JPS59105516A - Differential transformer - Google Patents

Differential transformer

Info

Publication number
JPS59105516A
JPS59105516A JP57214619A JP21461982A JPS59105516A JP S59105516 A JPS59105516 A JP S59105516A JP 57214619 A JP57214619 A JP 57214619A JP 21461982 A JP21461982 A JP 21461982A JP S59105516 A JPS59105516 A JP S59105516A
Authority
JP
Japan
Prior art keywords
ring
movable body
short ring
differential transformer
coils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57214619A
Other languages
Japanese (ja)
Inventor
Saburo Nakagoori
三郎 中郡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP57214619A priority Critical patent/JPS59105516A/en
Publication of JPS59105516A publication Critical patent/JPS59105516A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/22Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils
    • G01D5/225Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils by influencing the mutual induction between the two coils
    • G01D5/2275Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils by influencing the mutual induction between the two coils by a movable non-ferromagnetic conductive element
    • G01D5/2283Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils by influencing the mutual induction between the two coils by a movable non-ferromagnetic conductive element constituting a short-circuiting element

Abstract

PURPOSE:To achieve a high accuracy with light and small construction by arranging a mobile body equipped with a short ring for suppressing mutual induction between first and second coils. CONSTITUTION:A mobile body 41 with a short ring 7 for suppressing mutual induction is inserted into first and second coils 2 and 3 each with an air core. The ring 7 made of material high in the electric conductivity is formed in a ring. An induced elctromotive voltages of the coils 2 and 3 are turned to small voltages E2'' and E3'' suppressed in the level according to the shield space occupancy of the ring 7 and differential voltages E2'' and -E3'' generated associated with a displacement of the mobile body 41. This can improve the accuracy along with a light weight and a small size while falicitating the working and production.

Description

【発明の詳細な説明】 この発明は機械的な変位を′電圧の変化に変換する所謂
変位−d圧変換器の一種である差動変圧器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a differential transformer, which is a type of so-called displacement-d voltage converter that converts mechanical displacement into a change in voltage.

差動変圧器は他の変位−電圧変換器に比し、精度、安定
度、直線性、訓工・製作、取扱い等の点で優れており、
この種の変換器として現在最もよく使用されているもの
である。従来の差動変圧器としては例えば第1図に示す
ようなものがある。1が1次コイル、2,6が2次コイ
ル、40が被測定物5に沿って進退動自在な軟鋼等の高
透磁率のコア部4を備えた可動体である。即ち、この1
次コイル1を一定の交流電圧で励磁すると2次コイル2
.6に夫々相互誘導電圧E21 E3が誘起され、oJ
動体40の変位、具体的にはその高透磁率のコア部4の
変位によって2次コイル2,3の夫々と鎖交する磁気フ
ラックスが変わり、(相互誘導率の変化) 、E2 +
E、が変化することを利用するものであり、2次コイル
2,6を差動結線することにより出力端6からE2− 
E、を変位出力電圧として取出すものである。通常この
出力は整流・増幅等の処理をされてメータを振らせたシ
或いは自動制御の為のフィードバック情報として用いら
れたシする。
Differential transformers are superior to other displacement-voltage converters in terms of accuracy, stability, linearity, training/manufacturing, handling, etc.
This type of converter is currently most commonly used. An example of a conventional differential transformer is the one shown in FIG. 1 is a primary coil, 2 and 6 are secondary coils, and 40 is a movable body including a core portion 4 of high magnetic permeability, such as mild steel, which can move forward and backward along the object 5 to be measured. That is, this 1
When the secondary coil 1 is excited with a constant AC voltage, the secondary coil 2
.. Mutual induced voltages E21 and E3 are induced in 6, respectively, and oJ
The magnetic flux interlinking with each of the secondary coils 2 and 3 changes depending on the displacement of the moving body 40, specifically, the displacement of the core portion 4 with high magnetic permeability, and (change in mutual inductivity), E2 +
This utilizes the fact that E changes, and by differentially connecting the secondary coils 2 and 6, E2- is output from the output end 6.
E is taken out as the displacement output voltage. Usually, this output is processed by rectification, amplification, etc. to make a meter swing, or is used as feedback information for automatic control.

しかしながらこのような従来の差動変圧器は一般の測定
や自動制御のフィードバック情報としては上記の如き十
分良好な諸性能が得られるものの超高精度の測定を行な
おうとした場合その加工に極めて高度な精度が要求され
、重責・大きさともかなシのものになシ尚然価格も非常
に高師になるという事情があった。
However, although such conventional differential transformers provide sufficiently good performance as described above for general measurements and feedback information for automatic control, they require extremely sophisticated processing when attempting to perform ultra-high precision measurements. It required a great deal of precision, and the responsibility and size were both modest, and the price was also very high.

この発明はこのような事情に鑑み差動変圧器の原理その
ものに着目し、従来類高級品でしか達成できなかった性
能を普及価格で実現すると共に十分な耐久性を備えた差
動変圧器の提供をその目的とし、更にはこのように超高
精度の測定の可能な差動変圧器はとかく測定範囲が狭い
ことに鑑みこれを広くした差動変圧器の提供をも目的と
している。
In view of these circumstances, this invention focuses on the principle of the differential transformer itself, and has developed a differential transformer that achieves the performance that could previously only be achieved with high-end products at a popular price, and has sufficient durability. In addition, in view of the fact that differential transformers capable of ultra-high precision measurement have a narrow measurement range, the present invention also aims to provide a differential transformer with a wider measurement range.

以Fこの発明を図面に基づいて説明する。先ずこの発明
に係る差動変圧器の原理から説明する。
Hereinafter, this invention will be explained based on the drawings. First, the principle of the differential transformer according to the present invention will be explained.

第2図ビ)は1次コイル1の長手方向+X)に於いて2
次コイル2,6を均等に撮分けて巻いた差動変圧器のコ
イル部分を抜き書きしたものである。この1次、2次コ
イル1,2.3は従来と変わるところはない。このよう
な空芯コイルの状態では2次コイル2,6には夫々同位
相で同電圧の相互誘導起電圧B/2. B/、が発生す
る。従って2個の2次コイル2,6の同一位相端子同士
を差動結線すれば逆位相接続状態となシ出力端乙には相
殺効果により電圧は生じない。従来の原理はこの第2図
(イ)の空芯の1次コイル1及び2次コイル2,3中に
相互誘導率を高める高透磁率のコア部4を備えた可動体
40を挿入し、該可動体40の変位に伴なって生じる差
動電圧を得るものである(第1図)。
Figure 2 B) is 2 in the longitudinal direction +X) of the primary coil 1.
This is an excerpt of the coil portion of a differential transformer in which the next coils 2 and 6 are equally divided and wound. The primary and secondary coils 1, 2.3 are the same as before. In such an air-core coil state, the secondary coils 2 and 6 each have a mutually induced electromotive force B/2. B/, occurs. Therefore, if the same-phase terminals of the two secondary coils 2 and 6 are differentially connected, they will be in an anti-phase connection state, and no voltage will be generated at the output terminal B due to the canceling effect. The conventional principle is to insert a movable body 40 equipped with a core portion 4 of high magnetic permeability that increases mutual inductivity into the air-core primary coil 1 and secondary coils 2 and 3 shown in FIG. 2 (A). This is to obtain the differential voltage generated as the movable body 40 is displaced (FIG. 1).

これに対し本発明では第2図(ロ)に示す如く、第2図
(イ)の空芯の1次コイル1及び2次コイル2.6中に
、相互誘導の抑圧用のショートリング7を備えた可動体
41を挿入するものである。
In contrast, in the present invention, as shown in FIG. 2(B), a short ring 7 for suppressing mutual induction is installed in the air-core primary coil 1 and secondary coil 2.6 in FIG. 2(A). A movable body 41 provided therein is inserted.

このショートリング7は高電気伝導率材(例えば、銅な
ど)から成りリング状に形成される。
This short ring 7 is made of a high electrical conductivity material (for example, copper) and is formed into a ring shape.

このように高電気伝導率材をリング状に形成すると相互
誘導の抑圧に寄与する特性を有するようになるのは1次
コイル1と2次コイル2,6との間でショー) IJン
グ7の有効長lに占有される領域の磁気フラックスが殆
んどショートリング7内の誘導電力に消費されるためと
解される。従って2次コイル2.乙の誘導起電圧はンヨ
ー) IJング7の遮蔽空間占有率に相応した分量だけ
抑圧された小さな電圧B//2. B//、  となる
When a high electrical conductivity material is formed into a ring shape in this way, it is between the primary coil 1 and the secondary coils 2 and 6 that it has a characteristic that contributes to suppressing mutual induction. This is understood to be because most of the magnetic flux in the area occupied by the effective length l is consumed by the induced power within the short ring 7. Therefore, the secondary coil 2. The induced electromotive force of B is small voltage B//2 which is suppressed by an amount corresponding to the shielding space occupancy rate of IJ ring 7. B//, becomes.

こうしたショートリング7を備えた可動体41の変位に
伴なって生じる差動電圧B//、  B//、を得ると
いうのが本発明の差動変圧器の基本原理である。即ち、
この発明は従来の差動変圧器の基本原理である1次コイ
ル1と2次コイル2,6との間の相互誘導結合効果と全
く逆の磁気反結合効果ともいうべき基本原理に基づくも
のと言うことができるものである。
The basic principle of the differential transformer of the present invention is to obtain the differential voltages B//, B//, which are generated as a result of the displacement of the movable body 41 provided with the short ring 7. That is,
This invention is based on the basic principle of the magnetic anticoupling effect, which is completely opposite to the mutual inductive coupling effect between the primary coil 1 and the secondary coils 2 and 6, which is the basic principle of conventional differential transformers. It is something that can be said.

第6図はこの発明の一実施例を示すもので、こうした原
理に基づいた上で、このショートリング7のリング外径
D7を可動体41のショートリング7以外の部位41′
の外(l D41よシ小さく形成している。即ち、ショ
ートリング7の形成については可動体41に銅線を巻付
けたシ、又は帯状、薄板を接着したシ、或いは部分メッ
キのような方法で高電気伝導率材を付着したシするなど
種々の手法が考えられるが、ショートリング7のリング
外径D7が可動体41のショートリング7以外の部位4
1′の外径D41 よりも大きいと、ショートリング7
に傷がつき易く、しかもこの傷によって測定精度が悪化
する場合がある。
FIG. 6 shows an embodiment of the present invention, and based on this principle, the ring outer diameter D7 of the short ring 7 is set at a portion 41' of the movable body 41 other than the short ring 7.
In other words, the short ring 7 is formed smaller than D41. In other words, the short ring 7 can be formed by wrapping a copper wire around the movable body 41, by gluing a strip, by gluing a thin plate, or by partial plating. Various methods can be considered, such as attaching a high electrical conductivity material to the movable body 41, but if the ring outer diameter D7 of the short ring 7 is
1' outer diameter D41, the short ring 7
are easily scratched, and these scratches may deteriorate measurement accuracy.

そこでショートリング7のリング外径り、を、可動体4
1のショートリング7以外の部位41′の外径D41 
よシ小さく形成するものである。尚、このようにすると
ショートリング7は傷が極めてつきにくくなること、及
びこのようにしても測定精度には悪影響が全くないこと
が実験によυ確認されている。
Therefore, the outer diameter of the short ring 7 is determined by the movable body 4.
Outer diameter D41 of part 41' other than short ring 7 of No. 1
It should be made smaller. It has been confirmed through experiments that by doing this, the short ring 7 becomes extremely resistant to scratches, and that doing so does not have any adverse effect on measurement accuracy.

第4図ビ)及び(ロ)にはこの発明の第2実施例を示す
FIGS. 4B) and 4B show a second embodiment of the present invention.

第4図(イ)は第2図(イ)の空芯の1次コイル1及び
2次コイル2,6の有効長の内外に亘って高透磁率の可
動体42を配したものである。この場合には両2次コイ
ル2,6に誘導される電圧は第2図ビ)の空芯の場合よ
りも高透磁率材の比透磁率kに相応した倍数kB’、 
、 kE’、に高められる。この実施例はこのように可
動体42の全体を高透磁率材とし、これにショートリン
グ7を備えるようにしたものであυ(第4図(ロ))、
先の第6図の第1実施例よシ更に正確な差動電圧B /
//、  B ///、を得ることができる。
FIG. 4(A) shows a movable body 42 having high magnetic permeability arranged inside and outside the effective length of the air-core primary coil 1 and secondary coils 2, 6 of FIG. 2(A). In this case, the voltage induced in both the secondary coils 2 and 6 is a multiple kB' corresponding to the relative magnetic permeability k of the high magnetic permeability material, compared to the case of the air core shown in Figure 2 B).
, kE',. In this embodiment, the entire movable body 42 is made of a high magnetic permeability material and is provided with the short ring 7 (Fig. 4 (b)).
More accurate differential voltage B/
//, B /// can be obtained.

尚、ここでいう[可動体42の全体を高透磁率材にする
」とは「可動体42が最大に移動してもなお1次、2次
コイル1.2.3の有効長の内外に亘って高透磁率材が
配されることになる構成」を意味する。又、ショートリ
ング7の形成の仕方については、第1実施例と同様につ
き後傾説明を省略する。
In addition, here, ``Make the entire movable body 42 a high magnetic permeability material'' means ``Even if the movable body 42 moves to the maximum, it still remains inside or outside the effective length of the primary and secondary coils 1.2.3. "A configuration in which a high magnetic permeability material is disposed throughout." Further, the method of forming the short ring 7 is the same as that in the first embodiment, so a description of backward tilting will be omitted.

第5図にはこの発明の第3実施例を示す。この実施例で
は第4図(ロ)の第2実施例を基本とし、ショートリン
グ7を21i!5に分離して分割ショートリング片7a
、7bとし、所定の間隔dを隔てて配するようにしてい
る。具体的には1次コイル1と2次コイル2,6の略両
端付近人に位置させるようにしている。両分側・ショー
トリング片7a l 7bは当然に可動体42と共に連
動して上下動する。こうすることにより差動変圧器とし
ての両端部付近Aに於ける非線形性を防止し、同一のコ
イル長、ショートリング合計長、及びコア長に於いて第
2実施例の線形維持範囲をより拡大することができる。
FIG. 5 shows a third embodiment of the invention. This embodiment is based on the second embodiment shown in FIG. 4(b), and the short ring 7 is 21i! Divided into 5 short ring pieces 7a
, 7b, and are arranged at a predetermined interval d. Specifically, they are positioned near both ends of the primary coil 1 and secondary coils 2 and 6. The short ring pieces 7a, 7b on both sides naturally move up and down in conjunction with the movable body 42. This prevents nonlinearity near both ends A of the differential transformer, and further expands the linearity maintenance range of the second embodiment with the same coil length, short ring total length, and core length. can do.

以上説明して来た如く、この発明によれば上述の即き構
成としたため、いわば差動変圧器の作動原理そのものの
開発によシ、従来超高級品でしか実現できなかった精度
を一桁、或いはそれ以上安い普及価格で実現できるとい
う画期的な効果の得られることが試験により確認されて
いる。しかもこの発明に係る差動変圧器は従来同程度の
精度を得ていたものに比べ、極めて軽緘且つ小型にでき
加工・製造も容易であることも確認されている。又、更
にショートリングのリング外径を可動体のショートリン
グ以外の部位の外径より小さく形成することとしたため
、ショートリングに傷がつきにくく、高精度を長期に亘
って維持できるという効果も得られる。
As explained above, according to the present invention, since the above-mentioned immediate configuration is adopted, it is possible to develop the operating principle of the differential transformer itself, so to speak, and achieve a one-digit accuracy that could only be achieved with ultra-high-end products. Tests have confirmed that the revolutionary effect can be achieved at a widespread price of , or even lower. Furthermore, it has been confirmed that the differential transformer according to the present invention is extremely lightweight and compact, and is easier to process and manufacture than conventional transformers that have achieved the same level of accuracy. Furthermore, since the outer diameter of the short ring is made smaller than the outer diameter of the parts of the movable body other than the short ring, the short ring is less likely to be damaged and high precision can be maintained over a long period of time. It will be done.

そして実施例に示す如く、可動体の全体を高透磁率材と
し、そこにショートリングを備えるようにすれば得られ
る精度がより向上し、又、ショートリングをいくつかの
分割ショートリング片に分割し、夫々を所定の間隔を隔
てて配するようにすれば、線形維持の範囲がより拡大す
るという効果も得られる。
As shown in the example, if the entire movable body is made of a high magnetic permeability material and a short ring is provided there, the accuracy can be further improved, and the short ring can be divided into several short ring pieces. However, if they are arranged at predetermined intervals, the range of linearity maintenance can be further expanded.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の差動変圧器の一例を示す説明図、 第2図(イ)(ロ)はこの発明の原理を示す説明図で、
(イ)は空芯状態を示したもの、(ロ)は可動体にショ
ートリングを備えた状態を示したもの、第6図はこの発
明の第1実施例を示す説明図、第4図(イ)(ロ)はこ
の発明の第2実施例を示す説明図で、(イ)は1医、2
次コイルの内外に亘って高透磁率のOT動体を配したも
の、(ロ)は該高透磁率の0T動体にショー) IJン
グを備えた状態を示したもの、そして、 第5図はこの発明の第6実施例を示す説明図である。 1              ・・ 1 次 コ イ
 ル2.6   2次コイル 40.41.42・・・・・可動体 41       可動体のショー) IJング以外の
部位7    ・・・ ショートリング d    ・・・ ショートリング間の所定の間隔78
.7b    分割ショートリング片D7     ・
・ ショートリングのリング径D41        
可動体のショートリング以外の部位の外径−〜 昧           派 手続補正書(自発) 1.事件の表示 昭和57年特許願第214619号 2、発明の名称 差動変圧器 3、補正をする者 事件との関係   特許出願人 氏 名     中部 三部  (化1名)4、代理人 氏名  (6720)  弁理士 高月 1孟5、補正
の対象 図面 6、?ili正の内容 7、添付書類の目録 図面     1通
Figure 1 is an explanatory diagram showing an example of a conventional differential transformer, and Figures 2 (a) and (b) are explanatory diagrams showing the principle of this invention.
(A) shows an empty core state, (B) shows a state in which the movable body is equipped with a short ring, FIG. 6 is an explanatory diagram showing the first embodiment of the present invention, and FIG. (a) and (b) are explanatory diagrams showing a second embodiment of the present invention, in which (a) shows one doctor, two doctors
Next, a high magnetic permeability OT moving body is arranged inside and outside the coil, (b) shows the high magnetic permeability OT moving body equipped with an IJ ring, and Figure 5 shows this. It is an explanatory view showing a sixth example of the invention. 1... Primary coil 2.6 Secondary coil 40.41.42...Movable body 41 (show of movable body) Parts other than IJ ring 7... Short ring d... Between short rings predetermined interval 78
.. 7b Split short ring piece D7 ・
・Short ring ring diameter D41
Outer diameter of parts of the movable body other than the short ring - ~ Amended Procedural Amendment (Voluntary) 1. Display of the case 1982 Patent Application No. 214619 2, Name of the invention Differential transformer 3, Person making the amendment Relationship to the case Patent applicant name Chubu Sanbu (1 person) 4, Name of agent (6720) ) Patent Attorney Takatsuki 1 Meng 5, drawings subject to amendment 6, ? ili positive contents 7, catalog drawing of attached documents 1 copy

Claims (3)

【特許請求の範囲】[Claims] (1)交流電源に接続された1次コイルと差動結線され
た2次コイルとの間に、高喧気伝導率材をリング状に形
成して成る相互誘導抑圧用のショートリングを備えた可
動体を配すると共に、このショートリングのリング外径
を可動体のショー) IJング以外の部位の外径よ)小
さく形成し、2次コイル側から該可動体の変位に応じた
出力電圧を得ることを特徴とする差動変圧器。
(1) A short ring for suppressing mutual induction made of a high conductivity material formed into a ring shape is provided between the primary coil connected to an AC power supply and the differentially connected secondary coil. In addition to arranging the movable body, the outer diameter of the short ring is made smaller than the outer diameter of the movable body (other than the IJ ring), and an output voltage corresponding to the displacement of the movable body is applied from the secondary coil side. A differential transformer characterized by obtaining.
(2)可動体は、全体が高透磁率材で形成されているこ
とを特徴とする特許請求の範囲第1項記載の差動変圧器
(2) The differential transformer according to claim 1, wherein the movable body is entirely formed of a high magnetic permeability material.
(3)  ショー) IJソング、所定の間隔を隔てて
配された硬数の分割ショートリング片から成る特許請求
の範囲第1項又は第2項記載の差動変圧器。
(3) The differential transformer according to claim 1 or 2, comprising an IJ song and hard split short ring pieces arranged at predetermined intervals.
JP57214619A 1982-12-09 1982-12-09 Differential transformer Pending JPS59105516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57214619A JPS59105516A (en) 1982-12-09 1982-12-09 Differential transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57214619A JPS59105516A (en) 1982-12-09 1982-12-09 Differential transformer

Publications (1)

Publication Number Publication Date
JPS59105516A true JPS59105516A (en) 1984-06-18

Family

ID=16658721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57214619A Pending JPS59105516A (en) 1982-12-09 1982-12-09 Differential transformer

Country Status (1)

Country Link
JP (1) JPS59105516A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61183507U (en) * 1985-02-16 1986-11-15
JPS6230308U (en) * 1985-08-07 1987-02-24

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5443765A (en) * 1977-08-17 1979-04-06 Hayter John Edward Electromagnetic location transducer
JPS571210A (en) * 1980-06-04 1982-01-06 Noble Sangyo Kk Differential detector
JPS5719613A (en) * 1980-07-10 1982-02-01 Noble Sangyo Kk Differential sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5443765A (en) * 1977-08-17 1979-04-06 Hayter John Edward Electromagnetic location transducer
JPS571210A (en) * 1980-06-04 1982-01-06 Noble Sangyo Kk Differential detector
JPS5719613A (en) * 1980-07-10 1982-02-01 Noble Sangyo Kk Differential sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61183507U (en) * 1985-02-16 1986-11-15
JPS6230308U (en) * 1985-08-07 1987-02-24

Similar Documents

Publication Publication Date Title
EP1400988A3 (en) Step-up transformer for magnetron driving
EP1176615A3 (en) Reactor
US20030206087A1 (en) Magnetic system having three-dimensional symmetry for three phase transformers
JPH0621218Y2 (en) Current transformer
JPS59105516A (en) Differential transformer
JP2002528710A (en) Linear inductive transducer
CA1046600A (en) Series/parallel connected single phase power transformer
US4010536A (en) Method of adjusting two concentric windings in electrical induction devices
US2989711A (en) Position measuring apparatus
JPS5972118A (en) Differential transformer
EP0587142A3 (en) A rotary transformer
GB2023350A (en) Ring transformer for resistance butt welders
JP2965557B1 (en) Displacement detector and displacement measuring device
Charap et al. A core loss model for laminated transformers
US20170092419A1 (en) Magnetically permeable core and an inductive power transfer coil arrangement
JP3352983B2 (en) Sliding inductor reactor structure
JPS63224601A (en) Non-contact power feeder
JPS5759116A (en) Differential transformeter conversion system
JPS57143804A (en) Cylindrical iron core made of segmental pieces
JPS57117217A (en) Molded type current transformer
GB2129621A (en) Differential transformer and differentially transforming system
CN217061731U (en) Secondary winding structure of voltage transformer
DE3871522D1 (en) INDUCTIVE SENSOR.
JPS5919408Y2 (en) Split type zero phase current transformer
SU1585651A1 (en) Transducer for indicating linear displacements