JPS6259762B2 - - Google Patents
Info
- Publication number
- JPS6259762B2 JPS6259762B2 JP55093275A JP9327580A JPS6259762B2 JP S6259762 B2 JPS6259762 B2 JP S6259762B2 JP 55093275 A JP55093275 A JP 55093275A JP 9327580 A JP9327580 A JP 9327580A JP S6259762 B2 JPS6259762 B2 JP S6259762B2
- Authority
- JP
- Japan
- Prior art keywords
- core
- sub
- primary coil
- coil
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000005291 magnetic effect Effects 0.000 claims description 53
- 230000035699 permeability Effects 0.000 claims description 18
- 230000005294 ferromagnetic effect Effects 0.000 claims description 9
- 230000005284 excitation Effects 0.000 claims description 6
- 239000011162 core material Substances 0.000 description 98
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 16
- 229910052751 metal Inorganic materials 0.000 description 13
- 239000002184 metal Substances 0.000 description 13
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical group [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 10
- 238000006073 displacement reaction Methods 0.000 description 8
- 239000003302 ferromagnetic material Substances 0.000 description 6
- 229910052742 iron Inorganic materials 0.000 description 6
- 230000004907 flux Effects 0.000 description 5
- 238000004804 winding Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/12—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
- G01D5/14—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
- G01D5/20—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
- G01D5/22—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils
- G01D5/225—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils by influencing the mutual induction between the two coils
- G01D5/2258—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils by influencing the mutual induction between the two coils by a movable ferromagnetic element, e.g. core
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F21/00—Variable inductances or transformers of the signal type
- H01F21/02—Variable inductances or transformers of the signal type continuously variable, e.g. variometers
- H01F21/06—Variable inductances or transformers of the signal type continuously variable, e.g. variometers by movement of core or part of core relative to the windings as a whole
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F21/00—Variable inductances or transformers of the signal type
- H01F21/02—Variable inductances or transformers of the signal type continuously variable, e.g. variometers
- H01F21/06—Variable inductances or transformers of the signal type continuously variable, e.g. variometers by movement of core or part of core relative to the windings as a whole
- H01F21/065—Measures for obtaining a desired relation between the position of the core and the inductance
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Transmission And Conversion Of Sensor Element Output (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
Description
【発明の詳細な説明】
本発明は、通常差動トランスと呼ばれている検
知器の改良に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a detector commonly referred to as a differential transformer.
本発明者は、特に被検知部材の変位の小さい測
定に有利な差動検知器を発明し、出願をした(特
願昭55−74207号)。その発明は、被検知部材の移
動に応じて移動する芯と、その芯の移動経路に沿
つて配設され、交流電流で励磁される1次コイル
と、芯の移動に比例して電圧差を生ずる2次コイ
ルとからなる差動検知器において、前記芯を低透
磁性(比受磁率10-3〜10-6程度)の導電性金属で
形成し、高い周波数(50KC〜2MC程度)の励磁
電流を1次コイルに印加することを特徴とする差
動検知器で、従来の差動トランスでは前記芯に高
透磁性(比受磁率103〜106程度)の強磁性体金属
例えば鉄を使用していたものを前記の如く低透磁
性の導電性金属例えばアルミ、銀、銅を使用する
こととした点に特色を有する。 The present inventor invented and filed an application for a differential detector which is especially advantageous for measuring small displacements of detected members (Japanese Patent Application No. 74207/1982). The invention consists of a core that moves according to the movement of the detected member, a primary coil arranged along the movement path of the core and excited by alternating current, and a voltage difference that is proportional to the movement of the core. In a differential detector consisting of a generated secondary coil, the core is formed of a conductive metal with low magnetic permeability (specific magnetic permeability of about 10 -3 to 10 -6 ), and high frequency excitation (about 50KC to 2MC) is used. A differential detector characterized by applying a current to a primary coil, and in conventional differential transformers, the core is made of a ferromagnetic metal with high magnetic permeability (specific magnetic receptivity of about 10 3 to 10 6 ), such as iron. It is unique in that it uses conductive metals with low magnetic permeability, such as aluminum, silver, and copper, instead of the ones previously used.
すなわち従来の差動検知器は高透磁率により芯
は多くの磁力線を引きつけ、芯の移動に伴いこれ
ら磁力線も移動するので、2個の2次コイルに誘
起される電圧が変化し、芯の機械的変位を差動検
知器の出力電圧として取出すのであるが、1次コ
イルによつて生じている磁力線分布は芯の移動と
ともに変化し磁力線部分の対象性はくずれるか
ら、芯の変位と出力電圧の比例関係(リニヤリテ
イ)を正しく保ちにくく、リニヤリテイを正しく
保つため種々の工夫が必要である。 In other words, in conventional differential detectors, the core attracts many magnetic lines of force due to its high magnetic permeability, and as the core moves, these lines of magnetic force also move, causing the voltage induced in the two secondary coils to change, causing the core's mechanical The displacement of the magnetic field is extracted as the output voltage of the differential detector, but since the magnetic field line distribution generated by the primary coil changes as the core moves, and the symmetry of the magnetic field lines breaks down, the displacement of the core and the output voltage are It is difficult to maintain the proportional relationship (linearity) correctly, and various measures are required to maintain the linearity correctly.
これに対し前記先願発明の場合、低透磁性の導
電性金属を芯として用いるから、芯の存在する部
分の磁力線は芯に生ずるうず電流損により弱くな
り、当該部分に誘起される電圧が低下し、従つて
芯が移動すればその変位に比例した分だけ一方側
の2次コイルの誘起電圧が低下し他方側はそれだ
け増加して、その差を出力電圧として取出すので
あるが、芯は低透磁性であるから磁力線を引きつ
けることがなく、芯が移動してもコイルの磁力線
分布の状態が変化せず常に対象性を保つからリニ
ヤリテイが正しく保たれ、特に小さい幅のコイル
をもつ短いストロークの検知器においてこの特徴
は極めて有効に発揮される。 On the other hand, in the case of the prior invention, since a conductive metal with low magnetic permeability is used as the core, the magnetic lines of force in the part where the core is present are weakened by the eddy current loss generated in the core, and the voltage induced in the part is reduced. Therefore, if the core moves, the induced voltage in the secondary coil on one side decreases by an amount proportional to the displacement, and the voltage on the other side increases by that amount, and the difference is extracted as the output voltage, but the core has a low Because it is permeable, it does not attract magnetic lines of force, and even if the core moves, the distribution of magnetic lines of force in the coil does not change and always maintains symmetry, so linearity is maintained correctly, especially for short strokes with small width coils. This feature is extremely effective in detectors.
しかしながら、この先願発明の場合においても
コイルの径が小さく、芯の径が約5mm以下になる
と大きな出力電圧を得られないという欠点が見出
だされた。 However, even in the case of this prior invention, a drawback was found that if the diameter of the coil was small and the diameter of the core was less than about 5 mm, a large output voltage could not be obtained.
その理由について考えてみると、励磁電流によ
つて1次コイルの素線が発生する磁力線の到達す
る距離は高周波であるので短く、コイルの径が大
きいときは発生した磁力線の殆ど全部が芯の移動
するボビン中空孔を通過するので、芯が通過する
際その磁力線によつて生ずるうず電流損の値は大
きく従つて出力電圧は大きいが、コイルの径が小
さくなりボビン中空孔の径が小さくなると、1次
コイルの発生する磁力線はボビン中空孔以外にも
分布され、ボビン中空孔の中に存在する磁力線は
少なくなるため、芯がボビン中空孔を通過する際
磁力線によつて生ずるうず電流損の値は小さくな
り、従つて差動検知器の出力電圧が大きくならな
いものと考えられる。 When we think about the reason for this, we find that the distance traveled by the magnetic lines of force generated by the strands of the primary coil due to the excitation current is short due to the high frequency, and when the diameter of the coil is large, almost all of the generated lines of magnetic force reach the core. Since the core passes through the moving bobbin hollow hole, the value of eddy current loss caused by the magnetic field lines is large and the output voltage is large, but as the diameter of the coil becomes smaller and the diameter of the bobbin hollow hole becomes smaller. , the lines of magnetic force generated by the primary coil are distributed outside the bobbin hollow hole, and the number of magnetic force lines existing inside the bobbin hollow hole is reduced, so that the eddy current loss caused by the magnetic force lines when the core passes through the bobbin hollow hole is reduced. It is considered that the value becomes small and therefore the output voltage of the differential detector does not become large.
本発明は、以上のような小径の検知器において
出力電圧の低下する欠点を除去するとともに、芯
の径の大小にかかわらず、さらに良いリニヤリテ
イを得ることを目的として案出されたものであ
る。 The present invention was devised for the purpose of eliminating the drawback of a drop in output voltage in such a small-diameter detector as described above, and at the same time obtaining better linearity regardless of the size of the core diameter.
一般に芯に発生するうず電流は芯の外周の表面
に沿つて流れるので、低透磁性の導電性金属の芯
は金属が中心まであるいわゆる棒である必要はな
く、厚みが1〜2mm以下のリング状のもので充分
である。すなわち厚みが1〜2mm以下のリング状
の芯を差動検知器の軸方向に変位させれば、うず
電流損によつて差動検知器に丸棒の芯を用いた場
合と同じ大きさの出力電圧を生ずるのである。 Generally, the eddy current generated in the core flows along the outer surface of the core, so the core of conductive metal with low magnetic permeability does not need to be a so-called rod with the metal all the way to the center, but a ring with a thickness of 1 to 2 mm or less. It is sufficient to use the same shape. In other words, if a ring-shaped core with a thickness of 1 to 2 mm or less is displaced in the axial direction of the differential detector, the same size as when a round bar core is used in the differential detector due to eddy current loss. It produces an output voltage.
この厚みの薄いリング状の芯のリング孔を通し
て、できるだけ外径の大きい高透磁性の強磁性体
例えば鉄の棒又は管を副芯として、その副芯が1
次コイルの全幅にわたるように配置する。この芯
と副芯の配置関係は、芯が副芯に沿つて滑動する
ものでもよく、又副芯を芯のリング孔を貫通させ
るとともに芯に固定し、幅芯を芯の支持棒とし、
芯と副芯とを一緒に変位させる構造にしてもよ
い。ただし後者の場合副芯は1次コイルの全幅よ
り長くして、変位範囲内では常に1次コイルの全
幅にわたつて配置されているようにしなければな
らない。 Through the ring hole of this thin ring-shaped core, a highly permeable ferromagnetic material with as large an outer diameter as possible, such as an iron rod or tube, is used as an auxiliary core.
Place it so that it spans the entire width of the next coil. The arrangement relationship between the core and the sub-core may be such that the core slides along the sub-core, or the sub-core is passed through the ring hole of the core and fixed to the core, and the width core is used as a support rod for the core.
A structure may be adopted in which the core and sub-core are displaced together. However, in the latter case, the sub-core must be longer than the full width of the primary coil so that it is always arranged over the full width of the primary coil within the displacement range.
以上のように低透磁性の導電性金属のリング状
の芯のリング孔に高透磁性の強磁性体の副芯を1
次コイルの全幅にわたるよう配置すると、強磁性
体の副芯によつて1次コイルの発生する磁力線の
殆ど全部が引きつけられ副芯の内部を通過するか
ら磁気抵抗が減少し、副芯のない場合に比較して
1次コイルの発生する磁力線が著しく強められる
だけでなく、磁力線が副芯に引きつけられるので
副芯のない場合に比較し1次コイルの素子の発生
するボビン中空孔内の磁力線分布は均一になる。 As described above, one sub-core of high magnetic permeability ferromagnetic material is inserted into the ring hole of the ring-shaped core of low magnetic permeability conductive metal.
If the secondary coil is arranged to span the full width of the primary coil, almost all of the magnetic lines of force generated by the primary coil are attracted by the ferromagnetic sub-core and pass through the sub-core, reducing magnetic resistance. Not only are the lines of magnetic force generated by the primary coil significantly stronger than in the case of the primary coil, but also the lines of magnetic force are attracted to the sub-core, so the distribution of lines of magnetic force within the hollow hole of the bobbin generated by the elements of the primary coil is improved compared to the case without the sub-core. becomes uniform.
強磁性体の副芯は磁力線を強めるから、2個の
2次コイルに誘起される電圧を増大させるが、そ
の副芯は1次コイルの全幅にわたつて対象的に配
置されているので、2個の2次コイルに誘起する
電圧は等しく、従つてこの副芯によつては差動検
知器の出力電圧に変化は生じない。 The ferromagnetic sub-core strengthens the magnetic lines of force, thereby increasing the voltage induced in the two secondary coils, but since the sub-core is symmetrically placed across the entire width of the primary coil, the two The voltages induced in the secondary coils are the same, so the output voltage of the differential detector does not change due to this sub-core.
すなわち強磁性体の副芯を1次コイルの全幅に
わたつて配置するときは、差動検知器の出力電圧
に変化をおこすことなくして1次コイルの磁力線
は強められ、かつ磁力線がボビン中空孔内で均一
に分布する極めて良い状態になるので、低透磁性
の導電性金属の芯に生ずるうず電流損が大きくな
り差動検知器の出力電圧が増大するばかりでな
く、芯の変位に対する出力電圧の比例関係すなわ
ちリニヤリテイは向上し、残留零電圧の値も小さ
くなる。 In other words, when the ferromagnetic sub-core is placed across the entire width of the primary coil, the lines of magnetic force in the primary coil are strengthened without causing any change in the output voltage of the differential detector, and the lines of magnetic force are aligned with the bobbin hollow hole. As a result, the eddy current loss occurring in the conductive metal core with low magnetic permeability becomes large, and the output voltage of the differential detector increases. The proportional relationship, that is, the linearity, is improved, and the value of residual zero voltage is also reduced.
なおこの強磁性体の副芯の効果は、コイル径の
大小に関せず同様に生ずるもので、コイルの径が
小さくて、副芯がなければボビン中空孔以外に分
布する磁力線も、強磁性体の副芯に引きつけられ
それを通ることになり殆どすべての磁力線がボビ
ン中空孔内に存在するようになるから、差動検知
器の出力電圧が芯の径が小さいということで低下
するおそれはない。 The effect of this ferromagnetic sub-core occurs in the same way regardless of the coil diameter.If the coil diameter is small and there is no sub-core, the lines of magnetic force distributed outside the bobbin hollow hole will also be ferromagnetic. Since almost all magnetic lines of force are attracted to the sub-core of the body and pass through it, they exist within the bobbin hollow hole, so there is no possibility that the output voltage of the differential detector will decrease due to the small diameter of the core. do not have.
なお単位体積に生ずるうず電流損Weは、
We=1/6ρπ2・f2・Bm2・t2〔W/m3〕
ここでρ:比抵抗
π:円周率
f:周波数
Bm:最大磁束密度
t:厚さ
という式で表わされ、周波数の2乗に比例し、比
抵抗に逆比例し、最大磁束密度の2乗に比例す
る。従つてうず電流損は、最大磁束密度の大きい
程大きくなるから、副芯として強磁性体を配し磁
気抵抗を減じ磁束密度を高めた本発明の場合は、
副芯のないものに比較し、うず電流損の値は大き
く、差動検知器の出力電圧の値も大きくなる。又
うず電流損は比抵抗の小さい金属ほど大きくなる
から、低透磁性の導電性金属ではアルミニウムよ
り銀、銅の方が出力を大きくするには有利であ
る。 The eddy current loss We generated in a unit volume is We=1/6ρπ 2・f 2・Bm 2・t 2 [W/m 3 ] where ρ: specific resistance π: pi f: frequency Bm: maximum magnetic flux Density is expressed by the formula t: thickness, and is proportional to the square of the frequency, inversely proportional to the resistivity, and proportional to the square of the maximum magnetic flux density. Therefore, the eddy current loss increases as the maximum magnetic flux density increases, so in the case of the present invention in which a ferromagnetic material is arranged as a sub-core to reduce magnetic resistance and increase the magnetic flux density,
Compared to the case without a sub-core, the value of eddy current loss is large, and the value of the output voltage of the differential detector is also large. Furthermore, since the eddy current loss increases as the resistivity of the metal decreases, silver and copper are more advantageous than aluminum in terms of conductive metals with low magnetic permeability in order to increase the output.
又うず電流損を大きくするには高い周波数の励
磁電流を1次コイルに印加すればよいが、コイル
を製作する上から自ら使用できる周波数の範囲が
あり、実験の結果からみて本発明装置において使
用される周波数は50KCないし2MC程度である。 In addition, to increase the eddy current loss, it is possible to apply a high-frequency excitation current to the primary coil, but there is a frequency range that can be used by oneself when manufacturing the coil. The frequency to be used is about 50KC to 2MC.
以下図面に従つて本発明の実施例につき説明す
るが、第1図に側断面を示す実施例は、副芯を芯
のリング孔に貫通固定させ支持棒を兼ねさせた構
造のもので、第5図に示すものは芯が副芯に沿つ
て滑動する他の実施例である。前者の方が製作し
易いので実用上はこの型の方が多くなるであろ
う。 Embodiments of the present invention will be described below with reference to the drawings. The embodiment whose side cross section is shown in FIG. FIG. 5 shows another embodiment in which the core slides along the sub-core. Since the former type is easier to manufacture, this type will probably be used more often in practice.
第2図に示すボビン1に1次コイル6、2次コ
イル8及び9が捲かれ、ボビン中空孔2内を芯1
2が移動できるように構成され、その結線状態は
第3図に示される。 A primary coil 6, secondary coils 8 and 9 are wound around a bobbin 1 shown in FIG.
2 is configured to be movable, and its connection state is shown in FIG.
非磁性体のプラスチツクホビン1には、コイル
を捲きつける2個の同一寸法の溝3,4及びコイ
ルの引出線を導く軸方向のスリツト5が設けられ
ている。ボビンの前記溝3,4を通して底部に1
次コイル6が数層捲かれ、その1次コイルの上に
密着して溝3側では2次コイル8を、溝4側では
2次コイル9を所要回捲く。 A non-magnetic plastic hobbin 1 is provided with two grooves 3 and 4 of the same size around which a coil is wound, and an axial slit 5 through which a lead wire of the coil is guided. 1 at the bottom through the grooves 3 and 4 of the bobbin.
The secondary coil 6 is wound in several layers, and in close contact with the primary coil, the secondary coil 8 is wound on the groove 3 side, and the secondary coil 9 is wound on the groove 4 side the required number of times.
ボビンの中空孔2内を移動する芯12は、低透
磁性の導電性金属でつくられリング状に形成さ
れ、強磁性体でつくられた棒状の副芯13が芯1
2のリング孔を貫通してこれに固着され支持棒を
兼ね、芯12と副芯13が一緒にボビン中空孔2
の軸方向に移動できるように構成する。副芯の長
さは1次コイルの全幅よりも長くしなければなら
ないことは前に述べたとおりである。7は1次コ
イルの引出線、10,11は2次コイルの引出線
である。そして1次コイルの引出線7の両端に高
い周波数の交流電圧を印加する。 The core 12 that moves within the hollow hole 2 of the bobbin is made of a conductive metal with low magnetic permeability and is formed in a ring shape, and the rod-shaped sub-core 13 made of a ferromagnetic material is attached to the core 12.
The core 12 and the sub-core 13 pass through the ring hole of the bobbin 2 and are fixed thereto, and also serve as a support rod.
It is configured so that it can move in the axial direction. As mentioned above, the length of the sub-core must be longer than the total width of the primary coil. 7 is a lead wire of the primary coil, and 10 and 11 are lead wires of the secondary coil. Then, a high frequency alternating current voltage is applied to both ends of the lead wire 7 of the primary coil.
以上のような構成においては、1次コイル6に
よつて生ずる磁力線で1次コイルに密着捲きされ
た2個の2次コイル8,9に電圧が誘起される。
芯12が2つの2次コイル8と9との中間に位置
するときは、両コイルに等しい大きさの電圧が発
生するから、引出線10と11との間の電圧は零
である。芯12が第1図において左方へ移動する
と2次コイル8に誘起される電圧は小さくなり、
2次コイル9に誘起される電圧は大きくなつて、
その差の電圧が引出線10と11の間に発生す
る。逆に芯12が右方へ移動すれば2次コイル8
に誘起される電圧は大きくなり、2次コイル9に
誘起する電圧は小さくなつて、その差の電圧が引
出線の間に発生する。 In the above configuration, a voltage is induced in the two secondary coils 8 and 9 tightly wound around the primary coil by magnetic lines of force generated by the primary coil 6.
When the core 12 is located between the two secondary coils 8 and 9, voltages of equal magnitude are generated in both coils, so the voltage between the lead wires 10 and 11 is zero. When the core 12 moves to the left in FIG. 1, the voltage induced in the secondary coil 8 becomes smaller.
The voltage induced in the secondary coil 9 increases,
The voltage difference is generated between the lead wires 10 and 11. Conversely, if the core 12 moves to the right, the secondary coil 8
The voltage induced in the secondary coil 9 becomes larger, the voltage induced in the secondary coil 9 becomes smaller, and the difference in voltage is generated between the lead wires.
芯12の変位を横軸にとり電圧を縦軸にとる
と、発生電圧は第4図に示すとおりV字型とな
る。これは従来の差動トランスの場合と同じであ
る。 When the displacement of the core 12 is plotted on the horizontal axis and the voltage is plotted on the vertical axis, the generated voltage becomes V-shaped as shown in FIG. This is the same as in the case of a conventional differential transformer.
第5図に示す実施例においては、ボビン中空孔
14は一方端が閉鎖され、そこに強磁性体でつく
られた副芯17の端部が固定され中空孔14内に
副芯がのびている。低透磁性の導電性金属でつく
られた芯15は、プラスチツクの支持パイプ16
の端末に取り着けられ、副芯17に沿つて滑動で
きるようになつている。 In the embodiment shown in FIG. 5, the bobbin hollow hole 14 is closed at one end, and the end of a sub-core 17 made of ferromagnetic material is fixed thereto, and the sub-core extends into the hollow hole 14. A core 15 made of a conductive metal with low magnetic permeability is connected to a plastic support pipe 16.
It is attached to the end of the core 17 and is slidable along the sub-core 17.
その他の部分は同一符号で示したとおり第1図
の例と同じであり、作用も芯15が副芯17に沿
つて滑動する外は第1図の例について述べたと同
様である。 The other parts are the same as the example shown in FIG. 1, as indicated by the same reference numerals, and the operation is also the same as described for the example shown in FIG. 1, except that the core 15 slides along the sub-core 17.
本発明は、以上のように芯を低透磁性の導電性
金属でリング状に形成し、そのリング孔を貫通し
て1次コイルの全幅にわたつてのびる高透磁性の
強磁性体の副芯を配置してなるものであるから、
芯が変位してもコイルの磁力線分布の対象性がく
ずれることがなく、かつ強磁性体の副芯によつて
ボビン中空孔内の磁力線分布が均一になるので、
芯の変位と出力電圧との比例関係が正しく保たれ
る。又1次コイルが高周波電流が励磁されている
上強磁性体の副芯によつて磁束密度が強められる
ので芯に生ずるうず電流損の値が大きく、従つて
大きな出力電圧が得られる。特にコイルの幅も径
も小さい差動検知器について、リニヤリテイを正
しく保つことができるとともに出力電圧の低下を
防ぐことができる。 As described above, the present invention has a core made of a conductive metal with low magnetic permeability formed into a ring shape, and a sub-core made of a ferromagnetic material with high magnetic permeability that extends through the ring hole and extends over the entire width of the primary coil. Because it is made by arranging
Even if the core is displaced, the symmetry of the coil's magnetic field line distribution does not collapse, and the ferromagnetic sub-core makes the magnetic field line distribution uniform in the bobbin hollow hole.
The proportional relationship between core displacement and output voltage is maintained correctly. Furthermore, since the magnetic flux density of the primary coil is strengthened by the ferromagnetic sub-core to which a high-frequency current is excited, the value of eddy current loss generated in the core is large, and therefore a large output voltage can be obtained. Especially for differential detectors with small coil widths and diameters, linearity can be maintained correctly and a drop in output voltage can be prevented.
次に具体例と比較例を示す。具体例はリング状
のアルミ芯の鉄棒の副芯をリング孔に貫通固着さ
せたものを用い、比較例としてはリング状のアル
ミ芯及び棒状の鉄芯を用いた場合を示した。 Next, specific examples and comparative examples will be shown. A specific example uses a ring-shaped aluminum core with a sub-core of an iron rod fixed through a ring hole, and a comparative example uses a ring-shaped aluminum core and a rod-shaped iron core.
以下の例では、ボビンの内径、外径、溝の幅、
溝の底の直径、1次コイルの捲数、層数、捲幅、
2次コイルの捲数、励磁周波数、芯の材質、外
径、内径、長さを変えた。 In the example below, the bobbin inner diameter, outer diameter, groove width,
The diameter of the bottom of the groove, the number of turns of the primary coil, the number of layers, the width of the winding,
The number of turns, excitation frequency, core material, outer diameter, inner diameter, and length of the secondary coil were changed.
ボビンはプラスチツク製で、2つの溝の間隔は
2mmとした。すべての例において、1次コイルは
各ボビンの2つの溝を通して直径0.10mmのポリウ
レタン線を捲き、その上に密着して同直径のポリ
ウレタン線を2次コイルとして、2つの溝に別々
に捲いた。1次コイルの励磁電流は1Vのサイン
液の交流である。なお使用周波数は最も良い(約
1〜0.5%以下)リニヤリテイを与える値を選定
した。 The bobbin was made of plastic, and the distance between the two grooves was 2 mm. In all examples, the primary coil was a polyurethane wire with a diameter of 0.10 mm wound through two grooves in each bobbin, and a polyurethane wire of the same diameter was tightly wound on top of the secondary coil and wound separately in the two grooves. . The excitation current of the primary coil is a 1V sine fluid alternating current. The frequency used was selected to provide the best linearity (approximately 1 to 0.5% or less).
そして各芯がそれぞれ比例範囲内で出力電圧と
ほぼ正しく比例関係を保つことを確認したもので
ある。 It was confirmed that each core maintains a nearly correct proportional relationship with the output voltage within the proportional range.
例1は例2よりコイルの径が大きいので使用周
波数は当然低くなつている。又例1は芯の径が
9.8mmと大きく、従つて比較例として示したうず
電流損によるアルミ芯の出力電圧は透磁性による
鉄芯の場合より高いが、例2は芯の径が4mmと小
さいのでアルミ芯の方が鉄芯より低くなつてい
る。しかし本発明の鉄の副芯をもつアルミ芯の場
合は、例1、例2とも上記何れの芯を用いた場合
より出力電圧が大きく、残留零電圧も小さいこと
が確認された。 Since the diameter of the coil in Example 1 is larger than that in Example 2, the operating frequency is naturally lower. Also, in Example 1, the diameter of the core is
The aluminum core is large at 9.8 mm, so the output voltage of the aluminum core due to eddy current loss shown as a comparative example is higher than that of the iron core due to magnetic permeability, but in Example 2, the core diameter is small at 4 mm, so the aluminum core is It is lower than the core. However, in the case of the aluminum core with the iron sub-core of the present invention, it was confirmed that in both Examples 1 and 2, the output voltage was higher and the residual zero voltage was lower than when any of the above-mentioned cores was used.
(例1)
ボビン 外径15mm 内径10mm
溝幅3mm 溝底の径11mm
1次コイル 165回 4層捲き 捲幅8mm
2次コイル 250回(2個)
使用周波数 150KC
(1) アルミ芯 外径9.8mm 内径5mm 長さ5mm
比例範囲 ±2mm
最大出力 1.05V
残留零電圧 30mV以下
(2) 鉄 芯 外径9.8mm 丸棒 長さ5mm
比例範囲 ±2mm
最大出力 0.8V
残留零電圧 50mV以下
(3) 本発明の芯
リング状のアルミ芯 外径9.8mm 内径6mm
長さ5mm
鉄の副芯 外径6mm 内径3.2mm 長さ50mm
比例範囲 ±2mm
最大出力 1.3V
残留零電圧 5mV以下
(例2)
ボビン 外径8mm 内径4.2mm
溝幅3mm 溝底の径5mm
1次コイル 160回 4層捲き 捲幅8mm
2次コイル 224回(2回)
使用周波数 300KC
(1) アルミ芯 外径4mm 内径3mm 長さ5mm
比例範囲 ±2mm
最大出力 0.65V
残留零電圧 35mV以下
(2) 鉄 芯 外径4mm 丸棒 長さ5mm
比例範囲 ±2mm
最大出力 1V
残留零電圧 50mV以下
(3) 本発明の芯
リング状のアルミ芯 外径4mm 内径3mm 長
さ5mm
鉄の副芯 外径3mm 丸棒 長さ50mm
比例範囲 ±2mm
最大出力 1.4V
残留零電圧 10mV以下(Example 1) Bobbin Outer diameter 15mm Inner diameter 10mm Groove width 3mm Groove bottom diameter 11mm Primary coil 165 times 4-layer winding Width 8mm Secondary coil 250 times (2 pieces) Operating frequency 150KC (1) Aluminum core Outer diameter 9.8mm Inner diameter 5mm Length 5mm Proportional range ±2mm Maximum output 1.05V Residual zero voltage 30mV or less (2) Iron core Outer diameter 9.8mm Round bar Length 5mm Proportional range ±2mm Maximum output 0.8V Residual zero voltage 50mV or less (3) This invention Core: Ring-shaped aluminum core, outer diameter 9.8mm, inner diameter 6mm
Length 5mm Iron sub-core Outer diameter 6mm Inner diameter 3.2mm Length 50mm Proportional range ±2mm Maximum output 1.3V Residual zero voltage 5mV or less (Example 2) Bobbin Outer diameter 8mm Inner diameter 4.2mm Groove width 3mm Groove bottom diameter 5mm Primary Coil 160 times 4-layer winding Winding width 8 mm Secondary coil 224 times (2 times) Operating frequency 300KC (1) Aluminum core Outer diameter 4 mm Inner diameter 3 mm Length 5 mm Proportional range ±2 mm Maximum output 0.65 V Residual zero voltage 35 mV or less (2) Iron core Outer diameter 4mm Round bar Length 5mm Proportional range ±2mm Maximum output 1V Residual zero voltage 50mV or less (3) Core of the invention Ring-shaped aluminum core Outer diameter 4mm Inner diameter 3mm Length 5mm Iron sub-core Outer diameter 3mm Round Rod length 50mm Proportional range ±2mm Maximum output 1.4V Residual zero voltage 10mV or less
第1図は、本発明の一実施例の側断面図、第2
図は、同実施例のボビンの斜視図、第3図は同実
施例の結線図、第4図は芯の変位と誘起電圧との
関係を示す図、第5図は他の実施例の側断面図。
1……ボビン、2,14……中空孔、6……1
次コイル、8,9……2次コイル、12,15…
…芯、13,17……副芯、16……支持パイ
プ。
FIG. 1 is a side sectional view of one embodiment of the present invention, and FIG.
The figure is a perspective view of the bobbin of the same embodiment, Fig. 3 is a wiring diagram of the same embodiment, Fig. 4 is a diagram showing the relationship between core displacement and induced voltage, and Fig. 5 is a side view of another embodiment. Cross-sectional view. 1...Bobbin, 2,14...Hollow hole, 6...1
Secondary coil, 8, 9... Secondary coil, 12, 15...
... Core, 13, 17 ... Sub-core, 16 ... Support pipe.
Claims (1)
の芯の移動経路に沿つて配設され、交流電流で励
磁される一次コイルと、芯の移動に比例して電圧
差を生ずる2次コイルとからなる差動検知器にお
いて、前記芯を低透磁性(比受磁率10-3〜10-6程
度)の導電性金属でリング状に形成し、そのリン
グ孔を貫通して1次コイルの全幅にわたつてのび
る高透磁性(比受磁率103〜106程度)の強磁性体
の棒又は管を配置してなり、高い周波数(50KC
〜2MC程度)の励磁電流を1次コイルに印加す
ることを特徴とする差動検知器。1. A core that moves according to the movement of the detected member, a primary coil that is arranged along the movement path of the core and is excited by alternating current, and a secondary coil that generates a voltage difference in proportion to the movement of the core. In a differential detector consisting of It is made of ferromagnetic rods or tubes with high magnetic permeability (specific magnetic permeability of about 10 3 to 10 6 ) that extend over the entire width, and are
A differential detector characterized by applying an excitation current of ~2MC) to the primary coil.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9327580A JPS5719613A (en) | 1980-07-10 | 1980-07-10 | Differential sensor |
GB8121382A GB2080632B (en) | 1980-07-10 | 1981-07-10 | Differential transformers |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9327580A JPS5719613A (en) | 1980-07-10 | 1980-07-10 | Differential sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5719613A JPS5719613A (en) | 1982-02-01 |
JPS6259762B2 true JPS6259762B2 (en) | 1987-12-12 |
Family
ID=14077882
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9327580A Granted JPS5719613A (en) | 1980-07-10 | 1980-07-10 | Differential sensor |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPS5719613A (en) |
GB (1) | GB2080632B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3305403A1 (en) * | 1982-10-19 | 1984-04-19 | Saburo Kawaguchi Saitama Chugun | DIFFERENTIAL TRANSFORMER AND DIFFERENTIAL TRANSFORMER SYSTEM |
JPS59105516A (en) * | 1982-12-09 | 1984-06-18 | Saburo Nakagoori | Differential transformer |
JPS60168017A (en) * | 1984-02-10 | 1985-08-31 | S G:Kk | Linear position detecting device |
JPS61198017A (en) * | 1985-02-28 | 1986-09-02 | Honda Lock:Kk | Differential transformer |
DE69410076T2 (en) * | 1994-03-21 | 1998-12-10 | Brown & Sharpe Tesa S.A., Renens | Tubular coil unit of a displacement sensor |
DE102011119981B4 (en) * | 2011-12-02 | 2014-02-27 | Krohne Messtechnik Gmbh | Vortex flowmeter |
EP4253915A1 (en) * | 2022-03-30 | 2023-10-04 | Crompton Technology Group Limited | Composite cylinder |
-
1980
- 1980-07-10 JP JP9327580A patent/JPS5719613A/en active Granted
-
1981
- 1981-07-10 GB GB8121382A patent/GB2080632B/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
GB2080632B (en) | 1984-10-24 |
GB2080632A (en) | 1982-02-03 |
JPS5719613A (en) | 1982-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10629363B2 (en) | Coil device | |
KR950015416A (en) | Inductance element | |
JPS6259762B2 (en) | ||
US5309050A (en) | Ferromagnetic wire electromagnetic actuator | |
JP6492693B2 (en) | Current sensor unit | |
US3376533A (en) | Differential transformers | |
US5068607A (en) | Electrical linear position transducer with silicon steel foil shield surrounding transducer coil | |
US5089930A (en) | Temperature compensated linear variable transformer | |
US10024692B2 (en) | Variable differential transformer position sensor with a trapezoidal primary coil | |
CN111103450A (en) | Coil wire, current sensor component, and current sensor | |
US3546648A (en) | Linear variable differential transformer | |
JP4387300B2 (en) | Sensor coil and distance measuring sensor | |
EP0095267B1 (en) | Hydraulic motor comprising a position transducer | |
NL8600771A (en) | APPARATUS WITH A CORE OF PARTS OF AMORF FERROMAGNETIC METAL AND PARTS OF NON-AMORF FERROMAGNETIC MATERIAL. | |
JP2668785B2 (en) | Small differential transformer | |
US4334207A (en) | Linear displacement transducer | |
JP2005531004A5 (en) | ||
US20200003582A1 (en) | Inductive Position Sensor with Improved Magnetic Shield and Plunger Core Design | |
JPH0154845B2 (en) | ||
US20230170130A1 (en) | Inductor and a method of providing an inductor | |
EP3093859A1 (en) | Variable differential transformer position sensor with a trapezoidal primary coil | |
JPS5835402A (en) | Displacement detector | |
DE2009513A1 (en) | Inductive flow meter with ferrous return | |
SU801120A1 (en) | Electromagnet | |
JPH0648823Y2 (en) | Differential transformer |