JPS6258850B2 - - Google Patents

Info

Publication number
JPS6258850B2
JPS6258850B2 JP54161973A JP16197379A JPS6258850B2 JP S6258850 B2 JPS6258850 B2 JP S6258850B2 JP 54161973 A JP54161973 A JP 54161973A JP 16197379 A JP16197379 A JP 16197379A JP S6258850 B2 JPS6258850 B2 JP S6258850B2
Authority
JP
Japan
Prior art keywords
detection devices
electrode
processing electrode
main axis
feed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54161973A
Other languages
Japanese (ja)
Other versions
JPS5689435A (en
Inventor
Kyoshi Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoue Japax Research Inc
Original Assignee
Inoue Japax Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue Japax Research Inc filed Critical Inoue Japax Research Inc
Priority to JP16197379A priority Critical patent/JPS5689435A/en
Publication of JPS5689435A publication Critical patent/JPS5689435A/en
Publication of JPS6258850B2 publication Critical patent/JPS6258850B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/26Apparatus for moving or positioning electrode relatively to workpiece; Mounting of electrode

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

【発明の詳細な説明】 本発明は所要の加工形状をした電極、線、棒等
の単純形状電極、ガイド間にワイヤ電極を掛け渡
した電極等をもつて通電による放電、放電電解、
電解の加工作用により被加工体の型彫、孔明、切
断、三次元加工、ワイヤカツト等を行なう通電加
工に於ける前記加工電極の倒れ修正をする方法及
び装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention uses an electrode with a required processing shape, a simple electrode such as a wire or a rod, an electrode with a wire electrode stretched between guides, etc. to perform electric discharge, discharge electrolysis, etc.
The present invention relates to a method and apparatus for correcting the inclination of the machining electrode in electrical machining, which involves engraving, drilling, cutting, three-dimensional machining, wire cutting, etc. of a workpiece by electrolytic machining action.

加工電極は加工始め、電極消耗による交換、或
いは加工部形状に対応する電極交換、通常これを
自動的にするには電極自動交換装置を用いてNC
制御、コンピユータ制御等の自動制御によつて行
なうが、この電極交換は通常電極取付ヘツドの基
準面にマグネツト吸着等によつて行なわれるが、
1つ1つの電極が倒れなく垂直に正確に固着され
るとは限らず、交換時毎に精度出し修正する必要
がある。
Machining electrodes are replaced at the start of machining, due to electrode wear, or electrodes are replaced according to the shape of the machining part.To do this automatically, NC is usually performed using an automatic electrode changing device.
This electrode replacement is usually done by magnetic adsorption to the reference surface of the electrode mounting head.
It is not always possible for each electrode to be accurately fixed vertically without falling over, and it is necessary to correct it for accuracy each time it is replaced.

従来はインジゲータ等を接触させ手動で修正す
ることが行なわれていたが、これでは装着の全自
動化はできない。
Conventionally, corrections were made manually by touching an indicator or the like, but this does not allow full automation of mounting.

本発明はこの加工電極倒れ修正を自動的に行な
うようにしたもので、加工電極支持ヘツドの主軸
(Z軸)と平行して設けられる支持軸上に加工電
極との接触又は近接を検出するために所定の間隔
をもつて2個以上配置される検出装置と、該2個
以上の検出装置の夫々を個別に前記主軸と直交す
る平面上に於て同方向に進退送りする装置と、加
工電極を前記主軸を中心して傾動させる装置と、
加工電極を前記主軸を中心として回転させる装置
又は前記各検出装置の支持軸を前記主軸を中心と
して回転させる装置とを設け、前記各検出装置の
先端を前記各進退送り装置により前記主軸と平行
な直線上に揃える整揃操作と前記回転装置により
加工電極を回転させるか前記各検出装置の支持軸
を回転させるかして加工電極の所定の側面と前記
検出装置とを対向させる対向操作とを行ない、該
両操作終了後、前記各進退送り装置により前記各
検出装置に前記対向方向への近接送りを与え、前
記各検出装置による加工電極との接触又は近接の
検出信号によつて該近接送りを停止し、前記各検
出装置の該近接送り移動量の差と前記各検出装置
間の前記所定の間隔長さとの比から加工電極の前
記主軸方向に対する前記対向方向の倒れ角度を求
める操作と該倒れ角度を修正するために必要とさ
れる前記傾動装置による加工電極の傾動移動量を
求める操作とを演算装置によつて行ない、該演算
装置の出力信号により前記傾動装置を駆動して加
工電極を前記対向方向に所定量傾動させて前記倒
れ角度を修正し、次いで前記回転装置により加工
電極を回転させるか前記各検出装置の支持軸を回
転させるかして加工電極と前記各検出装置とを前
記対向方向に直交する方向に対向させた状態で前
記と同様の操作を行なうことにより加工電極の前
記主軸方向に対する倒れを修正することを特徴と
する。
The present invention automatically corrects the inclination of the machining electrode, and detects contact or proximity with the machining electrode on the support shaft provided parallel to the main axis (Z-axis) of the machining electrode support head. two or more detection devices arranged at a predetermined interval on the main axis; a device for individually moving each of the two or more detection devices forward and backward in the same direction on a plane orthogonal to the main axis; and a processing electrode. a device for tilting the main shaft around the main shaft;
A device for rotating the machining electrode around the main shaft or a device for rotating the support shaft of each of the detection devices around the main shaft is provided, and the tip of each of the detection devices is moved parallel to the main shaft by each forward/backward feeding device. An alignment operation for aligning on a straight line and a facing operation for causing a predetermined side surface of the processing electrode and the detection device to face each other by rotating the processing electrode using the rotation device or rotating a support shaft of each of the detection devices are performed. , after the completion of both operations, each of the advancing and retracting feed devices gives each of the detection devices a proximity feed in the opposite direction, and the proximity feed is caused by a detection signal of contact with or proximity to the processing electrode by each of the detection devices. stopping, and calculating the inclination angle of the machining electrode in the opposite direction with respect to the main axis direction from the ratio of the difference in the proximity feed movement amount of each of the detection devices and the predetermined interval length between each of the detection devices, and the inclination. An operation for determining the amount of tilting movement of the machining electrode by the tilting device, which is required to correct the angle, is performed by a calculation device, and the tilting device is driven by an output signal of the calculation device to move the machining electrode in the The tilting angle is corrected by tilting a predetermined amount in opposite directions, and then the machining electrode is rotated by the rotation device or the support shaft of each of the detection devices is rotated, so that the machining electrode and each of the detection devices face each other. The present invention is characterized in that the tilting of the machining electrode with respect to the main axis direction is corrected by performing the same operation as described above while facing the machining electrode in a direction perpendicular to the direction.

以下本発明を一実施例により説明する。第1図
に於て、1は加工電極、2は被加工体、3及び4
は検査用通電電源であり、加工電極1はヘツド先
端の磁気チヤツク5に固定される。加工電極支持
ヘツド6はその主軸であるとZ軸方向に移動可能
に構成され、このヘツド6内に加工電極1の支持
軸7が回転及び傾動自在にベアリング8が支持さ
れ、この支持軸7の先端に前記磁気チヤツク5が
固定されて支持される。一方、被加工体2はZ軸
と直交する加工テーブル9に取付けられる。加工
テーブル9には支持軸12がZ軸と平行に設けら
れ、これに絶縁して通電接触検知電極10,11
が所定の間隔を保つて支持される。電極10には
前記電源3から通電が行なわれ、電極1,10間
の電圧が抵抗13で検出され、判別器15により
判別される。又電極11には前記電源4から通電
が行なわれ、電極1,11間電圧が抵抗14で検
出され、判別器16により判別される。これらに
より接触検知装置を構成する。17,18は加工
テーブル9のX軸、Y軸送りモータ、19がヘツ
ド6のZ軸送りモータで、各々に移動量検出のエ
ンコーダ20,21,22が設けられる。23,
24はX軸と平行x軸、Y軸と平行y軸の送りモ
ータで、前記加工電極支持軸7の上端を移動させ
て軸に傾斜運動を与える。25,26は各々の移
動量検出エンコーダ、27は回転ギヤを介して電
極支持軸7を回転させるモータ、28がエンコー
ダ、29は加工テーブル9を回転するモータ、3
0がエンコーダである。31,32は各々検知電
極10,11をZ軸と直交する平面上に於て同方
向に進退送りするモータ、33,34がエンコー
ダ、35,36は検知電極10,11に固定され
た可動接点、37,38は支持軸12に絶縁して
固定された固定接点で、この接点間に電源39,
40により各々通電が行なわれ、通電回路に抵抗
41,42を各々直列に挿入し、判別器43,4
4の判別により信号を発生する。即ち、接点35
と37、36と38が接触したとき検知電極1
0,11の先端が揃うようにしてあり、整揃信号
を発生する。45はCNC、DNC,NC等の中央制
御装置で、ここから各駆動モータに信号を指令出
力する。各軸モータには各々偏差カウンタ45,
46,47,48,49,50,51,52,5
3が設けられ、装置45からの信号と各軸エンコ
ーダの検出信号の偏差値により駆動制御される。
54,55,56,57,58,59,60,6
1,62は各軸エンコーダの検出信号をカウント
するカウンタで、カウント信号は各々中央制御装
置45に入力される。又前記判別器15,16,
43,44からも接触検知信号が入力する。6
3,64,65,66,67,68,69,7
0,71は何れもモータのドライバ、72は加工
用パルス電源である。
The present invention will be explained below by way of an example. In Figure 1, 1 is a processing electrode, 2 is a workpiece, 3 and 4
is a power source for testing, and the processing electrode 1 is fixed to a magnetic chuck 5 at the tip of the head. The main shaft of the processing electrode support head 6 is configured to be movable in the Z-axis direction, and a bearing 8 is supported in the head 6 so that the support shaft 7 of the processing electrode 1 can freely rotate and tilt. The magnetic chuck 5 is fixed and supported at the tip. On the other hand, the workpiece 2 is attached to a processing table 9 perpendicular to the Z-axis. A support shaft 12 is provided on the processing table 9 in parallel with the Z-axis, and electrical contact detection electrodes 10 and 11 are mounted insulated thereon.
are supported at a predetermined interval. The electrode 10 is energized by the power source 3, and the voltage between the electrodes 1 and 10 is detected by the resistor 13 and discriminated by the discriminator 15. Further, the electrode 11 is energized by the power source 4, and the voltage between the electrodes 1 and 11 is detected by the resistor 14 and discriminated by the discriminator 16. These constitute a contact detection device. 17 and 18 are X-axis and Y-axis feed motors for the processing table 9, and 19 is a Z-axis feed motor for the head 6, each of which is provided with encoders 20, 21, and 22 for detecting the amount of movement. 23,
Reference numeral 24 denotes a feed motor with an x-axis parallel to the X-axis and a y-axis parallel to the Y-axis, which moves the upper end of the machining electrode support shaft 7 to impart a tilting motion to the shaft. 25 and 26 are respective movement amount detection encoders; 27 is a motor that rotates the electrode support shaft 7 via a rotary gear; 28 is an encoder; 29 is a motor that rotates the processing table 9;
0 is the encoder. 31 and 32 are motors that move the detection electrodes 10 and 11 forward and backward in the same direction on a plane orthogonal to the Z axis, 33 and 34 are encoders, and 35 and 36 are movable contacts fixed to the detection electrodes 10 and 11. , 37, 38 are fixed contacts that are insulated and fixed to the support shaft 12, and a power source 39,
40 are respectively energized, resistors 41 and 42 are inserted in series in the energizing circuit, and discriminators 43 and 4
A signal is generated based on the determination in step 4. That is, contact 35
When 37, 36 and 38 are in contact with each other, the detection electrode 1
The tips of 0 and 11 are aligned, and a well-aligned signal is generated. 45 is a central control device such as CNC, DNC, NC, etc., which outputs commands to each drive motor from here. Each axis motor has a deviation counter 45,
46, 47, 48, 49, 50, 51, 52, 5
3 is provided, and the drive is controlled by the deviation value between the signal from the device 45 and the detection signal of each axis encoder.
54, 55, 56, 57, 58, 59, 60, 6
1 and 62 are counters that count the detection signals of the respective axis encoders, and the count signals are respectively input to the central controller 45. Moreover, the discriminators 15, 16,
Contact detection signals are also input from 43 and 44. 6
3, 64, 65, 66, 67, 68, 69, 7
0 and 71 are both motor drivers, and 72 is a processing pulse power source.

以上の装置によりヘツドにチヤツク支持された
加工電極1の倒れ修正は次のようにして行なわれ
る。中央制御装置45からプログラムにしたがつ
て、加工電極支持7の回転モータ27に駆動信号
が加えられ、加工電極1を回転させて該電極1の
倒れ修正しようとする所定の側面を検知電極1
0,11に対向させる。検知電極10,11と加
工電極1との配置位置関係によつては、この対向
操作の際にX軸モータ17,Y軸モータ18の一
方若しくは両方に駆動信号を加えて加工テーブル
9を移動させることを加工電極の回転と共に行な
つて加工電極1と検知電極10,11とを所望の
間隔を介して対向させる。しかして、この対向操
作の前に、又はこの対向操作が終了してから、モ
ータ31,32の制御により検知電極10,11
を後退させ、接点35と37、36と38の接触
による検知電極10,11の先端整揃信号を判別
器43,44から装置45に入力し、モータ3
1,32を停止させると共にカウンタ61,62
をクリアし、検知電極10,11の先端をZ軸と
平行な直線上に揃えておき、この検知電極10,
11の先端の整揃操作と前記対向操作が終了した
ら、X軸モータ17、Y軸モータ18を駆動して
前記対向方向に相対近接送りをする。
Correcting the inclination of the machining electrode 1 chuck-supported by the head using the above-mentioned apparatus is carried out as follows. According to the program from the central controller 45, a drive signal is applied to the rotary motor 27 of the machining electrode support 7, and the machining electrode 1 is rotated so that the detection electrode 1 detects a predetermined side surface on which the tilting of the electrode 1 is to be corrected.
0 and 11. Depending on the positional relationship between the sensing electrodes 10, 11 and the processing electrode 1, during this opposing operation, a drive signal may be applied to one or both of the X-axis motor 17 and the Y-axis motor 18 to move the processing table 9. This is done together with the rotation of the processing electrode, so that the processing electrode 1 and the detection electrodes 10 and 11 are opposed to each other with a desired spacing therebetween. Therefore, before this facing operation or after this facing operation is completed, the sensing electrodes 10 and 11 are controlled by the motors 31 and 32.
The motor 3
1 and 32 and counters 61 and 62.
, and align the tips of the sensing electrodes 10 and 11 on a straight line parallel to the Z axis.
When the alignment operation of the tips of the tips 11 and the facing operation are completed, the X-axis motor 17 and the Y-axis motor 18 are driven to perform relative proximity feeding in the facing direction.

この近接送りは所定の近接位置で止めても、或
いは加工電極1が検知電極10,11の何れか一
方に接触するまで送つてもよい。即ち、検知電極
10,11の可動範囲内に加工電極1が位置する
ようにすれば良いものであり、従つて、前記対向
操作によつてこのような位置関係に検知電極1
0,11と加工電極1とが位置させられていれ
ば、この近接送りは行なわなくても良い。
This proximity feeding may be stopped at a predetermined proximity position, or may be continued until the processing electrode 1 comes into contact with either one of the detection electrodes 10, 11. That is, it is sufficient to position the processing electrode 1 within the movable range of the sensing electrodes 10 and 11. Therefore, the sensing electrode 1 can be positioned in such a positional relationship by the above-mentioned facing operation.
0, 11 and the processing electrode 1 are positioned, it is not necessary to carry out this close feeding.

次にモータ31,32に信号加えて駆動し検知
電極10,11を加工電極1に近接送りし、接触
するまで送る。接触すると抵抗13,14の検出
電圧を判別器15,16で判別して信号を装置4
5に入力する。装置45は入力信号に対してモー
タ31,32の送りを停止すると共に、各検知電
極10,11の移動量をカウンタ61,62から
信号入力し、装置45は演算回路を内蔵してお
り、カウンタ61,62の移動量の差を演算し、
且つ検知電極10,11間隔の長さは予め入力し
てメモリしておき、検知電極10と11の移動量
の差と間隔長さとの比から加工電極のZ軸方向に
対する前記対向方向の倒れ角度を検知する。即
ち、例えば検知電極10,11をX軸と平行に配
置してこの検知電極と対向する加工電極の側面の
Z軸に対するX軸方向の倒れを修正する場合、第
2図のように検知電極10,11の間隔がZ1で移
動量の差がX1であつたとすると、このX1とZ1
の比(X1/Z1=tanθ)から前記側面のZ軸に対
するX軸方向の倒れ角度θが検知される。次い
で、装置45は、この倒れ角度を修正するために
必要とされる前記x軸モータ23とy軸モータ2
4の一方若しくは両方による加工電極1の傾動移
動量を演算し、該演算出力信号をx軸モータ23
又はy軸モータ24に或いはこの両モータ23,
24への分配信号として加え(第2図の場合はx
軸モータ23の駆動制御だけで良い)、加工電極
を支持する支持軸7の上端を前記対向方向(第2
図の場合はx軸方向)に所定量前進又は後退させ
て、前記側面のZ軸に対する前記対向方向の倒れ
を修正する。この加工電極1の傾動移動の際、検
知電極10,11が該傾動移動の邪魔にならない
ように、該検知電極10,11を適宜後退させて
加工電極1から離隔させておく。
Next, a signal is applied to the motors 31 and 32 to drive them, and the detection electrodes 10 and 11 are fed close to the processing electrode 1 until they come in contact with each other. Upon contact, the detected voltages of the resistors 13 and 14 are discriminated by the discriminators 15 and 16, and a signal is sent to the device 4.
Enter 5. The device 45 stops the feeding of the motors 31 and 32 in response to the input signal, and also inputs the movement amount of each detection electrode 10 and 11 as a signal from the counters 61 and 62. Calculate the difference between the moving amounts of 61 and 62,
In addition, the length of the interval between the sensing electrodes 10 and 11 is input in advance and stored in memory, and the inclination angle of the processing electrode in the opposing direction with respect to the Z-axis direction is determined from the ratio of the difference in the amount of movement of the sensing electrodes 10 and 11 to the interval length. Detect. That is, for example, when the sensing electrodes 10 and 11 are arranged parallel to the X-axis and the side surface of the processing electrode facing the sensing electrodes is corrected for tilting in the X-axis direction with respect to the Z-axis, the sensing electrodes 10 and 11 are arranged parallel to the X-axis as shown in FIG. , 11 is Z 1 and the difference in movement amount is The angle θ is sensed. The device 45 then operates the x-axis motor 23 and the y-axis motor 2 needed to correct this tilt angle.
The amount of tilting movement of the processing electrode 1 by one or both of 4 is calculated, and the calculated output signal is sent to the
or to the y-axis motor 24, or to both motors 23,
In addition as a distribution signal to 24 (in the case of Fig. 2, x
The upper end of the support shaft 7 that supports the machining electrode is moved in the opposite direction (the second
The tilting of the side surface in the opposite direction with respect to the Z-axis is corrected by moving it forward or backward by a predetermined amount in the x-axis direction (in the case of the figure). When the processing electrode 1 is tilted and moved, the detection electrodes 10 and 11 are appropriately moved back and separated from the processing electrode 1 so that the detection electrodes 10 and 11 do not interfere with the tilting movement.

この修正制御も偏差カウンタ48,49により
指令信号とエンコーダ25,26の検出信号の偏
差を取りながらモータ駆動するので正確な移動制
御が行なわれ、電極1の倒れ修正が正確に精密に
行なえる。
In this correction control, the motor is driven while taking the deviation between the command signal and the detection signals of the encoders 25 and 26 using the deviation counters 48 and 49, so accurate movement control is performed and the inclination of the electrode 1 can be corrected accurately and precisely.

以上により加工電極1の一方向の倒れ修正制御
が行なわれたので、次に電極1の他の方向の倒れ
修正を同様にして行なうようにする。通常は加工
電極1の前記修正方向と直交する向きの修正をす
る。
Since the tilt correction control of the processing electrode 1 in one direction has been performed as described above, the tilt correction of the electrode 1 in the other direction is next performed in the same manner. Normally, the processing electrode 1 is corrected in a direction perpendicular to the above-mentioned correction direction.

先ず、加工電極支持軸7の回転モータ27に駆
動信号を加えた加工電極1を90゜回転装させて先
に倒れ修正を行なつた加工電極1の前記側面と直
交する側面を検知電極10,11と対向させる対
向操作と、モータ31,32に駆動信号を加え検
知電極10,11を接点35と37及び36と3
8が接触する位置まで後退させて両検知電極1
0,,11の先端をZ軸と平行な直線上に揃えて
からカウンタ61,62をクリアする整揃操作と
を行なつた後、先の倒れ修正操作と同様に、検知
電極10,11の加工電極1への近接送り、該近
接送りの接触信号による停止、検知電極10,1
1の移動量の差と間隔長さとの比から倒れ角度の
検知及び検知された倒れ角度に対応する加工電極
1の傾動移動量の演算、該演算出力信号により与
えられる加工電極1の前記対向方向への所定量の
傾動移動による倒れ修正操作が中央制御装置45
によつて順次行なわれる。
First, the machining electrode 1 to which a drive signal has been applied to the rotary motor 27 of the machining electrode support shaft 7 is rotated by 90 degrees, and the side surface perpendicular to the side surface of the machining electrode 1 that was previously corrected for inclination is attached to the sensing electrode 10, 11 and applying a drive signal to the motors 31 and 32 to connect the detection electrodes 10 and 11 to contacts 35 and 37 and 36 and 3.
Retract both sensing electrodes 1 to the position where they touch.
After aligning the tips of the sensing electrodes 10, 11 on a straight line parallel to the Z-axis and performing the alignment operation of clearing the counters 61, 62, the detection electrodes 10, 11 are aligned in the same manner as the previous tilt correction operation. Proximity feeding to the processing electrode 1, stopping of the proximity feeding by a contact signal, detection electrodes 10, 1
Detecting the inclination angle from the ratio of the difference in movement amount of 1 and the interval length, calculating the tilting movement amount of the processing electrode 1 corresponding to the detected inclination angle, and the opposing direction of the processing electrode 1 given by the calculation output signal. The central controller 45 performs a tilt correction operation by tilting a predetermined amount to
This is done sequentially by

このようにして加工電極1は直交する2方向か
らの2回の倒れ修正によつてZ軸に一致する真直
な固定支持が行なえ、この加工電極1をもつて加
工電源72より通電が行なわれ水等の加工液を供
給しながら通電加工が行なわれる。加工開始に際
しては電極1、被加工体2の位置合せが必要であ
るが、この制御も装置45の信号によりモータ1
7,18,19の駆動制御により容易に行なえ
る。
In this way, the machining electrode 1 can be fixed and supported straight along the Z-axis by correcting the tilt twice from two orthogonal directions, and the machining electrode 1 is energized by the machining power source 72 and the water is Electrical machining is performed while supplying a machining fluid such as . When starting machining, it is necessary to align the electrode 1 and the workpiece 2, but this control is also controlled by the motor 1 using a signal from the device 45.
This can be easily done by controlling the drives of 7, 18, and 19.

以上は、回転モータ27により加工電極1を回
転させて所定の側面を検知電極10,11と対向
させて倒れを修正する方式について説明したが、
加工電極1の回転に代えて、モータ29によりテ
ーブル9を回転させて検知電極10,11を支持
する支持軸12をZ軸を中心として回転させるよ
うにしてもよい。この場合は、X軸モータ17と
Y軸モータ18の駆動制御によりテーブル9の回
転中心軸をZ軸と一致させた状態でテーブル9を
回転させて検知電極10,11の支持軸12を加
工電極1の周りに回転させることにより、例えば
X軸方向に倒れ修正方向を合せて前記同様の電極
1倒れ修正制御をし、次に90゜回転させY軸方向
に倒れ修正方向を合致させ電極1の倒れ修正制御
する。
In the above, a method has been described in which the machining electrode 1 is rotated by the rotary motor 27 so that a predetermined side face faces the detection electrodes 10 and 11 to correct the inclination.
Instead of rotating the processing electrode 1, the table 9 may be rotated by the motor 29, and the support shaft 12 supporting the detection electrodes 10, 11 may be rotated about the Z-axis. In this case, by controlling the drive of the X-axis motor 17 and the Y-axis motor 18, the table 9 is rotated with the rotation center axis of the table 9 aligned with the Z-axis, and the support shafts 12 of the detection electrodes 10 and 11 are aligned with the processing electrodes. For example, by rotating the electrode 1 around the X axis direction, the tilt correction direction of the electrode 1 is aligned with the direction of the X axis, and the same tilt correction control as described above is carried out. Controls tilt correction.

以上何れの方法によつても自動的に容易に加工
電極の倒れ修正ができ真直に支持することができ
る。
With any of the above methods, the machining electrode can be automatically and easily corrected for its inclination and supported straight.

第3図は電極交換装置を設けて消耗の都度、或
いは加工形状、加工部分の変更に対応して貯蔵さ
れた電極群から選択して交換しながら加工を順次
進めていく実施例であり、73が各種電極1a,
1b,1c………を貯蔵する回転板で中央制御装
置45からのプログラム信号によつて回転し、目
的とする電極を選択する。74はマテハンで、ヘ
ツド先端チヤツク5に支持された電極を取外して
円板73に戻すと共に、選択された円板73上電
極をチヤツク5に交換固定支持させる。これも装
置45によつてプログラム制御され、プログラム
にしたがつて次々に電極交換しながら加工を進め
る。回転板73に貯蔵される加工電極は第4図の
ように断面が所要の加工形状を有するものa、四
角b、丸c、三角dのような単純形状のもの、又
単純形の細いものe,f,g等を貯蔵しておき、
目的加工に対応したものを交換利用し、例えば単
純形状電極で所要の形状をNC制御、倣制御しな
がら所要の三次元形状加工を行なう。このような
電極交換時にチヤツク4に支持された交換電極が
必ずしもZ軸に真直に固定されるとは限らず、こ
の電極交換固定時に、前記第1図の装置により倒
れ修正制御が行なわれる。検知電極10,11に
接触して倒れ修正制御の行なわれた電極は、所定
の距離をX軸及びY軸方向に送られ加工部に正確
に位置出しされ、通電加工が再開される。
FIG. 3 shows an embodiment in which an electrode exchange device is provided and machining is sequentially progressed while selecting and exchanging electrodes from a stored group of electrodes each time they wear out or in response to a change in the machining shape or part to be machined. are various electrodes 1a,
A rotary plate storing electrodes 1b, 1c, etc. is rotated by a program signal from the central controller 45 to select a target electrode. A material handler 74 removes the electrode supported by the head tip chuck 5 and returns it to the disc 73, and also replaces and fixes the selected electrode on the disc 73 to the chuck 5. This is also program-controlled by the device 45, and the machining progresses while exchanging electrodes one after another according to the program. The machining electrodes stored in the rotary plate 73 include those with a cross section having the required machining shape as shown in Fig. 4, those with simple shapes such as square b, circle c, and triangle d, and those with simple shapes and narrow e. , f, g, etc. are stored,
For example, a simple shape electrode can be used to process the required three-dimensional shape while performing NC control and copying control. During such electrode replacement, the replacement electrode supported by the chuck 4 is not necessarily fixed straight on the Z axis, and when the electrode is replaced and fixed, tilt correction control is performed by the device shown in FIG. The electrodes that have been brought into contact with the detection electrodes 10 and 11 and subjected to the tilt correction control are sent a predetermined distance in the X-axis and Y-axis directions, are accurately positioned in the processing section, and the energization processing is restarted.

第5図はガイド75,76間を巻取り移動する
ワイヤ電極1Wを用いて、被加工体2Wのワイヤ
カツトをする場合の例で、加工テーブル82上の
被加工体はX軸及びY軸駆動モータ77,78に
よつて平面送りが与えられ、又上方ガイドにZ軸
モータ79により上下移動が又x軸及びy軸駆動
モータ80,81によりワイヤ電極1W傾斜送り
が与えられる。この場合のワイヤ電極1Wの倒れ
倒れ修正をするには、図示しないが前記テーブル
9と同様に回転駆動制御可能に構成されるテーブ
ル82に前記両検知電極を設け、テーブル82を
回転させることにより前記両検知電極をワイヤ電
極1Wに対して所望の方向、例えばX軸方向から
対向させ、次いで、先端が整揃されている前記両
検知電極をワイヤ電極1Wに接触するまで近接送
りした後、前記両検知電極の移動量の差と間隙長
さとの比から倒れ角度を検知電し、この倒れ角度
を修正するために必要とされるガイド75の移動
量を演算した出力信号によりモータ80,81を
駆動制御してガイド75を前記対向方向に所定量
移動させることによつて倒れを修正し、次に、テ
ーブル82を回転装させ前記両検知電極をワイヤ
電極1Wの周りに90゜回転させて先に修正を行な
つた。例えばX軸方向と直交するY軸方向からワ
イヤ電極1Wに対向させて、前述と同様の倒れ修
正操作を行なえば良く、このようにすることによ
り、ワイヤ電極1WをZ軸に真直にガイドするこ
とができる。
FIG. 5 shows an example in which wire cutting is performed on a workpiece 2W using a wire electrode 1W that is wound and moved between guides 75 and 76. Planar feed is provided by 77 and 78, vertical movement is provided to the upper guide by a Z-axis motor 79, and tilt feed of the wire electrode 1W is provided by x-axis and y-axis drive motors 80 and 81. In order to correct the inclination of the wire electrode 1W in this case, both of the detection electrodes are provided on a table 82 which is configured to be rotationally controllable in the same way as the table 9, and the table 82 is rotated. Both sensing electrodes are made to face the wire electrode 1W from a desired direction, for example, from the The angle of inclination is detected from the ratio between the difference in the amount of movement of the detection electrodes and the length of the gap, and the motors 80 and 81 are driven by an output signal that calculates the amount of movement of the guide 75 required to correct this angle of inclination. The tilting is corrected by controlling the guide 75 to move a predetermined amount in the opposite direction, and then the table 82 is rotated to rotate both the detection electrodes by 90 degrees around the wire electrode 1W. I made the corrections. For example, it is sufficient to face the wire electrode 1W from the Y-axis direction perpendicular to the X-axis direction and perform the tilt correction operation similar to that described above. By doing this, the wire electrode 1W can be guided straight along the Z-axis. Can be done.

以上の実施例に於て、加工電極の接触又は近接
を検出する検出装置として通電電極による電圧変
化を信号とするものについて説明したが、これは
無接触の光学的、磁気的、電気的感知装置を用い
ることができ、各軸送り装置に直流モータ、交流
モータ、パルスモータ、流体シリンダ、電磁石、
その他の送り制御装置が利用でき、これによる移
動量の検出器には各種エンコーダ、磁気スケー
ル、モアレ、インダクトシン等の各種検出器が用
いられる。
In the above embodiments, a detection device that uses a voltage change caused by a current-carrying electrode as a signal to detect contact or proximity of a processing electrode has been described, but this is a non-contact optical, magnetic, or electrical sensing device. DC motors, AC motors, pulse motors, fluid cylinders, electromagnets,
Other feed control devices can be used, and various detectors such as various encoders, magnetic scales, moiré, inductosin, etc. are used to detect the amount of movement by this device.

本発明は加工電極の倒れ修正が自動的に容易に
でき、電極交換を自動的に行ないながら順次加工
を進める通電加工に於て、加工精度が向上し、目
的とする形状加工を安定して容易に加工でき、自
動制御通電加工装置として効果が大きい。
The present invention automatically and easily corrects the inclination of the machining electrode, improves machining accuracy in energized machining in which machining is performed sequentially while automatically exchanging electrodes, and stably and easily machining the desired shape. It is highly effective as an automatically controlled electrical processing device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例装置の構成図、第2
図は説明図、第3図は電極交換装置の一実施例
図、第4図は加工電極の断面形状図、第5図はワ
イヤカツトの場合の一実施例構成図である。 1,1a,1b,1c,1W……加工電極、
2,2W……被加工体、3,4,39,40……
通電電源、10,11……検知電極、15,1
6,43,44……判別器、17,18,19,
23,24,27,29,31,32……モー
タ、20,21,22,25,26,28,3
0,33,34……エンコーダ、45……中央制
御装置、45,46,47,48,49,50,
51,52,53……偏差カウンタ、54,5
5,56,57,58,59,60,61,62
……カウンタ。
FIG. 1 is a configuration diagram of an apparatus according to an embodiment of the present invention, and FIG.
3 is an explanatory diagram, FIG. 3 is a diagram of an embodiment of the electrode exchange device, FIG. 4 is a diagram of the cross-sectional shape of a processing electrode, and FIG. 5 is a diagram of the configuration of an embodiment in the case of a wire cut. 1, 1a, 1b, 1c, 1W... processing electrode,
2, 2W... workpiece, 3, 4, 39, 40...
Energizing power source, 10, 11... Sensing electrode, 15, 1
6, 43, 44... discriminator, 17, 18, 19,
23, 24, 27, 29, 31, 32...Motor, 20, 21, 22, 25, 26, 28, 3
0, 33, 34...Encoder, 45...Central control unit, 45, 46, 47, 48, 49, 50,
51, 52, 53...deviation counter, 54, 5
5, 56, 57, 58, 59, 60, 61, 62
……counter.

Claims (1)

【特許請求の範囲】 1 加工電極支持ヘツドの主軸と平行して設けら
れる支持軸上に加工電極との接触又は近接を検出
するために所定の間隔をもつて2個以上配置され
る検出装置と、該2個以上の検出装置の夫々を個
別に前記主軸と直交する平面上に於て同方向に進
退送りする装置と、加工電極を前記主軸を中心と
して傾動させる装置と、加工電極を前記主軸を中
心として回転させる装置又は前記各検出装置の支
持軸を前記主軸を中心として回転させる装置とを
設け、前記各検出装置の先端を前記各進退送り装
置により前記主軸と平行な直線上に揃える整揃操
作と前記回転装置により加工電極を回転させるか
前記各検出装置の支持軸を回転させるかして加工
電極の所定の側面と前記各検出装置とを対向させ
る対向操作とを行ない、該両操作終了後、前記各
進退送り装置により前記各検出装置に前記対向方
向への近接送りを与え、前記各検出装置による加
工電極との接触又は近接の検出信号によつて該近
接送りを停止し、前記各検出装置の該近接送り移
動量の差と前記各検出装置間の前記所定の間隙長
さとの比から加工電極の前記主軸方向に対する前
記対向方向の倒れ角度を求める操作と該倒れ角度
を修正するために必要とされる前記傾動装置によ
る加工電極の傾動移動量を求める操作とを演算装
置によつて行ない、該演算装置の出力信号により
前記傾動装置を駆動して加工電極を前記対向方向
に所定量傾動させて前記倒れ角度を修正し、次い
で前記回転装置により加工電極を回転させるか前
記各検出装置の支持軸を回転させるかして加工電
極と前記各検出装置とを前記対向方向と直交する
方向に対向させた状態で前記と同様の操作を行な
うことにより加工電極の前記主軸方向に対する倒
れを修正することを特徴とする通電加工電極の倒
れ修正方法。 2 加工電極支持ヘツドの主軸と平行して設けら
れる支持軸上に加工電極との接触又は近接を検出
するために所定の間隔をもつて2個以上配置され
る検出装置と、該2個以上の検出装置の夫々を個
別に前記主軸と直交する平面上に於て同方向に進
退送りする装置と、該各進退送り装置による前記
各検出装置の夫々の移動量を検出する検出器と、
加工電極を前記主軸を中心として傾動させるため
に設けられる前記主軸と直交する平面に於て互い
に直交する2軸の各軸送り装置と、加工電極を前
記主軸を中心として回転させる装置と、前記各装
置を集中制御する中央制御装置からなり、前記中
央制御装置は、前記各進退送り装置に駆動信号を
加えて前記各検出装置の先端を前記主軸と平行な
直線上に揃えると共に前記各検出器にクリア信号
を加えてクリアする整揃操作と、前記回転装置に
駆動信号を加えて加工電極の所定の側面と前記各
検出装置とを対向させる対向操作とを行なわし
め、該両操作終了後、前記各進退送り装置に駆動
信号を加えて前記各検出装置に前記対向方向への
近接送りを与え、該近接送りを前記各検出装置に
よる加工電極との接触又は近接の検出信号によつ
て停止させ、前記各検出器により検出される前記
各検出装置の該近接送り移動量の差と前記各検出
装置間の前記所定の間隙長さとの比から加工電極
の前記主軸方向に対する前記対向方向の倒れ角度
を検知して、この倒れ角度を修正するために必要
とされる前記2軸の各軸送り装置の一方若しくは
両方による加工電極の傾動移動量を演算し、該演
算出力信号を前記2軸の各軸送り装置の一方若し
くは両方に加えて加工電極を前記対向方向に所定
量傾動させることにより前記倒れ角度の修正を行
なわせるものであることを特徴とする通電電極倒
れ修正装置。 3 加工電極支持ヘツドの主軸と平行して設けら
れる支持軸上に加工電極との接触又は近接を検出
するために所定の間隔をもつて2個以上配置され
る検出装置と、該2個以上の検出装置の夫々を個
別に前記主軸と直交する平面上に於て同方向に進
退送りする装置と、該各進退送り装置による前記
各検出装置の夫々の移動量を検出する検出器と、
加工電極を前記主軸を中心として傾動させるため
に設けられる前記主軸と直交する平面に於て互い
に直交する2軸の各軸送り装置と、前記各検出装
置の支持軸を前記主軸を中心として回転させ装置
と、前記各装置を集中制御する中央制御装置から
なり、前記中央制御装置は、前記各進退送り装置
に駆動信号を加えて前記各検出装置の先端を前記
主軸と平行な直線上に揃えると共に前記各検出器
にクリア信号を加えてクリアする整揃操作と、前
記回転装置に駆動信号に加えて加工電極の所定の
側面と前記各検出装置とを対向させる対向操作と
を行なわしめ、該両操作終了後、前記各進退送り
装置に駆動信号を加えて前記各検出装置に前記対
向方向への近接送りを与え、該近接送りを前記各
検出装置による加工電極との接触又は近接の検出
信号によつて停止させ、前記各検出器により検出
される前記各検出装置の該近接送り移動量の差と
前記各検出装置間の前記所定の間隙長さとの比か
ら加工電極の前記主軸方向に対する前記対向方向
の倒れ角度を検知して、この倒れ角度を修正する
ために必要とされる前記2軸の各軸送り装置の一
方若しくは両方による加工電極の傾動移動量を演
算し、該演算出力信号を前記2軸の各軸送り装置
の一方若しくは両方に加えて加工電極を前記対向
方向に所定量傾動させることにより前記倒れ角度
の修正を行なわせるものであることを特徴とする
通電加工電極倒れ修正装置。
[Claims] 1. Two or more detection devices arranged at a predetermined interval on a support shaft provided parallel to the main axis of the processing electrode support head to detect contact with or proximity to the processing electrode. , a device for individually advancing and retracting each of the two or more detection devices in the same direction on a plane orthogonal to the main axis; a device for tilting the processing electrode around the main axis; and a device for tilting the processing electrode about the main axis; or a device that rotates the support shaft of each of the detection devices around the main shaft, and aligns the tip of each of the detection devices on a straight line parallel to the main shaft by each of the advance/retreat feed devices. Performing an alignment operation and a facing operation in which a predetermined side surface of the processing electrode faces each of the detection devices by rotating the processing electrode using the rotation device or rotating a support shaft of each of the detection devices, and both operations are performed. After the completion, each of the forward and backward feeding devices gives each of the detection devices a close feed in the opposing direction, and the close feed is stopped by a detection signal of contact with or proximity to the processing electrode by each of the detection devices, and An operation for determining an inclination angle of the machining electrode in the opposite direction with respect to the main axis direction from a ratio between the difference in the proximity feed movement amount of each detection device and the predetermined gap length between the respective detection devices, and correcting the inclination angle. The operation of determining the amount of tilting movement of the machining electrode by the tilting device, which is necessary for The tilting angle is corrected by tilting a fixed amount, and then the processing electrode is rotated by the rotating device or the support shaft of each of the detection devices is rotated, so that the processing electrode and each of the detection devices are orthogonal to the opposing direction. A method for correcting inclination of an energized machining electrode, comprising correcting inclination of the machining electrode with respect to the main axis direction by performing the same operation as described above with the electrodes facing each other in the direction. 2. Two or more detection devices arranged at a predetermined interval on a support shaft provided parallel to the main axis of the processing electrode support head to detect contact with or proximity to the processing electrode; a device that individually advances and retracts each of the detection devices in the same direction on a plane orthogonal to the main axis; a detector that detects the amount of movement of each of the detection devices by each of the forward and backward feed devices;
a feeding device for two axes orthogonal to each other in a plane orthogonal to the main axis provided for tilting the processing electrode around the main axis; It consists of a central control device that centrally controls the device, and the central control device applies a drive signal to each of the advance/backward feed devices to align the tips of each of the detection devices on a straight line parallel to the main axis, and to align the tips of each of the detection devices to a straight line parallel to the main axis. An alignment operation is performed in which a clear signal is applied to clear the data, and a facing operation is performed in which a drive signal is applied to the rotating device to make a predetermined side surface of the processing electrode face each of the detection devices, and after the completion of both operations, the Applying a drive signal to each advancing/retreating feed device to give each of the detection devices proximity feed in the opposing direction, and stopping the proximity feed by a detection signal of contact with or proximity to the processing electrode by each of the detection devices; The inclination angle of the processing electrode in the opposing direction with respect to the main axis direction is determined from the ratio of the difference in the proximity feed movement amount of each of the detection devices detected by each of the detectors to the predetermined gap length between each of the detection devices. The amount of tilting movement of the machining electrode by one or both of the two axis feeders required to correct this inclination angle is calculated, and the calculated output signal is transmitted to each of the two axes. An energized electrode inclination correcting device, characterized in that the inclination angle is corrected by tilting the machining electrode by a predetermined amount in the opposing direction in addition to one or both of the feeding devices. 3. Two or more detection devices arranged at a predetermined interval on a support shaft provided parallel to the main axis of the processing electrode support head to detect contact with or proximity to the processing electrode; a device that individually advances and retracts each of the detection devices in the same direction on a plane orthogonal to the main axis; a detector that detects the amount of movement of each of the detection devices by each of the forward and backward feed devices;
Rotating the support shafts of two axes that are orthogonal to each other in a plane perpendicular to the main axis and that are provided for tilting the processing electrode about the main axis, and the support shafts of the respective detection devices, about the main axis. and a central control device that centrally controls each of the devices, the central control device applying a drive signal to each advance/retreat feed device to align the tips of each of the detection devices on a straight line parallel to the main axis. An alignment operation in which a clear signal is applied to each of the detectors to clear the detectors, and a facing operation in which a predetermined side surface of the processing electrode faces each of the detection devices in addition to a drive signal to the rotating device are performed, and both After the operation is completed, a drive signal is applied to each of the advance/retreat feed devices to give each of the detection devices a proximity feed in the opposing direction, and the proximity feed is converted into a detection signal of contact with or proximity to the processing electrode by each of the detection devices. Then, the processing electrode is stopped, and from the ratio of the difference in the proximity feed movement amount of each of the detection devices detected by each of the detectors to the predetermined gap length between each of the detection devices, it is determined whether the processing electrode is opposed to the main axis direction. Detecting the angle of inclination in the direction, calculating the amount of tilting movement of the processing electrode by one or both of the two axis feeders required to correct the angle of inclination, and transmitting the calculated output signal to the An electric machining electrode inclination correcting device, characterized in that the inclination angle is corrected by tilting the machining electrode by a predetermined amount in the opposing direction in addition to one or both of the two-axis feed devices.
JP16197379A 1979-12-13 1979-12-13 Method of correcting tilt of electrode for electric machining and device for the same Granted JPS5689435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16197379A JPS5689435A (en) 1979-12-13 1979-12-13 Method of correcting tilt of electrode for electric machining and device for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16197379A JPS5689435A (en) 1979-12-13 1979-12-13 Method of correcting tilt of electrode for electric machining and device for the same

Publications (2)

Publication Number Publication Date
JPS5689435A JPS5689435A (en) 1981-07-20
JPS6258850B2 true JPS6258850B2 (en) 1987-12-08

Family

ID=15745592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16197379A Granted JPS5689435A (en) 1979-12-13 1979-12-13 Method of correcting tilt of electrode for electric machining and device for the same

Country Status (1)

Country Link
JP (1) JPS5689435A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58211824A (en) * 1982-05-11 1983-12-09 Mitsubishi Electric Corp Electric discharge machining device
JPS58211825A (en) * 1982-05-11 1983-12-09 Mitsubishi Electric Corp Electric discharge machining device
JPS5988216A (en) * 1982-11-05 1984-05-22 Mitsubishi Electric Corp Electric discharge machine
JPS5988217A (en) * 1982-11-05 1984-05-22 Mitsubishi Electric Corp Electric discharge machining
US5773781A (en) * 1993-02-10 1998-06-30 Fanuc, Ltd. Profiling electrical discharge machining apparatus
JP5496029B2 (en) * 2010-09-09 2014-05-21 三菱電機株式会社 EDM machine
CN112846428A (en) * 2021-01-04 2021-05-28 张晓民 Electric spark machining guider based on coolant liquid

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4721274U (en) * 1971-02-16 1972-11-09

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4721274U (en) * 1971-02-16 1972-11-09

Also Published As

Publication number Publication date
JPS5689435A (en) 1981-07-20

Similar Documents

Publication Publication Date Title
JP5235284B2 (en) Measuring method and machine tool
KR950004764B1 (en) Electric spark machine
EP2584419B1 (en) CNC machine for cutting with plasma, oxygen and water jet used as a cutting tool with automatic setting up a precise position of a cutting tool in a cutting head by autocalibration and method thereof
CN101357443A (en) Machine tool having the function of correcting mounting error through contact detection
JPS6161746A (en) Method of searching contact of tool and device for preciselypositioning surface of cutting tool
JPWO2002032620A1 (en) Measuring method and apparatus, and machine tool and work processing method having the apparatus
JP2000198047A (en) Machine tool
JP5496029B2 (en) EDM machine
JPS6258850B2 (en)
JP4799472B2 (en) Measuring method and apparatus for tool edge position, workpiece processing method and machine tool
EP0068643B1 (en) Lathe tool calibrator and method
JPS601139B2 (en) Automatic tool dimension correction method for copying machine tools
JPS6325892B2 (en)
JPH08174320A (en) Device and method for machining up to fixed depth
JPS6243814B2 (en)
JP2786893B2 (en) Method for detecting the coordinate position of the grinding point of the grinding wheel
JPS63127830A (en) Wire electric discharge machine
JPH0655415A (en) Measuring method for and secular change of machine tool
JP2599924B2 (en) Measurement method of electrode guide position in wire electric discharge machine
GB2154163A (en) Cylindrical grinding machine having position detection probe
JPS6250252B2 (en)
JPH0671687B2 (en) Electric discharge machine
JP5305193B2 (en) V-groove shape measuring method and apparatus
WO2022059748A1 (en) Machine tool, positional information correction method, and positional information correction program
JP2001001174A (en) Method for cutting pipe in laser beam machine and device therefor