JPS6259048B2 - - Google Patents

Info

Publication number
JPS6259048B2
JPS6259048B2 JP7160579A JP7160579A JPS6259048B2 JP S6259048 B2 JPS6259048 B2 JP S6259048B2 JP 7160579 A JP7160579 A JP 7160579A JP 7160579 A JP7160579 A JP 7160579A JP S6259048 B2 JPS6259048 B2 JP S6259048B2
Authority
JP
Japan
Prior art keywords
dithionite
anhydrous
molded
parts
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7160579A
Other languages
Japanese (ja)
Other versions
JPS55162411A (en
Inventor
Takafumi Matsuba
Yoshio Ishizuka
Kenji Niwa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Koei Chemical Industry Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Koei Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd, Koei Chemical Industry Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP7160579A priority Critical patent/JPS55162411A/en
Publication of JPS55162411A publication Critical patent/JPS55162411A/en
Publication of JPS6259048B2 publication Critical patent/JPS6259048B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Glanulating (AREA)
  • Paper (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は無氎亜二チオン酞塩、特にナトリりム
塩、亜鉛塩等の安定な成型䜓及びその補造法に関
する。 曎に詳しくは、本発明は無氎亜二チオン酞塩を
有機又は無機結合剀を甚いお造粒又は成型しおな
るこずを特城ずする無氎亜二チオン酞塩成型䜓及
び粉砕された無氎亜二チオン酞塩を、有機又は無
機結合剀及び揮発性溶剀ずを任意の順序にお混合
し次いで造粒又は成型した埌、揮発性溶剀を陀去
するこずを特城ずする無氎亜二チオン酞塩成型䜓
の補造法である。 無氎亜二チオン酞塩は、氎溶液䞭においお簡単
に分解し優れた還元性を有するため、パルプの挂
癜、バツト染料の染色、アゟ系染料染色物の脱色
等の分野に甚いられおいる。 しかしながら、珟圚垂販されおいる無氎亜二チ
オン酞塩は通垞平均埄が0.3mm以䞋の埮粉末であ
るため、その䜿甚に際し飛散し易く、そのため䜜
業環境の悪化を䌎なうのみならず呚囲の正垞な染
色物を脱色したり染济に飛散混合し再珟性䞍良の
原因ずなる。 曎に埮粉末であるため、保管に際し吞湿分解し
易くその還元力を著しく劣化させるのみならず、
堎合によ぀おは含有むオりが自然発火し火灜の原
因ずなるこずはよく知られおいる。 又、特にパルプの挂癜に際しお、そうした垂販
の埮粉末を高粘床のパルプスラリヌ䞭に投入した
堎合、パルプスラリヌ䞊局郚に浮遊し䞀床浮遊す
るず沈降溶解しにくい性質のため、無氎亜二チオ
ン酞塩の溶液を調敎し終るたでにかなりの無氎亜
二チオン酞塩が分解する。この無氎亜二チオン酞
塩の分解量は溶解枩床が高い皋、氎溶液又はスラ
リヌの粘床が高い皋増す傟向にあり、溶液調敎終
了時たでに添加量の20〜50が分解する。 埓぀お、䞀般には理論量の1.5〜2.2倍の無氎亜
二チオン酞塩が䜿甚されおいるのが実情である。 こうした問題の解決は業界の倧きな課題であ
り、珟圚たで飛散防止、安定化に関する皮々の察
策が提案されおいる。 䟋えば、特公昭42−20372号、特公昭42−24651
号、特公昭43−24774号、特公昭44−12013号、特
公昭44−8093号、特公昭45−26610号、特公昭46
−16659号、特公昭46−34493号、特公昭46−
34494号、特公昭46−34495号、特公昭46−34496
号、特公昭51−17155号等で、これらはいずれ
も、スベリン酞、アれラむン酞、セバシン酞及び
これらの塩、アルデヒド類、界面掻性剀、アミノ
ポリカルボン酞、無氎重亜硫酞゜ヌダ、アルキレ
ンオキシド、脂肪族アミン、オキシプロピル化デ
ンプン、オキシプロピル化セルロヌズ、グリコヌ
ス類等の物質を無氎亜二チオン酞塩ず単に混合す
るか、無氎亜二チオン酞塩の結晶衚面に被膜させ
るか、あるいは無氎亜二チオン酞塩ず反応させお
安定な化合物を結晶衚面に圢成せしめる方法であ
る。すなわち、これたで提案された方法で埗られ
る無氎亜二チオン酞塩は、䟝然ずしお平均埄0.3
mm以䞋の埮粉末を察象ずしたものであり、前述し
た無氎亜二チオン酞塩の欠点である䜿甚時の飛
散、保管時の吞湿による分解、たたはパルプ挂癜
時のパルプスラリヌ䞊局郚ぞの浮遊等の問題を根
本的に解決するこずは難しく、今日においおもそ
の問題の解決は業界においお最も切望されおいる
課題の぀である。 本発明者らは鋭意研究怜蚎の結果、埮粒又は粉
砕された無氎亜二チオン酞塩を揮発性溶剀に可溶
もしくは混和可胜で垞枩で固䜓である有機たたは
無機結合剀を甚いお造粒又は成型が可胜であるこ
ず、埗られた成型䜓は粉末品に察し著しく安定で
あるこず、か぀䟋えばパルプ挂癜に際しおパルプ
スラリヌ䞭に投入した堎合に生ずる浮遊の問題が
なく郜合よく目的を達成するこずができ、しかも
物末品に䌎うダスト飛散による䜜業環境の悪化等
の問題も䞀挙に解決できるこずを芋出した。 埓来、無氎亜二チオン酞塩は、氎分ず酞玠の存
圚する条件䞋では極めお発火し易いため、成型䜓
の補造は蓄熱発火の危険性から工業的に極めお困
難ず考えられおおり、それが意倖にも本発明によ
る成型䜓は極めお安定であるためその補造を工業
的に䟡倀あるものずしたこずは驚嘆すべきこずで
ある。 次に本発明の無氎亜二チオン酞塩成型䜓の補造
法に぀いお説明する。 䞀皮以䞊の揮発性溶剀䞭に遞択された有機結合
剀の䞀皮以䞊あるいは無機結合剀の䞀皮以䞊もし
くはそれらの混合物を溶解又は混和したのち、通
垞平均粒埄がΌ䜍たで粉砕した無氎亜二チオン
酞塩、及び必芁に応じお公知の添加剀、安定化剀
などを添加混合し、この混合物を通垞の方法によ
り転動造粒又は打錠成型し、次いで窒玠気流䞋加
熱也燥あるいは枛圧也燥により揮発性溶剀を陀去
しお安定な成型䜓を埗るこずができる。なお、混
合順序は任意であ぀およい。 本発明にいう無氎亜二チオン酞塩ずしおはナト
リりム塩、カリりム塩、アンモニりム塩、亜鉛塩
等があげられるが特にナトリりム塩又は亜鉛塩が
奜たしく甚いられる。 本発明にいう揮発性溶剀の代衚的なものずしお
はメタノヌル、゚タノヌル等の䜎玚アルコヌル類
が最も奜たしく、曎にそれらの゚ヌテル類、アセ
トン、メチル゚チルケトンなどのケトン類、゜ル
ベントナフサ、石油゚ヌテル、シクロヘサン、ベ
ンれンなどの脂肪族又は芳銙族炭化氎玠類等があ
げられるが必らずしもこれらのみに限定されるも
のではない。かかる揮発性溶剀によ぀お揮発性溶
剀、無氎亜二チオン酞塩及び結合剀ずの混合物は
ペヌスト状ずなり、次いで造粒又は成型工皋に䟛
せられるず共に造粒又は成型埌はこの揮発性溶剀
を容易に陀去するこずができる。 本発明にいう揮発性溶剀に可溶もしくは混和可
胜な、垞枩で固䜓の有機たたは無機結合剀の代衚
的なものずしおは、テトラメチロヌルメタン、ゞ
ペンタ゚リスリトヌル、トリメチロヌルプロパ
ン、トリメチロヌル゚タン、ネオペンチルグリコ
ヌル、ポリ゚チレンオキサむド等の倚䟡アルコヌ
ル類あるいはネオペンチルアルコヌル、ステアリ
ルアルコヌル等のモノアルコヌル類該アルコヌ
ル類の脂肪酞あるいは芳銙族カルボン酞゚ステル
化合物該アルコヌル類のアリヌル゚ヌテル化合
物等の゚ヌテル類゜デむりムフオルムアルデヒ
ドスルフオキシラヌト、゜デむりムアセトアルデ
ヒドスルフオキシラヌト、アセトアルデヒドアン
モニア、尿玠フオルマリン初期瞮合物等の化合
物グリコヌルアルデヒド、−ゞオキシベ
ンズアルデヒド等のアルデヒド類グルコヌル、
乳糖、デキストリン、麊芜糖、シペ糖等の糖類
尿玠、アセチルメチヌル尿玠、メチヌル尿玠、フ
゚ニヌル尿玠、チオ尿玠、ゞ゚チルチオ尿玠、メ
チヌルチオ尿玠等の尿玠類チオアセトアミド、
アクリルアミド、アゞミドトル゚ン、アセトアミ
ド、アセトアミド安息銙酞、アセトアミドプノ
ヌル、ブチヌルアミド、ゞシアンゞアミド、ゞシ
アンゞアミゞン、アセチルグリシン、アセトナフ
タリド、カプロラクタム、カプロンアミド等のア
ミド類アセトアルデヒドセミカルバゟン、アセ
チルセミカルバゞツド等のカルバゟンあるいはカ
ルバゞツド類アセトアルドキシム、アセトオキ
シム等のオキシム類ステアリン酞、アセチレン
ゞカルボン酞、−アセトプノンカルボン酞、
−クロヌルフタヌル酞、−ゞオキシ安息
銙酞、−ゞオキシ安息銙酞、−ゞオ
キシフタヌル酞等のカルボン酞類−ゞオ
キシナフタリン、−ゞオキシナフタリン、
−ゞオキシナフタリ等のナフタリン類メ
チルセルロヌズ、゚チルセルロヌズ、ブチルセル
ロヌズ等の高分子化合物類及びその他に
−シクロヘキサンゞオン、−ヘキサンゞオ
ヌル、テトラオキシベンれン、トリオキシアセト
プノン類等があるが必らずしもこのもののみに
限定されるものではない。 無機結合剀の代衚的なものずしおは、゜デむり
ムボロハむドラむド、むミドビススルフオニルア
ミド塩化アンモニりム、氎酞化カリりム、氎酞化
ナトリりム、炭酞氎玠ナトリりム等があるが必ら
ずしもこのもののみに限定されない。 結合剀の添加量は、目的に応じお任意の量でよ
いが無氎亜二チオン酞塩そのもの又は安定剀等が
添加された無氎亜二チオン酞塩の100郚に察しお
郚以䞊奜たしくは郚以䞊、曎に奜たしくは10
郚以䞊である。添加量が倚い皋、湿気条件䞋での
安定性は増すが、倚すぎるず経枈性からみお奜た
しくない。埓぀お、䞀般には〜30郚の範囲で䜿
甚する。 又、結合剀の皮類によ぀おは、揮発性溶剀に察
する溶解床が䜎く所定量の添加が䞍可胜な堎合
は、也燥をしながら結合剀を溶解した揮発性溶剀
を滎䞋し぀぀混合造粒する方法を採甚する。又、
堎合によ぀おは結合剀ず無氎亜二チオン酞塩を粉
状で混和しおおいおもよい。 結合剀を溶解した揮発性溶液の無氎亜二チオン
酞塩そのもの又は安定剀等が添加された無氎亜二
チオン酞塩に察する混合割合は、無氎亜二チオン
酞塩の粒床、炭酞ナトリりム、亜硝酞塩、トリポ
リリン酞ナトリりム等の安定剀の有無により皮々
倉化するもので、造粒、成型に最適な条件を勘案
しお決定されるが、本発明はこれにより限定され
るものではない。 本発明の無氎亜二チオン酞塩成型䜓の圢状は任
意であ぀およいが、取扱い䞊球圢たたは果粒状が
奜たしく、又埄は平均埄で衚瀺した堎合、mm以
䞊奜たしくはmm以䞊、曎に奜たしくはmm以䞊
のものが優れた安定性を瀺す。 本発明による無氎亜二チオン酞塩成型䜓は、空
気䞭に攟眮しおも極めお安定であるのみならず、
パルプスラリヌ、廃液スラゞ等の粘皠液に添加す
る際に䞊局に浮遊しないために、無氎亜二チオン
酞塩の分解量を極めお少なくするこずを可胜にし
た。又、成型䜓でか぀匷床が倧であるため粉塵の
心配がなく公害の面からも極めお優れおいる。曎
に本発明の無氎亜二チオン酞塩成型䜓のもう䞀぀
の特城は、氎に溶解する際に衚面から埐々に溶解
するために必芁還元電䜍を瀺す時間が長いこずで
ある。垂販の無氎亜二チオン酞塩は埮粒であるた
め䞀床に溶解し、極めお分解し易いので、必芁還
元電䜍を瀺す時間が結果的に短くなるずいう欠点
を有しおいる。 本発明による無氎亜二チオン酞塩成型䜓を䜿甚
すれば、添加量を少なくしお同じ効果を発揮でき
るずいうこずは、極めお経枈的であるずいわざる
を埗ない。 すなわち、本発明による無氎亜二チオン酞塩成
型䜓は、前述した既存の埮粉末品の問題点を党お
解決し、パルプの挂癜、バツト染料の染色、染色
物の脱色等の分野で極めお工業的䟡倀の高い有益
なものである。 以䞋実斜䟋で本発明を具䜓的に説明するが、こ
れらにより本発明は限定されるものではない。 〔実斜䟋 〕 無氎亜二チオン酞ナトリりム粉末玔床90.4
、粒床100メツシナオヌルスルヌ100郚を乳
鉢で充分磚朰しおΌ以䞋たで粉砕した埌、メタ
ノヌル15郚に察しお第衚に瀺す各皮の結合剀20
郚を溶解あるいは混和した液を添加混合した。こ
れを転動造粒機で平均粒埄15〜20mmの球圢たで窒
玠雰囲気䞭䞋で造粒した埌、窒玠雰囲気䞋、75℃
で時間也燥しお無氎亜二チオン酞ナトリりム成
型䜓を埗た。この無氎亜二チオン酞ナトリりム成
型䜓を内埄55mmφの100mlビヌカヌに30入れ、
同䞀条件で倧気雰囲気に攟眮しお、無氎亜二チオ
ン酞ナトリりムの玔床の経時倉化を枬定した。 又、比范のため無氎亜二チオン酞ナトリりム粉
末䞊びに、結合剀を添加混合し造粒する前のもの
を単に也燥した粉末に぀いお同様に枬定した。 結果を第衚に瀺す。䜆し 内数字は分解
率を瀺す。尿玠のみはメタノヌルに察しお
13郚を溶解させた。
The present invention relates to stable molded products of anhydrous dithionite salts, particularly sodium salts, zinc salts, etc., and a method for producing the same. More specifically, the present invention relates to an anhydrous dithionite molded product characterized by granulating or molding anhydrous dithionite using an organic or inorganic binder and pulverized anhydrous dithionite. An anhydrous dithionite molded product characterized in that the acid salt is mixed with an organic or inorganic binder and a volatile solvent in any order, then granulated or molded, and then the volatile solvent is removed. It is a manufacturing method. Since anhydrous dithionite easily decomposes in aqueous solution and has excellent reducing properties, it is used in fields such as pulp bleaching, butt dye dyeing, and decolorization of azo dye-dyed products. However, the currently commercially available anhydrous dithionite is a fine powder with an average diameter of 0.3 mm or less, so it easily scatters when used, which not only causes a deterioration of the working environment but also disrupts the normal surroundings. It decolorizes dyed products or scatters and mixes with the dye bath, causing poor reproducibility. Furthermore, since it is a fine powder, it easily decomposes due to moisture absorption during storage, which not only significantly deteriorates its reducing power, but also
It is well known that in some cases, sulfur content can spontaneously ignite and cause fires. In addition, especially when bleaching pulp, when such commercially available fine powder is added to a high viscosity pulp slurry, it floats in the upper layer of the pulp slurry and once suspended, it is difficult to settle and dissolve. By the time the solution is prepared, a significant amount of the anhydrous dithionite has decomposed. The amount of decomposed anhydrous dithionite tends to increase as the dissolution temperature increases and the viscosity of the aqueous solution or slurry increases, and 20 to 50% of the added amount decomposes by the time solution preparation is completed. Therefore, the actual situation is that 1.5 to 2.2 times the theoretical amount of anhydrous dithionite is generally used. Solving these problems is a major challenge for the industry, and various measures regarding scattering prevention and stabilization have been proposed to date. For example, Special Publication No. 42-20372, Special Publication No. 42-24651
Special Publication No. 43-24774, Special Publication No. 12013, Special Publication No. 12013, Special Publication No. 8093, Special Publication No. 45-26610, Special Publication No. 1977
−16659, Special Publication No. 34493, Special Publication No. 1977-
No. 34494, Special Publication No. 1973-34495, Special Publication No. 1977-34496
No. 51-17155, etc., all of which include suberic acid, azelaic acid, sebacic acid and their salts, aldehydes, surfactants, aminopolycarboxylic acids, anhydrous sodium bisulfite, alkylene oxides, and fats. Substances such as group amines, oxypropylated starch, oxypropylated cellulose, and glycoses can be simply mixed with anhydrous dithionite, coated on the crystal surface of anhydrous dithionite, or coated with anhydrous dithionite. This method involves reacting with an acid salt to form a stable compound on the crystal surface. That is, the anhydrous dithionite obtained by the methods proposed so far still has an average diameter of 0.3
This product targets fine powders of mm or less in size, and the above-mentioned drawbacks of anhydrous dithionite include scattering during use, decomposition due to moisture absorption during storage, and floating in the upper layer of pulp slurry during pulp bleaching. It is difficult to fundamentally solve this problem, and even today, solving this problem is one of the most urgent challenges in the industry. As a result of intensive research and study, the present inventors found that fine particles or pulverized anhydrous dithionite are granulated or molded using an organic or inorganic binder that is soluble or miscible in volatile solvents and solid at room temperature. The obtained molded product is extremely stable for powder products, and the purpose can be conveniently achieved without the problem of floating that occurs when it is added to a pulp slurry, for example, during pulp bleaching. Moreover, it has been found that problems such as deterioration of the working environment due to dust scattering caused by waste products can be solved all at once. Conventionally, anhydrous dithionite is extremely flammable in the presence of moisture and oxygen, and manufacturing molded products has been thought to be extremely difficult industrially due to the risk of heat accumulation and ignition. It is surprising that the molded article according to the present invention is extremely stable, making its manufacture industrially valuable. Next, a method for producing an anhydrous dithionite molded article of the present invention will be explained. Dithionite anhydride, which is obtained by dissolving or mixing one or more selected organic binders, one or more inorganic binders, or a mixture thereof in one or more volatile solvents, and then pulverized to an average particle size of about 5 ÎŒm. Salt and, if necessary, known additives, stabilizers, etc. are added and mixed, and this mixture is tumble-granulated or tablet-molded by a conventional method, and then heated and dried under a nitrogen stream or dried under reduced pressure to make it volatile. A stable molded body can be obtained by removing the solvent. Note that the mixing order may be arbitrary. Examples of the anhydrous dithionite mentioned in the present invention include sodium salts, potassium salts, ammonium salts, zinc salts, etc., and sodium salts or zinc salts are particularly preferably used. Typical volatile solvents used in the present invention include lower alcohols such as methanol and ethanol, and their ethers, acetone, ketones such as methyl ethyl ketone, solvent naphtha, petroleum ether, cyclohexane, benzene, etc. Examples include aliphatic or aromatic hydrocarbons, but are not necessarily limited to these. The mixture of the volatile solvent, anhydrous dithionite and the binder is made into a paste by using the volatile solvent, and then subjected to the granulation or molding process, and after the granulation or molding, the volatile solvent is removed. Can be easily removed. Typical organic or inorganic binders that are solid at room temperature and are soluble or miscible in the volatile solvent referred to in the present invention include tetramethylolmethane, dipentaerythritol, trimethylolpropane, trimethylolethane, and neopentyl. Polyhydric alcohols such as glycol and polyethylene oxide, or monoalcohols such as neopentyl alcohol and stearyl alcohol; Fatty acids or aromatic carboxylic acid ester compounds of these alcohols; Ethers such as aryl ether compounds of these alcohols; Compounds such as formaldehyde sulfoxylate, sodium acetaldehyde sulfoxylate, acetaldehyde ammonia, and urea formalin initial condensate; aldehydes such as glycolaldehyde and 2,4-dioxybenzaldehyde; glycol;
Sugars such as lactose, dextrin, maltose, sucrose;
Urea such as urea, acetylmethylurea, methylurea, phenylurea, thiourea, diethylthiourea, methylthiourea; thioacetamide,
Amides such as acrylamide, azimidotoluene, acetamide, acetamidobenzoic acid, acetamidophenol, butylamide, dicyandiamide, dicyandiamidine, acetylglycine, acetonaphthalide, caprolactam, capronamide; acetaldehyde semicarbazone, acetyl semicarbazide, etc. Carbazones or carbazides; oximes such as acetaldoxime and acetoxime; stearic acid, acetylene dicarboxylic acid, m-acetophenonecarboxylic acid,
Carboxylic acids such as 4-chlorophthalic acid, 2,3-dioxybenzoic acid, 2,6-dioxybenzoic acid, 4,5-dioxyphthalic acid; 1,3-dioxynaphthalic acid, 1,7-dioxynaphthalic acid,
Naphthalenes such as 2,7-dioxynaphthalene; polymer compounds such as methylcellulose, ethylcellulose, butylcellulose; and other 1,3
-cyclohexanedione, 1,6-hexanediol, tetraoxybenzene, trioxyacetophenones, etc., but are not necessarily limited to these. Typical inorganic binders include sodium borohydride, imidobisulfonylamide ammonium chloride, potassium hydroxide, sodium hydroxide, and sodium hydrogen carbonate, but these are not necessarily the only ones. Not limited. The amount of binder added may be any amount depending on the purpose, but it is preferably 1 part or more per 100 parts of anhydrous dithionite itself or anhydrous dithionite to which a stabilizer has been added. more than 10 parts, more preferably 10 parts
It is more than 100%. The greater the amount added, the greater the stability under humid conditions, but too much is not preferred from an economic standpoint. Therefore, it is generally used in a range of 5 to 30 parts. Depending on the type of binder, if the solubility in volatile solvents is low and it is impossible to add the prescribed amount, a method is to mix and granulate while drying and dropping a volatile solvent in which the binder has been dissolved. Adopt. or,
In some cases, the binder and anhydrous dithionite may be mixed in powder form. The mixing ratio of the volatile solution containing the binder to the anhydrous dithionite itself or the anhydrous dithionite to which a stabilizer has been added is determined by the particle size of the anhydrous dithionite, sodium carbonate, nitrite, It varies depending on the presence or absence of a stabilizer such as sodium tripolyphosphate, and is determined by taking into consideration the optimum conditions for granulation and molding, but the present invention is not limited thereto. The shape of the anhydrous dithionite molded product of the present invention may be arbitrary, but from the viewpoint of handling, it is preferably spherical or granular, and the diameter is 1 mm or more, preferably 3 mm or more, and more preferably 3 mm or more when expressed as an average diameter. Those with a diameter of 5 mm or more exhibit excellent stability. The anhydrous dithionite molded product according to the present invention is not only extremely stable even when left in the air, but also
When added to viscous liquids such as pulp slurry and waste sludge, it does not float in the upper layer, making it possible to extremely reduce the amount of anhydrous dithionite decomposed. In addition, since it is a molded product and has high strength, there is no need to worry about dust, and it is extremely good in terms of pollution. Another feature of the anhydrous dithionite molded product of the present invention is that when it is dissolved in water, it gradually dissolves from the surface, so it takes a long time to exhibit the necessary reduction potential. Commercially available anhydrous dithionite salts are fine particles, so they dissolve all at once and are extremely easy to decompose, so they have the disadvantage that the time required to exhibit the required reduction potential is shortened as a result. It must be said that the use of the anhydrous dithionite molded product according to the present invention is extremely economical since the same effect can be achieved with a smaller amount added. In other words, the anhydrous dithionite molded product according to the present invention solves all the problems of the existing fine powder products mentioned above, and is extremely useful in industrial fields such as pulp bleaching, butt dyeing, and decolorizing dyed materials. It is valuable and useful. The present invention will be specifically explained below with reference to Examples, but the present invention is not limited by these. [Example 1] Anhydrous sodium dithionite powder (purity: 90.4
%, particle size: 100 mesh all-through) was sufficiently ground in a mortar to pulverize it to 5Ό or less, and then mixed with 15 parts of methanol and 20 parts of the various binders shown in Table 1.
A solution obtained by dissolving or mixing these parts was added and mixed. This was granulated in a nitrogen atmosphere using a rolling granulator until it became spherical with an average particle size of 15 to 20 mm.
The mixture was dried for 3 hours to obtain an anhydrous sodium dithionite molded product. Put 30g of this anhydrous sodium dithionite molded body into a 100ml beaker with an inner diameter of 55mmφ,
The sample was left in the air under the same conditions to measure the change in purity of anhydrous sodium dithionite over time. For comparison, similar measurements were made on anhydrous sodium dithionite powder and simply dried powder before granulation after addition of a binder. The results are shown in Table 1. However, the numbers in parentheses indicate the decomposition rate (%). Urea only versus methanol
13 parts were dissolved.

【衚】 第衚の瀺す通り本発明による成型䜓が粉末品
に比し著しく安定であるこずが確認された。 なお、氎溶液䞭の安定性は、䞋蚘䜿甚䟋に瀺
す。 䜿甚䟋  パルプスラリヌ500を1000mlのビヌカヌ
に入れ、長さ45mm、巟20mmの枚矜根かい型翌で
20r.p.m.の速さで撹拌をし、60℃たで加熱した。
これに実斜䟋−No.の無氎亜二チオン酞ナトリ
りム成型䜓玔床76.430を投入した。そ
の結果、党量が投入ず同時に沈降し、浮遊するよ
うなこずはなか぀た。 又、無氎亜二チオン酞ナトリりム粉末玔床
90.4粒床100メツシナオヌルスルヌ25.4を
投入した。 その結果、玄割が浮遊し完党に沈降するたで
に玄分間芁した。 又、投入ず同時に経時倉化を枬定した。無氎亜
二チオン酞ナトリりム濃床の経時倉化を第衚に
瀺す。
[Table] As shown in Table 1, it was confirmed that the molded product according to the present invention was significantly more stable than the powder product. The stability in an aqueous solution is shown in the usage example below. (Usage example 1) Put 500g of 5% pulp slurry into a 1000ml beaker and use a two-bladed blade with a length of 45mm and a width of 20mm.
The mixture was stirred at a speed of 20 rpm and heated to 60°C.
30 g of anhydrous sodium dithionite molded article (purity: 76.4%) of Example-1 No. 4 was added to this. As a result, the entire amount settled as soon as it was added and did not float. In addition, anhydrous sodium dithionite powder (purity
25.4 g of 90.4% particle size 100 mesh all-through) was added. As a result, about 40% of the sample floated and it took about 2 minutes for it to completely settle. In addition, changes over time were measured at the same time as the addition. Table 2 shows the change in anhydrous sodium dithionite concentration over time.

【衚】 第衚に瀺す通り、本発明による成型䜓の氎溶
液䞭での安定性は、粉末品よりも著しく優぀おい
るこずが確認された。 又、本発明による成型䜓はパルプスラリヌ䞭に
すみやかに沈降し、埐々に溶解分解し投入した無
氎亜二チオン酞ナトリりムが有効に利甚されるこ
ずが確認された。 䜿甚䟋  リフアむンドグランドパルプ40郚ドラむ換
算を氎960郚に投入しお静かに撹拌しながら加
熱しお60℃迄昇枩する。 次いで、実斜䟋−〔〕No.で埗られた無氎亜
二チオン酞ナトリりム成型䜓、0.4郚を加えお、
60℃の枩床で30分間凊理する。 次いで、T.A.P.P.I暙準円圢玗玙料を甚いお玗
玙し、カラヌデむフアレンスナヌタにおハンタヌ
癜床を枬定しお、ハンタヌ癜床49ポむントの癜床
を有する玙を埗た。詊隓回の平均倀 比范のため、実斜䟋−〔〕No.の無氎亜二チ
オン酞ナトリりム成型䜓の代りに、粉末の無氎亜
二チオン酞ナトリりム玔床850.4郚を甚い
たものずハンタヌ癜床を比范した結果は第衚に
瀺す通り、本発明の成型䜓が癜床の点で奜結果を
埗た。 又、粉末品はパルプスラリヌ䞊局郚に䞀郚浮遊
し、スラリヌ内郚に溶解するのに時間を芁するが
本発明の成型䜓は、盎ちにパルプスラリヌ䞭に沈
降し有効に掻甚されるこずが認められた。
[Table] As shown in Table 2, it was confirmed that the stability of the molded product according to the present invention in an aqueous solution was significantly superior to that of a powder product. Furthermore, it was confirmed that the molded article according to the present invention quickly settled in the pulp slurry, gradually dissolved and decomposed, and the anhydrous sodium dithionite introduced into the pulp slurry was effectively utilized. (Usage example 2) Add 40 parts of refined ground pulp (dry equivalent) to 960 parts of water and heat while stirring gently to raise the temperature to 60℃. Next, 0.4 part of the anhydrous sodium dithionite molded product obtained in Example-[] No. 4 was added,
Process for 30 minutes at a temperature of 60 °C. Next, the paper was made into gauze paper using TAPPI standard circular gauze stock, and Hunter whiteness was measured using a Color Difference Nata to obtain paper having a whiteness of 49 Hunter whiteness points. (Average value of 3 tests) For comparison, 0.4 part of powdered anhydrous sodium dithionite (purity 85%) was used instead of the anhydrous sodium dithionite molded product of Example No. 4. As shown in Table 5, the molded product of the present invention obtained good results in terms of whiteness. In addition, it was found that the powder product partially floats in the upper layer of the pulp slurry and takes time to dissolve inside the slurry, but the molded product of the present invention immediately settles in the pulp slurry and can be effectively utilized. .

〔実斜䟋 〕[Example 2]

無氎亜二チオン酞ナトリりム粉末玔床90
、粒床100メツシナオヌルスルヌに詊薬
炭酞ナトリりムを添加し、玔床86.7のものを埗
た。この91.7郚にトリポリリン酞ナトリりム4.5
郚ずりロトロピン3.8郚を添加しお100郚ずし、乳
鉢で充分磚朰しおΌ以䞋にしたものを、実斜䟋
−ず同じ方法で結合剀を添加凊理しお成型䜓ず
し、同様に経時倉化を枬定した。 又、比范のため、乳鉢で粉砕する前の粉末に぀
いお経時倉化を枬定した。 結果を第衚に瀺す。䜆し、 内数字は分
解率を瀺す。
Anhydrous sodium dithionite powder (purity: 90:
4%, particle size: 100 mesh all-through) was added with the reagent sodium carbonate to obtain a product with a purity of 86.7%. Sodium tripolyphosphate 4.5 to 91.7 parts of this
and 3.8 parts of urotropin were added to make 100 parts, thoroughly ground in a mortar to a size of 5Ό or less, treated with a binder in the same manner as in Example 1 to form a molded body, and similarly aged. It was measured. For comparison, changes over time were also measured for the powder before it was crushed in a mortar. The results are shown in Table 3. However, the numbers in parentheses indicate the decomposition rate (%).

〔実斜䟋 〕[Example 3]

無氎亜二チオン酞ナトリりム粉末玔床90.4
、粒床100メツシナオヌルスルヌ100郚にメ
タノヌルずトリメチロヌルプロパンの含量が第
衚に瀺すように30郚になる溶液を調合しお混合
し、30Kgcm2の圧力で打錠成型した埌、50℃、10
mmHgで時間枛圧也燥しお、埄15mmφ、厚さ
mmの円盀状無氎亜二チオン酞ナトリりム成型䜓を
埗た。この無氎亜二チオン酞ナトリりム成型䜓
を、実斜䟋−の方法で経時倉化を枬定した。 又、比范のため無氎亜二チオン酞ナトリりム粉
末に぀いおも、同様に経時倉化を枬定した。 結果を第衚に瀺す。䜆し、 内数字は分
解率を瀺す。
Anhydrous sodium dithionite powder (purity: 90.4
%, particle size: 100 mesh all through) 100 parts methanol and trimethylolpropane content is 4th
As shown in the table, 30 parts of the solution was prepared and mixed, compressed into tablets at a pressure of 30Kg/ cm2 , and then heated at 50℃ for 10 minutes.
Dry under reduced pressure for 2 hours at mmHg, diameter 15mmφ, thickness 7.
A disc-shaped anhydrous sodium dithionite molded body of mm size was obtained. Changes over time of this anhydrous sodium dithionite molded body were measured by the method of Example-1. For comparison, the change over time of anhydrous sodium dithionite powder was also measured in the same manner. The results are shown in Table 4. However, the numbers in parentheses indicate the decomposition rate (%).

〔実斜䟋 〕[Example 5]

実斜䟋−にお甚いた結合剀の代りに、゚チル
セルロヌズあるいはブチヌルセルロヌズを各々
郚、およびメタノヌルの代りに゚タノヌル33郚を
甚いた他はすべお実斜䟋−ず同じ方法で安定な
無氎亜二チオン酞ナトリりム成型䜓を埗た。 〔実斜䟋 〕 実斜䟋−にお甚いた結合剀の代りに、アセト
アルデヒドアンモニア、郚゜デむりムボロハむ
ドラむド郚、氎酞化ナトリりム郚、トリメチ
ロヌル゚タン25郚、および無氎亜二チオン酞ナト
リりム90郚を甚いた他はすべお実斜䟋−ず同じ
方法で安定な無氎亜二チオン酞ナトリりム成型䜓
を埗た。 〔実斜䟋 〕 無氎亜二チオン酞ナトリりム粉末玔床90.4
、粒床100メツシナオヌルスルヌ80郚、粉
砕された゜デむりムフオルムアルデヒドスルフオ
キシラヌト12郚、トリポリリン酞゜ヌダ郚、炭
酞ナトリりム郚をナりタヌミキサヌにお静かに
撹拌しお均䞀な粉䜓混合物を調敎する。 次いで、メタノヌル10郚ず゚タノヌル10郚を投
入しお静かに撹拌混和しおペヌスト状ずする。こ
のペヌスト状組成物を圧力30Kgcm2の打錠方匏で
成型した埌、真空也燥機にお揮発性溶剀を陀去し
安定な無氎亜二チオン酞ナトリりム成型䜓粒埄
mmを埗た。たた、打錠圢を倉えるこずにより
球状、果粒状ず任意の粒埄、圢状成型䜓ずするこ
ずができた。 埗られた、無氎亜二チオン酞ナトリりム成型䜓
を甚いお、通垞の方法でニホンスレンブルヌBC
デむスパりズドパりダヌ䜏友化孊補バツト染料
CI、バツトブルヌを綿垃に再珟性よく鮮明
青色に染色するこずができた。 〔実斜䟋 〕 実斜䟋−で甚いた゜デむりムフオルムアルデ
ヒドスルフオキシラヌトの代りに、ポリオキシ゚
チレンノニルプニル゚ヌテル付加モル数50
郚、ポリオキシ゚チレンフタヌル酞゚ステル
付加モル数50郚、トリメチロヌル゚タン
郚ずゞシアンゞアミゞン郚を甚いた他はすべお
実斜䟋−ず同じ方法で安定な無氎亜二チオン酞
ナトリりム成型䜓を埗た。 〔実斜䟋 〕 実斜䟋−で甚いた無氎亜二チオン酞ナトリり
ムの代りに、無氎亜二チオン酞亜鉛又は無氎亜二
チオン酞カリりムを甚いた他はすべお実斜䟋−
ず同じ方法で無氎亜二チオン酞亜鉛又は無氎亜二
チオン酞カリりムの安定な成型䜓を埗た。 〔実斜䟋 10〕 実斜䟋−で甚いたポリオキシ゚チレンノニル
プニル゚ヌテルの代りに、−ゞオキシナ
フタリン郚、およびポリオキシ゚チレンフタヌ
ル酞゚ステルの代りに、−ゞオキシ安息銙
酞郚、ゞシアンゞアミゞンの代りにアセトアル
デヒドセミカルバゟン郚を甚いた他はすべお実
斜䟋−ず同じ方法で安定な無氎亜二チオン酞ナ
トリりム成型䜓を埗た。 〔実斜䟋 11〕 無氎亜二チオン酞カリりム粉末玔床90.4
、粒床100メツシナオヌルスルヌ75郚、ポ
リ゚チレングリコヌル付加モル数50郚ネオ
ペンチルグリコヌル18郚およびトリポリリン酞゜
ヌダ郚をナりタヌミキサヌにお混合する。次い
で、メタノヌル30郚を加えおペヌスト状にした
埌、打錠方匏にお粒埄20mmに成型する。 次いで、真空也燥機におメタノヌルを陀去し安
定な無氎亜二チオン酞カリりム成型䜓を埗た。 〔実斜䟋 12〕 実斜䟋−11にお甚いた結合剀の代りに、乳糖又
は麊芜糖を各々甚いた他はすべお実斜䟋−11ず同
じ方法で安定な無氎亜二チオン酞カリりム成型䜓
を埗た。 〔実斜䟋 13〕 無氎亜二チオン酞アンモニりム粉末玔床
90.4、粒床100メツシナオヌルスルヌ80
郚、゚チルセルロヌス郚、トリメチロヌルプロ
パン14郚、および塩化アンモニりム郚、トリポ
リリン酞゜ヌダ郚をナりタヌミキサヌにお静か
に撹拌しお均䞀な粉䜓混合物を調敎する。 次いで、゚タノヌル25郚を投入しお静かに撹拌
混和しペヌスト状ずする。このペヌスト状組成物
を実斜䟋−ず同様にしお打錠方匏で成型した
埌、真空也燥機にお゚タノヌルを陀去し安定な無
氎亜二チオン酞アンモニりム成型䜓を埗た。 〔実斜䟋 14〕 実斜䟋−13に甚いた結合剀の代りに、−
ヘキサンゞオヌルたたはテトラオキシベンれンを
各々甚いた他はすべお実斜䟋−13ず同じ方法で安
定な無氎亜二チオン酞アンモニりム成型䜓を埗
た。
In place of the binder used in Example-1, ethyl cellulose or butyl cellulose was used for 2 hours each.
A stable molded anhydrous sodium dithionite was obtained in the same manner as in Example 1 except that 33 parts of ethanol was used instead of methanol. [Example 6] Instead of the binder used in Example-1, acetaldehyde ammonia, 2 parts sodium borohydride, 1 part sodium hydroxide, 25 parts trimethylolethane, and dithionite anhydride were used. A stable molded anhydrous sodium dithionite was obtained in the same manner as in Example 1 except that 90 parts of sodium was used. [Example 7] Anhydrous sodium dithionite powder (purity: 90.4
%, particle size: 100 mesh all-through), 12 parts of crushed sodium formaldehyde sulfoxylate, 5 parts of sodium tripolyphosphate, and 3 parts of sodium carbonate were gently stirred in a Nauta mixer. Prepare a homogeneous powder mixture. Next, 10 parts of methanol and 10 parts of ethanol are added and mixed by gentle stirring to form a paste. This paste-like composition was molded into tablets at a pressure of 30 kg/cm 2 , and then the volatile solvent was removed in a vacuum dryer to obtain stable molded anhydrous sodium dithionite (particle size: 3 mm). In addition, by changing the tablet shape, it was possible to form molded products of arbitrary particle size and shape, such as spherical or fruit-like shapes. Using the obtained molded anhydrous sodium dithionite, Nihonsuren Blue BC was prepared in the usual manner.
Daspoused powder (butt dye manufactured by Sumitomo Chemical)
CI, Vat Blue 6) was able to be dyed into a bright blue color on cotton fabric with good reproducibility. [Example 8] Polyoxyethylene nonyl phenyl ether (number of moles added: 50) was used instead of sodium formaldehyde sulfoxylate used in Example-7.
1 part, polyoxyethylene phthalate ester (additional mole number 50) 1 part, trimethylolethane 6
A stable molded anhydrous sodium dithionite was obtained in the same manner as in Example 7 except that 1 part and 4 parts of dicyandiamidine were used. [Example 9] Example 7 except that anhydrous zinc dithionite or anhydrous potassium dithionite was used instead of the anhydrous sodium dithionite used in Example 7.
A stable molded body of anhydrous zinc dithionite or anhydrous potassium dithionite was obtained in the same manner as described above. [Example 10] In place of the polyoxyethylene nonyl phenyl ether used in Example-8, 1 part of 1,3-dioxynaphthalene was used, and in place of the polyoxyethylene phthalate ester, 2,6-dioxy A stable molded anhydrous sodium dithionite was obtained in the same manner as in Example 8 except that 1 part of benzoic acid and 4 parts of acetaldehyde semicarbazone were used in place of dicyandiamidine. [Example 11] Anhydrous potassium dithionite powder (purity: 90.4
%, particle size: 100 mesh all-through), 2 parts of polyethylene glycol (number of moles added: 50), 18 parts of neopentyl glycol, and 5 parts of sodium tripolyphosphate are mixed in a Nauta mixer. Next, 30 parts of methanol was added to form a paste, which was then molded to a particle size of 20 mm using a tableting method. Next, methanol was removed in a vacuum dryer to obtain a stable molded anhydrous potassium dithionite. [Example 12] A stable molded anhydrous potassium dithionite was obtained in the same manner as in Example 11 except that lactose or maltose was used instead of the binder used in Example 11. . [Example 13] Anhydrous ammonium dithionite powder (purity:
90.4%, particle size: 100 mesh all through) 80
1 part of ethyl cellulose, 14 parts of trimethylolpropane, 2 parts of ammonium chloride, and 3 parts of sodium tripolyphosphate are gently stirred in a Nauta mixer to prepare a uniform powder mixture. Next, add 25 parts of ethanol and mix gently to form a paste. This paste composition was molded into tablets in the same manner as in Example 3, and then ethanol was removed in a vacuum dryer to obtain a stable anhydrous ammonium dithionite molded product. [Example 14] Instead of the binder used in Example-13, 1,6-
A stable molded product of anhydrous ammonium dithionite was obtained in the same manner as in Example 13 except that hexanediol or tetraoxybenzene was used.

Claims (1)

【特蚱請求の範囲】  無氎亜二チオン酞塩を揮発性溶剀に可溶もし
くは混和可胜で垞枩で固䜓である有機又は無機結
合剀を甚いお造粒又は成型しおなるこずを特城ず
する無氎亜二チオン酞塩成型䜓。  成型䜓の平均埄がmm以䞊である特蚱請求の
範囲第項蚘茉の成型䜓。  粉砕された無氎亜二チオン酞塩、揮発性溶剀
に可溶もしくは混和可胜で垞枩で固䜓である有機
又は無機結合剀及び揮発性溶剀ずを任意の順序に
お混合し、次いで造粒又は成型した埌、揮発性溶
剀を陀去するこずを特城ずする無氎亜二チオン酞
塩成型䜓の補造法。
[Scope of Claims] 1. An anhydrous dithionite which is produced by granulating or molding anhydrous dithionite using an organic or inorganic binder that is soluble or miscible in a volatile solvent and solid at room temperature. Dithionite molded body. 2. The molded article according to claim 1, wherein the average diameter of the molded article is 1 mm or more. 3. Pulverized anhydrous dithionite, an organic or inorganic binder that is soluble or miscible in a volatile solvent and solid at room temperature, and a volatile solvent are mixed in any order, and then granulated or molded. 1. A method for producing an anhydrous dithionite molded product, which comprises removing the volatile solvent after the reaction.
JP7160579A 1979-06-07 1979-06-07 Anhydrous dithionite molding and its manufacture Granted JPS55162411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7160579A JPS55162411A (en) 1979-06-07 1979-06-07 Anhydrous dithionite molding and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7160579A JPS55162411A (en) 1979-06-07 1979-06-07 Anhydrous dithionite molding and its manufacture

Publications (2)

Publication Number Publication Date
JPS55162411A JPS55162411A (en) 1980-12-17
JPS6259048B2 true JPS6259048B2 (en) 1987-12-09

Family

ID=13465446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7160579A Granted JPS55162411A (en) 1979-06-07 1979-06-07 Anhydrous dithionite molding and its manufacture

Country Status (1)

Country Link
JP (1) JPS55162411A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS593008A (en) * 1982-06-29 1984-01-09 Koei Chem Co Ltd Molding of stabilized anhydrous dithionite and its manufacture
CN102674266A (en) * 2012-05-23 2012-09-19 江苏省䞜泰粟细化工有限莣任公叞 Drying method of zinc dust process based sodium hydrosulfite

Also Published As

Publication number Publication date
JPS55162411A (en) 1980-12-17

Similar Documents

Publication Publication Date Title
US3997508A (en) Improvements in treatment of high-molecular-weight water-soluble compounds with glyoxal
US3932140A (en) Forming highly absorbent, low bulk density sodium silicate by contacting with H2 O2 and heating to about 45° to 60°C
DE2615868A1 (en) Process for the production of spherical clay particles
US5387358A (en) Alkaline earth metal sodium acetate, a process for its preparation and its use
IE66736B1 (en) Process for the preparation of a readily soluble bleach activator granulate with a long shelf life
JPS6259048B2 (en)
US4011302A (en) Process for preparing highly absorbent, low bulk density sodium silicate
US3400181A (en) Method of preparing carbonized shaped cellulose crystallite aggregates
JP4159678B2 (en) Powdered cement dispersant, method for producing the same, and cement mixture
JPH0139962B2 (en)
EP1953217B1 (en) A cogranule for use in solid detergent compositions
CN109957034A (en) A kind of method of dry process octenyl succinic acid anhydride modified starch
EP0462723A1 (en) Easily soluble granules containing a binding agent
JP3225473B2 (en) Method for producing thiourea dioxide with improved stability and flowability
EP0482806A1 (en) Bleach activator formulations
JPS59219400A (en) Water dispersion of metal soap
US4734214A (en) Process for the preparation of high absorptive sodium tripolyphosphate hexahydrate
US3987218A (en) Process for decreasing the hygroscopicity of polycarboxylates
JPS6320397A (en) Granule based on sodium hydrogen carbonate
JPS5867798A (en) Granular bleaching activator
JPS6241658B2 (en)
JPH0142881B2 (en)
SU1728283A1 (en) Method of obtaining borax solution stabilizer
JPH09188587A (en) Granular magnesium oxide fertilizer
JPH0511043B2 (en)