JPS6258888B2 - - Google Patents

Info

Publication number
JPS6258888B2
JPS6258888B2 JP54076088A JP7608879A JPS6258888B2 JP S6258888 B2 JPS6258888 B2 JP S6258888B2 JP 54076088 A JP54076088 A JP 54076088A JP 7608879 A JP7608879 A JP 7608879A JP S6258888 B2 JPS6258888 B2 JP S6258888B2
Authority
JP
Japan
Prior art keywords
core material
frp
pultrusion
sealing
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54076088A
Other languages
Japanese (ja)
Other versions
JPS56124A (en
Inventor
Takashi Nishimoto
Takeshi Orimo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainihon Glass Industry Co Ltd
Original Assignee
Dainihon Glass Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainihon Glass Industry Co Ltd filed Critical Dainihon Glass Industry Co Ltd
Priority to JP7608879A priority Critical patent/JPS56124A/en
Publication of JPS56124A publication Critical patent/JPS56124A/en
Publication of JPS6258888B2 publication Critical patent/JPS6258888B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Moulding By Coating Moulds (AREA)

Description

【発明の詳細な説明】 本発明はFRP製長尺体の製造方法に関するも
のであり、特に芯材を有する高剛性のFRP製長
尺体を引抜成形で成形する方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing an elongated FRP body, and particularly to a method of forming a highly rigid elongated FRP body having a core material by pultrusion molding.

ガラス繊維等の強化繊維で強化された熱硬化性
樹脂、いわゆるFRPの成形方法は種々知られて
いる。その内引抜成形方法は連続成形が可能であ
り、パイプ、板、棒、アングル、チヤンネル等の
一定断面形状を有する長尺体を比較的高能率に成
形しうるものである。この成形方法は、熱硬化性
樹脂を含浸した強化繊維体を一定開口形状を有す
る型を通しながら引き抜き、その間に熱硬化性樹
脂を硬化させる成形方法である。この成形方法に
おいて、FRP内部に芯材を埋め込んで成形する
方法が知られており、たとえば、特開昭52−
59676号公報にその1例が示されている。
Various methods are known for molding thermosetting resins reinforced with reinforcing fibers such as glass fibers, so-called FRP. Among these, the pultrusion molding method allows continuous molding, and can relatively efficiently mold elongated bodies having a constant cross-sectional shape, such as pipes, plates, rods, angles, and channels. This molding method is a molding method in which a reinforcing fiber body impregnated with a thermosetting resin is pulled through a mold having a fixed opening shape, and the thermosetting resin is cured during this time. In this molding method, a method of embedding a core material inside FRP and molding is known, for example,
An example of this is shown in Publication No. 59676.

FRPの問題点の1つは、剛性が低いことであ
る。この解決のための1つの方法は高剛性の芯材
を用いることであり、上記公報にも鋼材、銅材、
アルミニウム材等の高剛性の金属製芯材を使用す
ることが記載されている。ところで、引抜成形は
連続成形しうるとはいえ、無限の長さのFRPを
生産するものではなく、任意の長さに切断して長
尺体を得ることがその目的である。従つて、
FRPの引抜成形では、その切断が1つの要件と
なつている。ところが、前記鋼材等の高剛性芯材
を用いたFRPの引抜成形においては、その切断
が極めて困難となり、カツターとして高剛性芯材
を切断しうるものが必要となる。一方、鋼材等の
耐蝕性の低い材料を芯材として引抜成形された
FRP製長尺体においては、その長さ方向両端の
耐蝕性が問題となる。即ち、両端は芯材の切断面
が露出しており、この部分の腐蝕を防ぐために
は、あるいは芯材が中空である場合はその内面の
腐蝕をも防ぐためには、両端の芯材表面をシール
する必要がある。
One of the problems with FRP is that it has low rigidity. One way to solve this problem is to use a highly rigid core material, and the above publication also mentions steel, copper,
It is described that a highly rigid metal core material such as aluminum material is used. By the way, although pultrusion can be performed continuously, the purpose is not to produce FRP of infinite length, but to obtain a long body by cutting it to an arbitrary length. Therefore,
Cutting is one of the requirements for FRP pultrusion. However, in pultrusion of FRP using a high-rigidity core material such as the above-mentioned steel material, cutting is extremely difficult, and a cutter that can cut the high-rigidity core material is required. On the other hand, pultrusion-formed materials with low corrosion resistance such as steel are used as core materials.
Corrosion resistance at both lengthwise ends of a long FRP body is an issue. In other words, the cut surfaces of the core material are exposed at both ends, and in order to prevent corrosion in this area, or if the core material is hollow, to prevent corrosion on its inner surface, the surfaces of the core material at both ends must be sealed. There is a need to.

本発明者は鋼材などの高剛性芯材を用いた
FRPの引抜成形におけるこの2つの問題、即
ち、切断とシールの問題の解決を目的として種々
の検討を行つた結果、この2つの問題を同時に解
決する方法を見い出すに至つた。本発明は、芯材
を有するFRP製長尺体を引抜成形方法で成形す
る方法において、芯材として比較的長い高剛性芯
材と比較的短い易切断性のシール性芯材とを引抜
方向に交互に配置して引抜成形を行い、次いで該
比較的短い易切断性のシール性芯材部分で切断を
行うことを特徴とする芯材を有するFRP製長尺
体の引抜成形方法である。
The inventor used a highly rigid core material such as steel.
As a result of various studies aimed at solving these two problems in FRP pultrusion, namely cutting and sealing, we have found a method to solve these two problems at the same time. The present invention provides a method for forming a long FRP body having a core material by a pultrusion method, in which a relatively long high-rigidity core material and a relatively short easily cuttable sealing core material are formed in the drawing direction. This is a pultrusion molding method for an elongated FRP body having a core material, which is characterized in that pultrusion is performed by pultruding the core material by arranging the core material alternately, and then cutting at the relatively short, easy-to-cut, sealable core material portion.

本発明の方法は上記2つの問題を同時に解決す
る。即ち、易切断性のシール性芯材部分で切断す
ることは従来の引抜成形におけるFRPの切断に
比べて何ら困難を生じない。しかもこの部分で切
断すると2つの切断面に露出するのはシール性芯
材であるので、それ以上のシール処理を施すこと
なく高鋼性芯材のシールが達成される。本発明の
方法は芯材の種類を一部変更する以外は従来の引
抜成形と同じ方法で行うことができる。従つて、
従来の引抜成形の装置を全く変更することなく本
発明を適用しうることも1つの特徴である。
The method of the present invention solves the above two problems simultaneously. That is, cutting at the easily cuttable sealing core material part does not pose any difficulty compared to cutting FRP in conventional pultrusion. Furthermore, when cutting at this portion, the sealing core material is exposed on the two cut surfaces, so sealing of the high steel core material is achieved without any further sealing treatment. The method of the present invention can be carried out in the same manner as conventional pultrusion except for partially changing the type of core material. Therefore,
Another feature is that the present invention can be applied without making any changes to conventional pultrusion equipment.

本発明において、高剛性芯材とは本体FRPよ
りも剛性の高い芯材の意味であり、好ましくは金
属製芯材であり、特に鋼材等の鉄系金属芯材が適
当である。易切断性とは本体FRPと同等あるい
はそれ以上切断し易い性質を意味し、シール性と
は長尺体端部において高剛性芯材が外部雰囲気と
接触することを防ぐ性質、即ち水などの腐蝕性液
体や水蒸気等の腐蝕性気体の侵入を防ぐ性質を意
味する。これら2つの性質を有する材料として
は、合成樹脂、発泡合成樹脂、レジンモンタル、
その他のものがあり、特に発泡合成樹脂が好まし
い。
In the present invention, the term "highly rigid core material" refers to a core material that is more rigid than the main body FRP, and is preferably a metal core material, with iron-based metal core materials such as steel being particularly suitable. Easy cutting refers to properties that are as easy to cut as or more easily than the FRP main body, and sealability refers to properties that prevent the highly rigid core material from coming into contact with the external atmosphere at the ends of the long body, i.e., properties that prevent corrosion such as water. refers to the property of preventing the intrusion of corrosive gases such as corrosive liquids and water vapor. Materials with these two properties include synthetic resin, foamed synthetic resin, resin montal,
There are other materials, and foamed synthetic resins are particularly preferred.

具体的にたとえば鋼製パイプを高剛性芯材と
し、独立気泡を有するポリウレタンフオームを易
切断性のシール性芯材として、長さ約8mのFRP
製品を成形する場合を考える。この場合、鋼製パ
イプは約7.9m、ポリウレタンフオームは約0.1m
の長さとし、かつそれらの外径を同一とする。こ
の芯材を引抜方向、長ち長さ方向に交互に並べ、
周囲に熱硬化性樹脂含浸強化繊維を配置して型を
通して引抜成形を行い、成形後ポリウレタンフオ
ーム芯材が存在する部分で切断する。この切断は
通常のFRPのみの切断に比べて困難を生じるこ
とはない。さらに、得られたFRP製品の長さ方
向両端の芯材はシール性を有しているので、鋼材
芯材が腐蝕する恐れがない。また、前記公開公報
記載のように、成形型中で樹脂を含浸しながら引
抜こともできる。
Specifically, for example, a steel pipe is used as a highly rigid core material, and polyurethane foam with closed cells is used as an easy-to-cut sealing core material to create an FRP with a length of approximately 8 m.
Consider the case of molding a product. In this case, the steel pipe is approximately 7.9m, and the polyurethane foam is approximately 0.1m.
and have the same outer diameter. This core material is arranged alternately in the drawing direction and the length direction,
Thermosetting resin-impregnated reinforcing fibers are placed around the periphery and pultrusion molding is performed through a mold, and after molding, it is cut at the portion where the polyurethane foam core material is present. This cutting is no more difficult than cutting only ordinary FRP. Furthermore, since the core material at both lengthwise ends of the obtained FRP product has sealing properties, there is no fear that the steel core material will corrode. Further, as described in the above-mentioned publication, it is also possible to draw out the resin while impregnating it in a mold.

第1図はこの方法の1例を示す側面図である。
成形通路1を有する成形型2に、芯材3と熱硬化
性樹脂含浸強化繊維帯4が複数のガイドロール5
を通つて導入される。芯材3は鋼製の角パイプ6
と同一形状のポリウレタンフオーム7を交互に並
べたものである。成形型2中で熱硬化性樹脂が硬
化され、成形されたFRP成形体8は引抜ロール
9を通つた後カツター10で切断される。切断部
はポリウレタンフオーム芯材7部分である。第1
図におけるA−A′断面を第2図に、B−B′断面
を第3図に示す。第2図ではほぼ硬化したFRP
層11と鋼製パイプ6が示され、第3図では折り
たたまれた未硬化性樹脂含浸強化繊維帯4と鋼製
パイプ6が示されている。第4図は成形品端部を
示す部分断面図であり、FRP層11、鋼製パイ
プ6および鋼製パイプ6を保護するシール性芯材
であるポリウレタンフオーム芯材7から構成され
ている。
FIG. 1 is a side view showing an example of this method.
A core material 3 and a reinforcing fiber band 4 impregnated with a thermosetting resin are attached to a plurality of guide rolls 5 in a mold 2 having a molding passage 1.
introduced through. The core material 3 is a steel square pipe 6
Polyurethane foams 7 having the same shape are arranged alternately. The thermosetting resin is cured in the mold 2, and the formed FRP molded body 8 is passed through a drawing roll 9 and then cut with a cutter 10. The cut portion is the 7 portion of the polyurethane foam core material. 1st
The AA' cross section in the figure is shown in FIG. 2, and the BB' cross section is shown in FIG. 3. Figure 2 shows almost cured FRP.
The layer 11 and the steel pipe 6 are shown, and in FIG. 3 the folded uncured resin-impregnated reinforcing fiber strip 4 and the steel pipe 6 are shown. FIG. 4 is a partial sectional view showing the end of the molded product, which is composed of an FRP layer 11, a steel pipe 6, and a polyurethane foam core material 7 that is a sealing core material that protects the steel pipe 6.

FRPとは繊維強化熱硬化性樹脂である。これ
に用いられる強化繊維としてはガラス繊維が最も
好ましいが、その他合成繊維、炭素繊維、その他
の有機質あるいは無機質の繊維を使用しうる。熱
硬化性樹脂としては、不飽和ポリエステル樹脂が
最も適当であるが、これに限られるものではな
く、エポキシ樹脂、ビニルエステル樹脂、その他
の熱硬化樹脂を使用することができる。これら熱
硬化性樹脂には硬化剤、硬化促進剤は勿論、充填
剤、着色剤、滑剤、難燃剤、その他の添加剤を添
加することができ、硬化手段も通常の電熱や熱媒
体による加熱に限られるものではなく、高周波加
熱や赤外線加熱等も使用しうる。
FRP is a fiber reinforced thermosetting resin. The reinforcing fiber used for this purpose is most preferably glass fiber, but other synthetic fibers, carbon fibers, and other organic or inorganic fibers may also be used. The most suitable thermosetting resin is unsaturated polyester resin, but it is not limited thereto, and epoxy resins, vinyl ester resins, and other thermosetting resins can also be used. In addition to curing agents and curing accelerators, fillers, colorants, lubricants, flame retardants, and other additives can be added to these thermosetting resins. There is no limitation, and high frequency heating, infrared heating, etc. can also be used.

本発明により、棒、パイプ、アングル、チヤン
ネル、その他種々の形状のFRP成形品が得られ
る。これらは、従来同様の成形品と同様種々の用
途に使用することができ、特に高い剛性を要求さ
れる分野に適している。
According to the present invention, FRP molded products in various shapes such as rods, pipes, angles, channels, and others can be obtained. These can be used for various purposes like conventional molded products, and are particularly suitable for fields requiring high rigidity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明成形方法の1例を示す側面図で
あり、第2図はそのA−A′断面、第3図はその
B−B′断面を示す断面図である。第4図はこの方
法により得られた成形品の端部の部分断面図であ
る。 尚、6は高剛性芯材、7はシール性の芯材、1
1はFRP層、10はカツターである。
FIG. 1 is a side view showing an example of the molding method of the present invention, FIG. 2 is a cross-sectional view taken along line A-A', and FIG. 3 is a cross-sectional view taken along line B-B'. FIG. 4 is a partial sectional view of the end of the molded product obtained by this method. In addition, 6 is a high rigidity core material, 7 is a sealing core material, 1
1 is an FRP layer, and 10 is a cutter.

Claims (1)

【特許請求の範囲】 1 芯材を有するFRP製長尺体を引抜成形方法
で連続的に成形する方法において、芯材として、
比較的長い金属製芯材と比較的短い易切断性のシ
ール性芯材とを引抜方向に交互に配置し、これを
FRPにより被覆して引抜成形を行い、次いで該
比較的短い易切断性のシール性芯材部分で切断を
行うことを特徴とするFRPの引抜成形方法。 2 易切断性のシール性芯材が合成樹脂製芯材で
あることを特徴とする特許請求の範囲第1項の方
法。
[Claims] 1. In a method of continuously forming an FRP elongated body having a core material by a pultrusion method, as the core material,
A relatively long metal core material and a relatively short easily cutable sealing core material are arranged alternately in the drawing direction.
1. A pultrusion method for FRP, which comprises covering the FRP with pultrusion, and then cutting the relatively short, easy-to-cut, sealable core portion. 2. The method according to claim 1, wherein the easily cuttable sealing core material is a synthetic resin core material.
JP7608879A 1979-06-16 1979-06-16 Drawing method of frp Granted JPS56124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7608879A JPS56124A (en) 1979-06-16 1979-06-16 Drawing method of frp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7608879A JPS56124A (en) 1979-06-16 1979-06-16 Drawing method of frp

Publications (2)

Publication Number Publication Date
JPS56124A JPS56124A (en) 1981-01-06
JPS6258888B2 true JPS6258888B2 (en) 1987-12-08

Family

ID=13595070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7608879A Granted JPS56124A (en) 1979-06-16 1979-06-16 Drawing method of frp

Country Status (1)

Country Link
JP (1) JPS56124A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58164718U (en) * 1982-04-30 1983-11-02 旭硝子株式会社 Fiber-reinforced plastic pultruded body

Also Published As

Publication number Publication date
JPS56124A (en) 1981-01-06

Similar Documents

Publication Publication Date Title
US6114012A (en) Rib of composite material and method of forming the same
US5658519A (en) Reinforced plastic piling and method and apparatus for making same
US4789577A (en) Multichannel structures made of composites, processes and semifinished products for the manufacture thereof
FI80848C (en) Method of manufacturing a mold set
EP3062994A1 (en) Continuous production of profiles in a sandwich type of construction with foam cores and rigid-foam-filled profile
EP3015256A1 (en) Establishing multiple different fibre composite components for mass production in a continuous process
EP0191297B1 (en) Plastic tube provided with an insulation
EP1471299B1 (en) Thermally insulated pipe
CH660907A5 (en) HEAT-INSULATED PIPE AND METHOD FOR THE PRODUCTION THEREOF.
EP2137451B1 (en) Plastic tube
EP0434791B1 (en) Composite plastic pipe
JPS6258888B2 (en)
DE3307120A1 (en) Remote heating line pipe
US20010043991A1 (en) Method and apparatus for applying syntactic foam thermal insulation to a length of pipe
EP1909018B1 (en) Pipe connection with thermal insulation and procedure for the manufacture of the pipe connecting part
US3053722A (en) Rib forming method
GB2189002A (en) Stiffening of hollow structures
JPH01166937A (en) Long-sized, light-weight and fiber-reinforced composite draw molding and its manufacture
EP0449033A2 (en) Process for the manufacture of sandwich structures
JPH01166936A (en) Long-sized, thin, hollow and carbon fiber-reinforced composite resin draw molding and its manufacture
DE9014298U1 (en) Insulation of containers, boilers, tanks, etc.
AT213178B (en) Heat-insulated conduit
JPH0327921A (en) Manufacture of fiber reinforced thin wall mold material
GB2101171A (en) Gutter section
JPH0241422Y2 (en)