JPS6258641A - Vapor-phase epitaxial growth equipment - Google Patents

Vapor-phase epitaxial growth equipment

Info

Publication number
JPS6258641A
JPS6258641A JP19823285A JP19823285A JPS6258641A JP S6258641 A JPS6258641 A JP S6258641A JP 19823285 A JP19823285 A JP 19823285A JP 19823285 A JP19823285 A JP 19823285A JP S6258641 A JPS6258641 A JP S6258641A
Authority
JP
Japan
Prior art keywords
reservoir
temperature
gas
filled
epitaxial growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19823285A
Other languages
Japanese (ja)
Inventor
Kenji Maruyama
研二 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP19823285A priority Critical patent/JPS6258641A/en
Publication of JPS6258641A publication Critical patent/JPS6258641A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable a high-accuracy epitaxial growth by a method wherein the temperature and flow rate of gas passing through capillaries for a gas flow path in the interior of a reservoir filled with a highly evaporative element are controlled and the evaporation quantity of highly evaporative material is controlled. CONSTITUTION:There is a susceptor 12 made of carbon in the interior of a growth ampul 11, a CdTe substrate 13 is placed on the susceptor 12, and moreover there is a reservoir 14 made of quartz and filled with mercury Hg. Capillaries 14 for gas flow path connected with a gas pipe 15 for temperature control and branched into plural fine tubes are formed in the interior of the reservoir 14 and these branched capillaries 16 are again integrally formed by a gas pipe 17 for temperature control at the outlet of the reservoir 14. The method to control the temperature of the Hg filled in the reservoir 14 comprises a high- pressure bomb 18 which feeds gases of nitrogen gas and the like as the kinds of gases. These gases are controlled in a flow rate of a proper amount by a flow rate control unit 19, but are fed back by the control and thermocouples 20 which detect the temperature of the Hg.

Description

【発明の詳細な説明】 [概要] 本発明は、気相エピタキシャル成長装置であって、易蒸
発性元素の蒸気圧を正確に制御するために、易蒸発性元
素が充填されたリザーバ内に、温度が制御された気体を
流通する複数の毛細管を形成し、その毛細管中に所定の
温度の気体を通すことにより、リザーバ内で毛細管と接
合している易蒸発性元素の温度及び流量を制御して、適
切な温度調節することにより、リザーバの易蒸発性元素
の温度を制御して、適格な蒸発を行うよ・うにしたもの
である。
Detailed Description of the Invention [Summary] The present invention is a vapor phase epitaxial growth apparatus in which a reservoir filled with an easily evaporable element is heated at a temperature of By forming a plurality of capillary tubes through which controlled gas flows, and passing gas at a predetermined temperature through the capillary tubes, the temperature and flow rate of the easily evaporable element connected to the capillary tubes in the reservoir are controlled. By adjusting the temperature appropriately, the temperature of the easily evaporable element in the reservoir is controlled to ensure proper evaporation.

[産業上の利用分野] 本発明は、気相エピタキシャル成長に係り、特に易蒸発
性元素の温度調節方法に関するものである。
[Industrial Field of Application] The present invention relates to vapor phase epitaxial growth, and particularly to a method for controlling the temperature of easily evaporable elements.

気相エピタキシャル成長方法は、結晶成長をさせる成分
を含む素材を気化し、その雰囲気中で成長基板を加熱し
て、成長基板表面に膜を形成するものであって、化合物
半導体の成膜をはじめ多くの膜成長に広く利用されてい
る。
The vapor phase epitaxial growth method involves vaporizing a material containing ingredients that cause crystal growth, and heating the growth substrate in that atmosphere to form a film on the surface of the growth substrate. It is widely used for film growth.

例えば、赤外線レーザ等の材料に使用される水銀カドミ
ウム、テルル(HgCdTe)等を気相成長をする際に
は、水銀は極めて5茎発性の元素であるので、従来は易
蒸発性元素をリザーバに収納、これを成長アンプル内に
挿入し、リザーバを抵抗加熱によって水銀を蒸発をさせ
ている。
For example, when performing vapor phase growth of mercury cadmium, tellurium (HgCdTe), etc., which are used in materials such as infrared lasers, mercury is an extremely volatile element, so conventionally, easily vaporizable elements were stored in the reservoir. This is inserted into a growth ampoule, and the mercury is evaporated by resistive heating of the reservoir.

しかしながら、このリザーバは、リザーバに近い位置に
配置され、高温になっているサセプタからの照り返しに
より、リザーバの温度が影口を受けるという不都合があ
り、その改善が要望されている。
However, this reservoir has the disadvantage that the temperature of the reservoir is affected by reflection from the susceptor, which is located close to the reservoir and has a high temperature, and there is a demand for an improvement in this problem.

[従来の技術] 第4図は、従来の気相エピタキシャル成長装置の要部断
面図である。
[Prior Art] FIG. 4 is a sectional view of a main part of a conventional vapor phase epitaxial growth apparatus.

気相エピクキシャル成長の一例として、カドミウムテル
ル(CdTe)基板上にHg Cd T e層を成長す
る場合について説明する。
As an example of vapor phase epitaxial growth, a case will be described in which a Hg Cd Te layer is grown on a cadmium telluride (CdTe) substrate.

石英で形成された成長アンプル1の内部に、カーボン製
のサセプタ2があり、サセプタ2上にCd T eの基
板3が載置されている。
A susceptor 2 made of carbon is placed inside a growth ampoule 1 made of quartz, and a substrate 3 of CdTe is placed on the susceptor 2.

成長アンプル内には、さらに水銀(Hg)を充填した石
英製のリザーバ5があり、Hgの温度を上昇するために
、ヒータ6が設けられ、ヒータ電源7によって、熱電対
10の信号により温度制御がなされている。
Inside the growth ampoule, there is a quartz reservoir 5 filled with mercury (Hg), and a heater 6 is provided to raise the temperature of Hg.The heater power supply 7 controls the temperature using a signal from a thermocouple 10. is being done.

成長アンプルの外部には、基板加熱用の高周波誘導加熱
装置8があり、基板を所定の温度に加熱するようになっ
ている。
Outside the growth ampoule is a high frequency induction heating device 8 for heating the substrate, which heats the substrate to a predetermined temperature.

Hg Cd T e結晶を成長するには、反応ガスとし
て、ジメチルカドミウム((CH3) 2 Cd)を約
20Torr、ジエチルチルライド((C2H5) 2
 Te)を約10Torr、及びキャリヤガスとして水
素ガスをほぼ大気圧程度の圧力で供給する。
To grow Hg Cd Te crystals, dimethyl cadmium ((CH3) 2 Cd) is used as a reaction gas at about 20 Torr and diethyl tylide ((C2H5) 2
Te) is supplied at a pressure of about 10 Torr, and hydrogen gas is supplied as a carrier gas at a pressure of approximately atmospheric pressure.

Hg蒸気は、リザーバをヒータ7によって加熱されるが
、約300℃の温度にすることにより、約70Torr
の圧力になる。
The Hg vapor is heated by the heater 7, and by raising the temperature to about 300°C, the Hg vapor is heated to about 70 Torr.
becomes the pressure.

このようにして、基板3の温度を高周波誘導加熱装置8
で基板温度を500℃に加熱することにより、10μr
a / h rの成長速度で成膜がなされる。
In this way, the temperature of the substrate 3 is controlled by the high frequency induction heating device 8.
By heating the substrate temperature to 500℃,
The film is deposited at a growth rate of a/hr.

このような従来方法では、特に水銀の蒸気圧の制御が必
要であるが、リザーバがサセプタの温度の影響を受けて
、一定温度に保持することが困難であり、そのためにH
gの蒸気圧が成長中に変動して、均一なHg Cd T
 eの成長が不可能であるという欠点がある。
In such conventional methods, it is necessary to control the vapor pressure of mercury in particular, but the reservoir is affected by the temperature of the susceptor and it is difficult to maintain it at a constant temperature.
The vapor pressure of g fluctuates during the growth, resulting in a uniform Hg Cd T
The disadvantage is that it is impossible to grow e.

[発明が解決しようとする問題点] 上記の従来の気相エピタキシャル成長方法では、成長ア
ンプル内の水銀を充填したリザーバの温度が変動すると
いうことが問題点である。
[Problems to be Solved by the Invention] A problem with the conventional vapor phase epitaxial growth method described above is that the temperature of the reservoir filled with mercury in the growth ampoule fluctuates.

[問題点を解決するための手段] 本発明は、上記問題点を解決した気相エピタキシャル成
長装置を提供するもので、その解決の手段は、石英製の
気相成長アンプル内に、結晶成長を行う基板と、例えば
水銀のような易蒸発性材料を充填した石英製のリザーバ
と、反応ガスの供給孔を備え、易蒸発性元素を成長すべ
き化合物半導体の構成元素とした気相エピタキシャル成
長装置で、易蒸発性元素を充填したリザーバ内に、複数
本の気体流路用毛細管を配列して、その複数の気体流路
用毛細管内に温度が完全に制御されたガスを通過させ、
その流量を制御することにより、気体流路用毛細管の表
面温度を一定に維持し、その気体流路用毛細管の表面に
接する易蒸発性材料の温度を制御して、その蒸発量を制
御するようにしたものである。
[Means for Solving the Problems] The present invention provides a vapor phase epitaxial growth apparatus that solves the above problems. A vapor phase epitaxial growth apparatus comprising a substrate, a quartz reservoir filled with an easily evaporable material such as mercury, and a reactant gas supply hole, and in which an easily evaporable element is used as a constituent element of a compound semiconductor to be grown. A plurality of gas flow capillary tubes are arranged in a reservoir filled with an easily evaporable element, and gas whose temperature is completely controlled is passed through the plurality of gas flow capillary tubes.
By controlling the flow rate, the surface temperature of the gas channel capillary tube is maintained constant, and the temperature of the easily evaporable material in contact with the surface of the gas channel capillary tube is controlled, thereby controlling the amount of evaporation. This is what I did.

[作用] 本発明は、易蒸発性元素を成長すべき化合物半導体の構
成元素とした気相エピタキシャル成長で、易蒸発性元素
を充填したリザーバが、直接加熱と、サセプタ等の近辺
の高温物体からの輻射熱との双方から加熱されるために
、正確な温度が保持されないのであるので、易蒸発性元
素を収納するリザーバ内に直接加熱または冷却体となる
、複数本の気体流路用毛細管を配列して、その複数の気
体流路用毛細管内に温度が完全に制御されたガスを通過
させ、そのifを制御することにより、易蒸発性材料は
、気体流路用毛細管との接触面積が大きくなるために、
易蒸発性材料の高感度の温度制御ができるようにして、
易蒸発性材料の蒸気圧を制御するものである。
[Function] The present invention is a vapor phase epitaxial growth method in which an easily evaporable element is used as a constituent element of a compound semiconductor to be grown. Since the temperature cannot be maintained accurately because the element is heated by both radiant heat and radiant heat, multiple capillary tubes for the gas flow path are arranged in the reservoir that stores the easily evaporable element to serve as a direct heating or cooling body. By passing a gas whose temperature is completely controlled through the plurality of gas flow capillary tubes and controlling the if, the contact area of the easily evaporable material with the gas flow capillary tubes is increased. for,
Enables highly sensitive temperature control of easily evaporable materials,
It controls the vapor pressure of easily evaporable materials.

[実施例] 第1図は、本発明の気相エピタキシャル成長装置の断面
図である。
[Example] FIG. 1 is a sectional view of a vapor phase epitaxial growth apparatus of the present invention.

成長アンプル11の内部に、カーボン製のサセプタ12
があり、サセプタ12上にCdTeの基板13が載置さ
れ、さらに水銀Hgを充填した石英製のりザーバ14が
ある。
A carbon susceptor 12 is placed inside the growth ampoule 11.
There is a CdTe substrate 13 placed on a susceptor 12, and a quartz glue reservoir 14 filled with mercury Hg.

リザーバ14の内部には、温度調整用ガスパイプ15と
接続されて複数の細管に分岐された気体流路用毛細管1
6が形成され、リザーバ14の出口ではこれらの分岐さ
れた気体流路用毛細管I6が、再び温度調整用ガスパイ
プ17で一本化される。
Inside the reservoir 14, a capillary tube 1 for a gas flow path is connected to a gas pipe 15 for temperature adjustment and branched into a plurality of thin tubes.
6 is formed, and at the outlet of the reservoir 14, these branched capillary tubes I6 for the gas flow path are again unified by the gas pipe 17 for temperature adjustment.

リザーバに充填されたHgの温度を制御する方法は、ガ
スの種類として窒素等のガスを送る高圧ボンベ18があ
り、これらのガスは流量制御装置19で適量の流量に制
御されるが、その制御とHgの温度を検出した熱電対2
0によってフィードバックされる。
A method for controlling the temperature of Hg filled in the reservoir is a high-pressure cylinder 18 that sends gas such as nitrogen, and the flow rate of these gases is controlled to an appropriate amount by a flow rate control device 19. Thermocouple 2 that detected the temperature of and Hg
0 is fed back.

即ちガスの流量を最適に調整することにより、水銀とガ
スの熱交換によって、リザーバに充填されたHgの温度
は極めて正確に制御できることになる。
That is, by optimally adjusting the gas flow rate, the temperature of the Hg filled in the reservoir can be controlled extremely accurately through heat exchange between the mercury and the gas.

第2図は、リザーバの側断面図であり、第3図は、その
正面断面図である。
FIG. 2 is a side sectional view of the reservoir, and FIG. 3 is a front sectional view thereof.

水銀21を貫通して気体流路用毛細管16が形成されて
いることを示している。
It is shown that the capillary tube 16 for the gas flow path is formed by penetrating the mercury 21.

[発明の効果コ 以上、詳細に述べたように、本発明の気相エピタキシャ
ル成長装置を採用することにより、易蒸発性元素の蒸気
圧を正確に制御するこたとができ、高精度のエピタキシ
ャル成長が可能になるという効果大なるものがある。
[Effects of the Invention] As described above in detail, by employing the vapor phase epitaxial growth apparatus of the present invention, it is possible to accurately control the vapor pressure of easily evaporable elements, and high-precision epitaxial growth is possible. There is a great effect of becoming.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の気相エピタキシャル成長装置の実施
例を示す断面図、 第2図は、本発明のリザーバの側断面図、第3図は、本
発明のリザーバの正面断面図、第4図は、従来の気相エ
ピタキシャル成長装置の要部断面図、 図において、 11は成長アンプル、  12はサセプタ、13は基板
、      14はリザーバ、15.17は温度調整
用ガスパイプ、 16は気体流路用毛細管、18は高圧ボンベ、19は流
量制御装置、  20は熱電対、21は水銀、 す発e万4五メ召Iと!りへ1シYル戒+k)f−遮ケ
1カ閲sl  @ 子発Eすqr +)7”バーn LrHJ mtliI
PA第 3 図
FIG. 1 is a cross-sectional view showing an embodiment of the vapor phase epitaxial growth apparatus of the present invention, FIG. 2 is a side cross-sectional view of the reservoir of the present invention, FIG. 3 is a front cross-sectional view of the reservoir of the present invention, and FIG. The figure is a sectional view of main parts of a conventional vapor phase epitaxial growth apparatus. In the figure, 11 is a growth ampoule, 12 is a susceptor, 13 is a substrate, 14 is a reservoir, 15 and 17 are gas pipes for temperature adjustment, and 16 is for a gas flow path. Capillary tube, 18 is high pressure cylinder, 19 is flow control device, 20 is thermocouple, 21 is mercury, rihe 1 syl precept + k) f-interruption 1 ka review sl @ child departure E s qr +) 7” bar n LrHJ mtliI
PA Figure 3

Claims (1)

【特許請求の範囲】 成長アンプル(11)内に、成長基板(13)と、易蒸
発性材料(21)を充填したリザーバ(14)と、反応
ガスの供給孔を具備し、該易蒸発性元素を化合物半導体
の構成元素とする気相エピタキシャル成長装置において
、 該易蒸発性元素を充填した該リザーバ(14)内に、複
数本の気体流路用毛細管(16)を配置し、該複数の気
体流路用毛細管(16)内を通過する気体の温度及び流
量を制御することにより、上記易蒸発性材料の蒸発量を
制御するようにしたことを特徴とする気相エピタキシャ
ル成長装置。
[Claims] A growth ampoule (11) is provided with a growth substrate (13), a reservoir (14) filled with an easily evaporable material (21), and a supply hole for a reaction gas. In a vapor phase epitaxial growth apparatus using an element as a constituent element of a compound semiconductor, a plurality of capillary tubes for gas flow paths (16) are arranged in the reservoir (14) filled with the easily evaporable element, and the plurality of gas A vapor phase epitaxial growth apparatus characterized in that the amount of evaporation of the easily evaporable material is controlled by controlling the temperature and flow rate of gas passing through the channel capillary (16).
JP19823285A 1985-09-06 1985-09-06 Vapor-phase epitaxial growth equipment Pending JPS6258641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19823285A JPS6258641A (en) 1985-09-06 1985-09-06 Vapor-phase epitaxial growth equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19823285A JPS6258641A (en) 1985-09-06 1985-09-06 Vapor-phase epitaxial growth equipment

Publications (1)

Publication Number Publication Date
JPS6258641A true JPS6258641A (en) 1987-03-14

Family

ID=16387701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19823285A Pending JPS6258641A (en) 1985-09-06 1985-09-06 Vapor-phase epitaxial growth equipment

Country Status (1)

Country Link
JP (1) JPS6258641A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02248383A (en) * 1989-03-22 1990-10-04 Nec Corp Detection of thermoelectromotive force

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02248383A (en) * 1989-03-22 1990-10-04 Nec Corp Detection of thermoelectromotive force

Similar Documents

Publication Publication Date Title
EP0064514B1 (en) Process and apparatus for growing mercury cadmium telluride layer by liquid phase epitaxy from mercury-rich melt
FR2578681A1 (en) PROCESS FOR FORMING A MONOCRYSTALLINE THIN LAYER OF SEMICONDUCTOR ELEMENT
US4434492A (en) Method and apparatus for iodine vaporization
US4901670A (en) Elemental mercury source for metal-organic chemical vapor deposition
JPS6258641A (en) Vapor-phase epitaxial growth equipment
US3389022A (en) Method for producing silicon carbide layers on silicon substrates
JPS61149477A (en) Formation of boron nitride film
JP2688365B2 (en) Board holder
GB1031517A (en) Methods of producing vapours having at least two components
JPH0687458B2 (en) Vapor phase epitaxial growth method
JP4232279B2 (en) Vapor growth equipment
JP3576629B2 (en) Semiconductor film manufacturing method and manufacturing apparatus
JPS60244332A (en) Apparatus for gasification supply of condensible material
JPS61261294A (en) Method of molecular beam epitaxial growth and molecular beam source
KR100199008B1 (en) Atomic epitaxy apparatus for cvd and liquid source supply apparatus for cvd
JPH0212814A (en) Crystal growth method of compound semiconductor
JPH0826886A (en) Method for vapor-phase growth of single crystal
JPS6245017A (en) Semiconductor growth device
JPH04225535A (en) Metal vapor generation device and vapor phase epitaxial growth device using said device
JPH01316940A (en) Vapor phase epitaxy device
JPS58131738A (en) Liquid phase epitaxial growing device
JPH01305889A (en) Molecular beam cell
JPH0582457A (en) Manufacturing equipment for semiconductor crystal and manufacture of semiconductor crystal using the equipment
KR20010094342A (en) Thin film deposition apparatus and the method
JPS60112690A (en) Evaporation source cell for molecular beam crystal growth device