JPS6259056B2 - - Google Patents

Info

Publication number
JPS6259056B2
JPS6259056B2 JP6244480A JP6244480A JPS6259056B2 JP S6259056 B2 JPS6259056 B2 JP S6259056B2 JP 6244480 A JP6244480 A JP 6244480A JP 6244480 A JP6244480 A JP 6244480A JP S6259056 B2 JPS6259056 B2 JP S6259056B2
Authority
JP
Japan
Prior art keywords
platinum group
catalyst
chlorine gas
salt
rhodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6244480A
Other languages
Japanese (ja)
Other versions
JPS56160331A (en
Inventor
Kazuko Yoshida
Fumyoshi Noda
Atsushi Kuroda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP6244480A priority Critical patent/JPS56160331A/en
Publication of JPS56160331A publication Critical patent/JPS56160331A/en
Publication of JPS6259056B2 publication Critical patent/JPS6259056B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】 本発明は白金族金属元素(以下、単に白金族金
属という)を担体に担持してなる触媒、特に使用
済触媒からこれらの金属を回収する方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a catalyst comprising a platinum group metal element (hereinafter simply referred to as platinum group metal) supported on a carrier, and particularly to a method for recovering these metals from a spent catalyst.

触媒成分として、Ru,Rh,Pd,Os,Ir,Pt等
の白金族金属をアルミナ、シリカ等の担体に担持
した触媒は、化学工業や自動車等の排ガス浄化用
等に広く利用されている。これに使用する白金族
金属は高価であり、資源的にも有限であるため、
使用済触媒から回収して再利用することが社会的
に要求されている。
Catalysts in which platinum group metals such as Ru, Rh, Pd, Os, Ir, and Pt are supported on carriers such as alumina and silica as catalyst components are widely used in the chemical industry and for purifying exhaust gas from automobiles and the like. The platinum group metals used for this are expensive and limited in terms of resources, so
There is a social demand for recovering and reusing spent catalysts.

従来、白金族金属を触媒から回収する場合、触
媒に高温でナトリウム塩と塩素ガスを反応させ、
白金族金属を水性溶媒に可溶性の塩に変えて抽出
する方法を用いてきたが、この時反応生成物は熱
に対して不安定であるため生成後冷却するまでに
分解してしまい、白金族金属が充分に回収できな
いという問題があつた。
Conventionally, when recovering platinum group metals from a catalyst, the catalyst is reacted with sodium salt and chlorine gas at high temperature.
A method has been used to extract platinum group metals by converting them into salts that are soluble in an aqueous solvent, but the reaction products at this time are unstable to heat, so they decompose by the time they are cooled after they are formed. There was a problem that metal could not be recovered sufficiently.

本発明者等は上記の問題を解決するため、広範
な試験検討を行ない、白金族金属とナトリウム塩
との混合物を塩素化して得られる熱に不安定な化
合物、NaoMCL6(式中、Mは白金族金属を表わ
し、nは2または3の数を表わす。)が、高温下
で塩素ガスを放出しながら分解する現象を防止し
得る方法を見出した。すなわち、上記化合物の分
解は、高温における該化合物の生成後、該化合物
が安定化して分解しなくなる温度に冷却するまで
塩素気流中で塩素雰囲気を保つことにより充分抑
制され、これにより可溶性の白金族金属化合物が
高収率で生成されることを見出した。
In order to solve the above problem, the present inventors conducted extensive tests and studies, and developed a thermally unstable compound, Na o MCL 6 (in the formula, (M represents a platinum group metal, n represents the number 2 or 3)) has been found to be able to prevent the phenomenon of decomposition while releasing chlorine gas at high temperatures. That is, the decomposition of the above compound is sufficiently suppressed by maintaining a chlorine atmosphere in a chlorine stream until the compound is stabilized and cooled to a temperature at which it no longer decomposes after its formation at high temperatures. It has been found that metal compounds are produced in high yield.

すなわち、本発明は白金族金属を担体に担持し
てなる触媒にアルカル金属塩溶液を含浸せしめ、
乾燥させた後、塩素ガス雰囲気下で500℃以上に
加熱することにより、該白金族金属を水性溶媒に
可溶性の塩に変え、しかる後、400℃以下に冷却
するまで塩素ガス雰囲気を保持し、次いで該塩を
水性溶媒で抽出することを特徴とするものであ
る。
That is, the present invention impregnates a catalyst comprising a platinum group metal supported on a carrier with an alkali metal salt solution,
After drying, convert the platinum group metal into a salt soluble in an aqueous solvent by heating to 500°C or higher in a chlorine gas atmosphere, and then maintain the chlorine gas atmosphere until cooling to 400°C or lower, The method is characterized in that the salt is then extracted with an aqueous solvent.

白金族金属を水性溶媒に可溶性の塩とする方法
の1例を示せば、触媒担体に担持した白金族金属
を先ずナトリウム塩と充分混合し、混合物を耐火
レンガ製ボートに入れ、管状炉内で塩素ガス雰囲
気下500℃以上で反応させる。生じた可溶性の塩
を冷却する時、400℃以下になるまで炉内に塩素
ガスを流通させることにより、可溶性の塩の分解
を抑制することができる。
One example of a method for converting a platinum group metal into a salt soluble in an aqueous solvent is to first thoroughly mix the platinum group metal supported on a catalyst carrier with a sodium salt, place the mixture in a firebrick boat, and heat the mixture in a tube furnace. React at 500℃ or higher in a chlorine gas atmosphere. When cooling the generated soluble salt, it is possible to suppress the decomposition of the soluble salt by passing chlorine gas through the furnace until the temperature drops to 400°C or less.

以下、本発明を実施例に基づいて詳しく説明す
るが、本発明はこれらのみに限定されるものでは
ない。
Hereinafter, the present invention will be explained in detail based on Examples, but the present invention is not limited to these.

実施例 1 アルミナ担体上にロジウム0.013重量%、白金
0.115重量%を担持せしめた触媒50gに20%塩化
ナトリウム溶液(W/V)を含浸させ、塩素雰囲
気中800℃で1時間反応させ、反応終了後100℃に
なるまで塩素ガスを流しながら冷却し、生成物を
塩酸で抽出したところ、抽出後の担体に残るロジ
ウムと白金はともに0.001%以下で、実質上完全
にロジウムの抽出が行なわれた。
Example 1 0.013 wt% rhodium, platinum on alumina support
50g of catalyst supported with 0.115% by weight was impregnated with 20% sodium chloride solution (W/V), reacted in a chlorine atmosphere at 800℃ for 1 hour, and after the reaction was completed, cooled while flowing chlorine gas until the temperature reached 100℃. When the product was extracted with hydrochloric acid, both rhodium and platinum remaining on the carrier after extraction were less than 0.001%, and rhodium was substantially completely extracted.

実施例2および参考例 アルミナ担体上にロジウム0.14重量%を担持せ
しめた触媒各40gに15%NaCl溶液(W/V)を
含浸させ、塩素雰囲気中600℃で1時間反応さ
せ、反応終了後50℃,100℃,200℃,300℃,400
℃(以上本発明例)および500℃(比較例)に冷
えるまで塩素ガスを流しながら冷却し、それぞれ
の生成物を王水または水で抽出してロジウムの抽
出率を調べた。結果を図に示す。図から明らかな
とおり、冷却時に触媒温度(反応生成物温度)が
50℃に低下するまで塩素ガスを流した場合は、ロ
ジウムの抽出率は王水を用いた時ほぼ100%、水
を用いた時でも約85%と著しく良好であつた。こ
れに対して、触媒温度が未だ高い500℃の時点で
塩素ガスの通気を中止した場合は、ロジウムの抽
出率は王水を用いた時でも60%以下の低い値しか
得られなかつた。
Example 2 and Reference Examples 40g of each catalyst containing 0.14% by weight of rhodium supported on an alumina carrier was impregnated with 15% NaCl solution (W/V) and reacted for 1 hour at 600°C in a chlorine atmosphere. ℃、100℃、200℃、300℃、400
The samples were cooled while flowing chlorine gas until they reached 500°C (inventive examples) and 500°C (comparative examples), and the respective products were extracted with aqua regia or water to examine the rhodium extraction rate. The results are shown in the figure. As is clear from the figure, the catalyst temperature (reaction product temperature) increases during cooling.
When chlorine gas was flowed until the temperature dropped to 50°C, the extraction rate of rhodium was approximately 100% when using aqua regia and approximately 85% when using water, which was extremely good. On the other hand, when aeration of chlorine gas was stopped when the catalyst temperature was still high at 500°C, a low rhodium extraction rate of less than 60% was obtained even when aqua regia was used.

実施例 3 アルミナ担体上にロジウム0.0015重量%を担持
させた触媒40gに、10%NaOH溶液(W/V)を
含浸させ、塩素雰囲気中600℃にて1時間反応さ
せ、反応終了後100℃に冷えるまで塩素雰囲気を
保ちながら冷却し、生成物を王水で抽出したとこ
ろ、抽出後の担体に残るロジウムは0.001%以下
で実質上完全にロジウムの抽出が行なわれた。
Example 3 40 g of a catalyst with 0.0015% by weight of rhodium supported on an alumina carrier was impregnated with 10% NaOH solution (W/V), reacted for 1 hour at 600°C in a chlorine atmosphere, and heated to 100°C after the reaction was completed. When the product was cooled while maintaining a chlorine atmosphere until cool and extracted with aqua regia, the rhodium remaining on the carrier after extraction was less than 0.001%, and rhodium was substantially completely extracted.

以上説明したとおり、本発明の白金族金属回収
方法によれば、白金族金属は水性溶媒に可溶性の
化合物に変えたとき、この化合物の熱による分解
は抑制され、これによつて貴重な白金族金属を高
収率で抽出回収し、新たな触媒の製造のために再
利用することが可能である。
As explained above, according to the platinum group metal recovery method of the present invention, when the platinum group metal is converted into a compound soluble in an aqueous solvent, the thermal decomposition of this compound is suppressed, thereby making it possible to collect valuable platinum group metals. It is possible to extract and recover metals in high yield and reuse them for the production of new catalysts.

【図面の簡単な説明】[Brief explanation of the drawing]

図はロジウムの可溶性化合物生成後、各温度に
冷えるまで塩素雰囲気を保つた時の触媒からのロ
ジウム抽出率を示すグラフである。
The figure is a graph showing the rhodium extraction rate from the catalyst when a chlorine atmosphere was maintained until the catalyst cooled to each temperature after the formation of a soluble compound of rhodium.

Claims (1)

【特許請求の範囲】[Claims] 1 白金族金属を担体に担持してなる触媒にアル
カリ金属塩溶液を含浸せしめ、乾燥させた後、塩
素ガス雰囲気下で500℃以上に加熱して該白金族
金属を水性溶媒に可溶性の塩に変え、しかる後、
400℃以下に冷却するまで塩素ガス雰囲気を保持
し、次いで該塩を水性溶媒で抽出することを特徴
とする使用済触媒からの白金族金属の回収方法。
1 A catalyst consisting of a platinum group metal supported on a carrier is impregnated with an alkali metal salt solution, dried, and then heated to 500°C or higher in a chlorine gas atmosphere to convert the platinum group metal into a salt soluble in an aqueous solvent. change, and then
1. A method for recovering platinum group metals from spent catalysts, which comprises maintaining a chlorine gas atmosphere until the catalyst is cooled to 400° C. or lower, and then extracting the salt with an aqueous solvent.
JP6244480A 1980-05-12 1980-05-12 Recovering method for platinum group metal from used catalyst Granted JPS56160331A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6244480A JPS56160331A (en) 1980-05-12 1980-05-12 Recovering method for platinum group metal from used catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6244480A JPS56160331A (en) 1980-05-12 1980-05-12 Recovering method for platinum group metal from used catalyst

Publications (2)

Publication Number Publication Date
JPS56160331A JPS56160331A (en) 1981-12-10
JPS6259056B2 true JPS6259056B2 (en) 1987-12-09

Family

ID=13200378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6244480A Granted JPS56160331A (en) 1980-05-12 1980-05-12 Recovering method for platinum group metal from used catalyst

Country Status (1)

Country Link
JP (1) JPS56160331A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6385262U (en) * 1986-11-26 1988-06-03
JPH0475564U (en) * 1990-11-13 1992-07-01

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58194745A (en) * 1982-05-06 1983-11-12 Tanaka Kikinzoku Kogyo Kk Recovery of ruthenium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6385262U (en) * 1986-11-26 1988-06-03
JPH0475564U (en) * 1990-11-13 1992-07-01

Also Published As

Publication number Publication date
JPS56160331A (en) 1981-12-10

Similar Documents

Publication Publication Date Title
JP4051110B2 (en) Method for producing iodinated trifluoromethane
CN110407221B (en) Preparation method of chabazite molecular sieve and preparation method of SCR catalyst
US2974169A (en) Para-amino diphenylamine
US3318891A (en) Palladium diacetate and method for its preparation
JPS6259056B2 (en)
US4055630A (en) Process for the recovery of selenium from urethanes containing selenium or compounds thereof
US2863762A (en) Recovery of noble metals
US2830877A (en) Recovery of platinum from alumina base platinum catalyst
JPH0617160A (en) Method for recovering rhenium from used catalyst
JPS583975B2 (en) palladium
US5084092A (en) Method of separating metals from catalyst material
EP0546616B1 (en) Process for the production of hydrogen peroxide
US4130633A (en) Removal of selenium from urethane solutions
JPH0257642A (en) Method of recovering noble metal from waste catalyst
JP2762591B2 (en) Method for producing isopropyl alcohol
EP0357862B1 (en) Process for preparing chlororhodiumic acid
US4038375A (en) Process for the recovery of selenium from selenium-containing urethane solutions
JPH02188418A (en) Thermally expandable graphite
JPS58199832A (en) Method for recovering rhodium
SU969769A1 (en) Method for recovering tellurium from solutions
JP2856849B2 (en) Method for producing oxalyl fluoride
RU1768584C (en) Method of 3ъ-amino-4ъ-chlorobenzophenone-2-carboxylic acid synthesis
SU1695977A1 (en) Method of producing catalyst for aromatic nucleophilic substitution reactions
JPH0549345B2 (en)
US2806070A (en) Process of producing polychloro benzenes from hexachloro cyclohexanes