-02
JPS6259831B2 true JPS6259831B2 (en) 1987-12-12

Family

ID=15271607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14056479A Granted JPS5665270A (en) 1979-10-31 1979-10-31 Photoelectric system check circuit

Country Status (1)

Country Link
JP (1) JPS5665270A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05266242A (en) * 1992-03-23 1993-10-15 Tokyo Electric Co Ltd Laser scanner device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4928438U (en) * 1972-06-13 1974-03-11
JPS4979125A (en) * 1972-12-01 1974-07-31

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4928438U (en) * 1972-06-13 1974-03-11
JPS4979125A (en) * 1972-12-01 1974-07-31

Also Published As

Publication number Publication date
JPS5665270A (en) 1981-06-02

Similar Documents

Publication Publication Date Title
DE3587143T2 (en) SEMICONDUCTOR STORAGE DEVICE WITH ERROR DETECTION / CORRECTION FUNCTION.
JPS6238600A (en) Semiconductor memory device
US20200125150A1 (en) Power quality detecting system and power quality detecting module
JPS6259831B2 (en)
KR20140002163A (en) Integrated circuit chip and memory device
KR970051423A (en) Self-Burn-in Circuit of Semiconductor Memory
EP0220577B1 (en) Memory array
JP6846225B2 (en) Inspection circuits, semiconductor storage devices, semiconductor devices, and connection inspection methods
JPS6113250B2 (en)
JP2003098235A (en) Semiconductor integrated circuit and inspection method for it
JP3018431B2 (en) On-chip test method for semiconductor memory
CN205140523U (en) Nonvolatile memory read reliability from detection circuitry
JPH0263280B2 (en)
JPH0322298A (en) Semiconductor memory device
JPS5958633A (en) Optical disc device
JP2580224B2 (en) Semiconductor storage device
JPH0247020B2 (en) TEEPUSHISHUTANKENSHUTSUHOHO
SU1019492A1 (en) Buffer storage with self check
JPH0441545B2 (en)
KR910002438Y1 (en) Detecting circuit of compact disk defects
JPS63273074A (en) Reliability test for semiconductor memory
JPS6111771Y2 (en)
JPS61275687A (en) Optical detecting circuit
JPH0254582B2 (en)
JPS6141407B2 (en)