JP3576629B2 - Semiconductor film manufacturing method and manufacturing apparatus - Google Patents

Semiconductor film manufacturing method and manufacturing apparatus Download PDF

Info

Publication number
JP3576629B2
JP3576629B2 JP09030595A JP9030595A JP3576629B2 JP 3576629 B2 JP3576629 B2 JP 3576629B2 JP 09030595 A JP09030595 A JP 09030595A JP 9030595 A JP9030595 A JP 9030595A JP 3576629 B2 JP3576629 B2 JP 3576629B2
Authority
JP
Japan
Prior art keywords
source
gas
semiconductor film
film
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09030595A
Other languages
Japanese (ja)
Other versions
JPH08264463A (en
Inventor
洋 藤安
慎吾 榊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP09030595A priority Critical patent/JP3576629B2/en
Publication of JPH08264463A publication Critical patent/JPH08264463A/en
Application granted granted Critical
Publication of JP3576629B2 publication Critical patent/JP3576629B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Recrystallisation Techniques (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【0001】
【産業上の利用分野】
この発明は、固体ソースを加熱蒸発させて成膜用基板に半導体膜形成を行う半導体膜の製造方法及び製造装置に係り、特に蒸発気体をホットウォール(Hot Wall)部で熱分解させて基板に導くHWE(Hot Wall Epitaxy)法を用いた半導体膜の製造方法及び製造装置に関する。
【0002】
【従来の技術】
良質の化合物半導体膜を得ることができる半導体膜製造装置として、図3に示すHWE装置が知られている。このHWE装置では、減圧されるチャンバ1内に、半導体膜の母相となる固体ソース2を収容する第1のソース容器3と、半導体膜に添加する不純物等の固体ソース4を収容する第2のソース容器5(リザーバと呼ばれる)とが同軸的に、且つ第2のソース容器5が第1のソース容器4の下方に位置するように配置される。これらソースの上方に成膜用基板6を保持する基板保持部が設けられる。二つの固体ソースと基板保持部の間には、固体ソースからの蒸発気体を基板に案内するガス案内部7が、図の例では固体ソース容器3と一体をなして形成されている。二つの固体ソース容器3,5及びガス案内部7の周囲には加熱ヒータ8a,8bが設けられる。
【0003】
第1のソース容器3に収容した母相形成用ソース2と第2のソース容器5に収容した添加物用ソース4とを、10−6Torr程度の減圧下で加熱蒸発させて成膜用基板6に蒸着することにより、不純物ドープ半導体膜を得ることができる。このHWE装置では、ソースからの蒸発気体を案内するガス案内部7が加熱されて、これがいわゆるホットウォール部となり、ここで原料ガスの熱分解が行われる。従って、基板表面部で原料ガスの熱分解を行う通常のCVD装置のように基板温度を高くする必要がない。また、比較的高い圧力下で膜形成を行うことができる。これらの理由で、一度基板に蒸着された物質が再蒸発することがなく、原子空孔の少ない良質の化合物半導体膜を作ることができる。
【0004】
【発明が解決しようとする課題】
従来のHWE装置を用いて例えば、窒素や酸素を不純物として含む半導体膜を形成する場合、固体の窒化物や酸化物を加熱蒸発させることが必要になる。しかし、固体の窒化物や酸化物は一般に蒸気圧が非常に低い。ソース容器には通常石英が用いられるが、このソース容器の10−6Torr程度の減圧下での限界加熱温度は約1273Kである。これに対して固体酸化物を10−6Torrで蒸発させるために必要な加熱温度は、例えばAl の場合2037K、BaOの場合1459Kであり、BNの場合1389Kである。従って固体ソース容器の加熱限界から、従来のHWE装置では窒素や酸素を添加物として導入することができない、という問題があった。
【0005】
また仮に、固体ソース容器やホットウォール部の材料が、酸化物や窒化物の分解に必要な温度程度の高温加熱が可能であるとしても、問題は残る。比較的低い加熱温度で蒸発する半導体膜の母相材料ソースと、酸化物又は窒化物ソースを用いて、従来のHWE装置で酸化物又は窒化物の蒸発に必要な温度まで加熱して膜形成を行うと、母相半導体膜の成長に必要以上の温度をかけることになり、成長速度が異常に高くなる等の理由で膜質が劣化するからである。
【0006】
この発明は、上記事情を考慮してなされたもので、不純物ソースとして気体ソースを用いて、格別の高温加熱を要せず良質の半導体膜形成を可能としたHWE法による半導体膜の製造方法及び製造装置を提供することを目的としている。
【0007】
【課題を解決するための手段】
この発明は、減圧されるチャンバ内に半導体膜の母相となる固体ソースとこれに対向させた成膜用基板とが配置され、固体ソースと成膜用基板の間に固体ソースからの蒸発気体を成膜用基板に案内するガス案内手段が設けられ、且つ前記固体ソースとガス案内手段の周囲に加熱手段が設けられた半導体膜製造装置を用いる半導体膜の製造方法において、半導体膜中に添加する添加物ソースを、前記ガス案内手段の内部に上端開口から挿入される共に前記ガス案内手段の底部に気体出口をもつガス導入管により、気体の状態で前記チャンバの外部から前記固体ソースの上部に導入することを特徴としている。
【0008】
この発明に係る半導体膜の製造装置は、減圧されるチャンバと、このチャンバ内に設けられて固体ソースを収容するソース容器と、前記チャンバ内の前記ソース容器の上方に配置されて成膜用基板を保持する基板保持手段と、前記チャンバ内の前記ソース容器と基板保持手段の間に設けられて前記固体ソースからの蒸発ガスを前記成膜用基板に案内するガス案内手段と、前記ソース容器及びガス案内手段を加熱する加熱手段と、前記ガス案内手段の内部に上端開口から挿入される共に前記ガス案内手段の底部に気体出口をもち、前記チャンバの外部から前記固体ソースの上部に気体ソースを導入する気体ソース導入手段とを備えたことを特徴としている。
【0009】
【作用】
この発明によると、半導体膜に添加する窒素等の添加物ソースを気体の状態でHWE装置内に導入するので、高温加熱を要せず添加物ソースを熱分解させて半導体膜に不純物を導入することが可能になる。また添加物ソースに気体を用いることで、使用できる添加物ソースの種類も増大するし、装置に導入する気体量はマスフローコントローラ等により正確且つ容易に制御できるので、半導体膜への不純物添加量の制御も容易である。
半導体膜の母相となる材料には固体ソースを用いるので、高純度半導体膜が得られる。またこの発明のHWE装置では、気体ソースである添加物ソースは比較的低温で熱分解できるから、固体ソースの加熱温度は半導体膜成長に必要な最適温度に設定することができ、半導体膜の膜質を良好なものとすることができる。
【0010】
【実施例】
以下、図面を参照して、この発明の実施例を説明する。
図1は、この発明の一実施例に係るHWE装置の構成を示す。チャンバ11は成長装置本体であり、内部は真空ポンプ12により減圧される。チャンバ11内の下部には、半導体膜の母相形成用の固体ソース14を収容した筒状のソース容器13が配置されている。チャンバ11内の上部には、固体ソース14に対向させて、基板ホルダ17により保持された成膜用基板18が配置される。成膜用基板18は基板加熱ヒータ19により加熱される。
【0011】
ソース容器13と成膜用基板18の間には、ソース容器13と一体に形成されたガス案内管15が設けられている。このガス案内管15は、固体ソース14からの蒸発気体を成膜用基板18に案内するためのもので、ソース容器13より径が大きく作られている。ソース容器13及びガス案内管15はこの実施例の場合、石英管により一体形成されているが、これらは別々であってもよい。
ソース容器13の周囲及びガス案内管15の周囲にはそれぞれ加熱ヒータ16a,16bが配設されている。加熱ヒータ16a,16bは熱遮蔽体20a,20bにより囲まれている。
【0012】
半導体膜に不純物を添加する添加物ソースは、チャンバ11を貫通して配設されたガス導入管21により気体ソースとして、ガス案内管15の底部に供給される。即ちガス導入管21はチャンバ11を貫通して、ガス案内管15の内部に上端開口から深く挿入され、ガス案内管15の底部に気体出口をもつように配設されている。ガス導入管21のチャンバ11の外部端はマスフローコントローラ22及びバルブ23を介して添加物ソースボンベ24に接続されている。
【0013】
即ちこの実施例のHWE装置は、従来装置において添加物用固体ソースを入れるリザーバと呼ばれる部分が母相形成用固体ソース部Aとなり、従来装置において母相形成用固体ソースが配置されたガス案内管15の下部Bの部分が気体ソース部Bとなっている。そして、ガス案内管15の上部Cが、外部から供給される気体ソースを加熱して熱分解させるホットウォール部を構成している。
【0014】
次にこの実施例のHWE装置を用いて、GaAs基板にN(窒素)添加ZnTe膜を形成した実施例を具体的に説明する。成膜用基板18として、(100)面を主面とするGaAs基板を用い、固体ソース14としてZnTe、気体ソースとしてNH を用いた。NH 流量は、0.5〜10cc/minとした。加熱条件は、ソース容器13の部分Aのヒータ温度を500〜700℃、 ガス案内管15の下部B(従来のソース部に相当する部分)のヒータ温度を750〜850℃、ガス案内管15の上部C(即ちウォール部)のヒータ温度を500〜600℃とした。
【0015】
以上の条件でGaAs基板上に形成されたZnTe膜は、原子間隔が揃った結晶性の良好な膜であった。
また固体ソースとして、ZnTeに代わりZnSeを用いた他、上の実施例と同様の条件でN添加ZnSe膜を成膜したところ、やはり原子間隔の揃った結晶性の良好な膜が得られた。
【0016】
以上のようにこの実施例によると、固体ソースでは添加が困難であったNを、添加物ソースとしてNH を用い、固体ソース部に比べて低い温度のウォール部で熱分解して化合物半導体膜にドープすることができる。固体ソース部に対して必要以上の高温を与えることがないため、得られる化合物半導体膜は良質のものとなる。
【0017】
図2は、この発明の別の実施例のHWE装置である。先の実施例と対応する部分には先の実施例と同一符号を付して詳細な説明は省く。この実施例では、固体ソース容器13がガス案内管15と同径の連続する石英管により作られている。そしてソース容器13を上下に貫通する細い石英管31が設けられて、その下端に気体ソースを供給するガス導入管21の先端が接続されている。即ち、ガス導入管12からの気体ソースは、固体ソース14を貫通して、固体ソース容器13の上部に供給されるようになっている。
【0018】
この実施例の装置を用いて、GaAs基板にN添加ZnS膜を形成した実施例を具体的に説明する。成膜用基板18として、(100)面を主面とするGaAs基板を用い、固体ソース14としてZnS、気体ソースとしてNH を用いた。NH 流量は、0.5〜10cc/minとした。加熱条件は、固体ソース部Aであり且つ気体ソース部Bとなる部分のヒータ温度を700〜800℃、ガス案内管15の上部のウォール部Cのヒータ温度を500〜600℃とした。
【0019】
以上の条件でGaAs基板上に形成されたZnS膜は、原子間隔が揃った結晶性が良好な膜であった。
また、固体ソースとしてCdSを用い、ソース容器周囲のヒータ温度を600〜700℃にした他、上の実施例と同様の条件でN添加CdS膜を形成した結果、原子間隔が揃った結晶性の良好な膜が得られた。
【0020】
【発明の効果】
以上述べたようにこの発明によれば、半導体膜に添加する窒素等の添加物ソースを気体の状態で装置内に導入するので、高温加熱を要せず添加物ソースを熱分解させて半導体膜への不純物導入が可能になる。半導体膜の母相となる材料には固体ソースを用いるので、高純度半導体膜が得られる。またこの発明のHWE装置では、半導体膜の母相となる固体ソースの蒸発に適した加熱温度を用いることができるから、半導体膜の膜質を良好なものとすることができる。
【図面の簡単な説明】
【図1】この発明の一実施例に係るHWE装置を示す。
【図2】この発明の別の実施例に係るHWE装置を示す。
【図3】従来のHWE装置を示す。
【符号の説明】
11…チャンバ、12…真空ポンプ、13…ソース容器、14…固体ソース、15…ガス案内管、16a,16b…加熱ヒータ、17…基板ホルダ、18…成膜用基板、19…基板加熱ヒータ、20a,20b…熱遮蔽体、21…ガス導入管、22…マスフローコントローラ、23…バルブ、24…ボンベ。
[0001]
[Industrial applications]
The present invention relates to a method and an apparatus for manufacturing a semiconductor film, in which a solid source is heated and evaporated to form a semiconductor film on a film formation substrate. In particular, the present invention relates to a method in which an evaporated gas is thermally decomposed in a hot wall portion to form a substrate. The present invention relates to a method and an apparatus for manufacturing a semiconductor film using a leading HWE (Hot Wall Epitaxy) method.
[0002]
[Prior art]
As a semiconductor film manufacturing apparatus capable of obtaining a high quality compound semiconductor film, an HWE apparatus shown in FIG. 3 is known. In this HWE device, a first source container 3 containing a solid source 2 serving as a mother phase of a semiconductor film and a second source 4 containing a solid source 4 such as an impurity added to the semiconductor film are housed in a chamber 1 to be decompressed. Are disposed coaxially with the first source container 4 and the second source container 5 is located below the first source container 4. A substrate holding unit that holds the film formation substrate 6 is provided above these sources. Between the two solid sources and the substrate holding part, a gas guide part 7 for guiding the vaporized gas from the solid source to the substrate is formed integrally with the solid source container 3 in the example of the drawing. Heaters 8 a and 8 b are provided around the two solid source containers 3 and 5 and the gas guide 7.
[0003]
The substrate 2 for forming a matrix contained in the first source container 3 and the additive source 4 contained in the second source container 5 are heated and evaporated under reduced pressure of about 10 −6 Torr to form a substrate for film formation. 6, an impurity-doped semiconductor film can be obtained. In this HWE device, the gas guide portion 7 for guiding the vaporized gas from the source is heated, and this becomes a so-called hot wall portion, where the source gas is thermally decomposed. Therefore, there is no need to raise the substrate temperature as in a normal CVD apparatus that thermally decomposes a source gas on the substrate surface. Further, the film can be formed under a relatively high pressure. For these reasons, a high-quality compound semiconductor film with few atomic vacancies can be formed without re-evaporation of the substance once deposited on the substrate.
[0004]
[Problems to be solved by the invention]
When a conventional HWE device is used to form, for example, a semiconductor film containing nitrogen or oxygen as an impurity, it is necessary to heat and evaporate a solid nitride or oxide. However, solid nitrides and oxides generally have a very low vapor pressure. Quartz is usually used for the source container, and the limiting heating temperature of the source container under a reduced pressure of about 10 −6 Torr is about 1273K. On the other hand, the heating temperature required to evaporate the solid oxide at 10 −6 Torr is, for example, 2037 K for Al 2 O 3 , 1459 K for BaO, and 1389 K for BN. Therefore, there is a problem that nitrogen or oxygen cannot be introduced as an additive in the conventional HWE device due to the heating limit of the solid source container.
[0005]
Further, even if the material of the solid source container and the hot wall portion can be heated to a high temperature required for decomposition of oxides and nitrides, the problem remains. Using a matrix material source of a semiconductor film that evaporates at a relatively low heating temperature and an oxide or nitride source, the film is formed by heating to a temperature required for oxide or nitride evaporation with a conventional HWE device. If this is done, a temperature higher than necessary for growing the matrix semiconductor film will be applied, and the film quality will be degraded due to an abnormally high growth rate or the like.
[0006]
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and uses a gas source as an impurity source to form a semiconductor film by an HWE method that enables formation of a high-quality semiconductor film without requiring special high-temperature heating. It is intended to provide a manufacturing apparatus.
[0007]
[Means for Solving the Problems]
According to the present invention, a solid source serving as a mother phase of a semiconductor film and a deposition substrate opposed to the solid source are arranged in a chamber to be decompressed, and vaporized gas from the solid source is placed between the solid source and the deposition substrate. In a semiconductor film manufacturing method using a semiconductor film manufacturing apparatus provided with a gas guide means for guiding the substrate to a film formation substrate, and a heating means provided around the solid source and the gas guide means. The additive source to be inserted is inserted into the gas guide means from the upper end opening, and from the outside of the chamber in a gaseous state by means of a gas inlet pipe having a gas outlet at the bottom of the gas guide means. It is characterized by being introduced into.
[0008]
An apparatus for manufacturing a semiconductor film according to the present invention includes a chamber to be decompressed, a source container provided in the chamber for containing a solid source, and a film-forming substrate disposed above the source container in the chamber. Substrate holding means for holding the gas, gas guide means provided between the source container and the substrate holding means in the chamber and guiding the vaporized gas from the solid source to the film-forming substrate, the source container and Heating means for heating the gas guide means , a gas source inserted into the gas guide means from the upper end opening and having a gas outlet at the bottom of the gas guide means, and a gas source provided from outside the chamber to the upper part of the solid source. And a gas source introducing means for introducing.
[0009]
[Action]
According to the present invention, since an additive source such as nitrogen to be added to the semiconductor film is introduced into the HWE device in a gaseous state, impurities are introduced into the semiconductor film by thermally decomposing the additive source without requiring high-temperature heating. It becomes possible. The use of gas as the additive source also increases the types of additive sources that can be used, and the amount of gas introduced into the apparatus can be accurately and easily controlled by a mass flow controller or the like. Control is also easy.
Since a solid source is used as a material which is a mother phase of the semiconductor film, a high-purity semiconductor film can be obtained. Further, in the HWE device of the present invention, since the additive source, which is a gas source, can be thermally decomposed at a relatively low temperature, the heating temperature of the solid source can be set to the optimum temperature necessary for semiconductor film growth, and the film quality of the semiconductor film can be improved. Can be improved.
[0010]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a configuration of an HWE device according to one embodiment of the present invention. The chamber 11 is a growth apparatus main body, and the inside thereof is depressurized by a vacuum pump 12. A cylindrical source container 13 containing a solid source 14 for forming a mother phase of a semiconductor film is disposed in a lower portion of the chamber 11. A film forming substrate 18 held by a substrate holder 17 is disposed in an upper part of the chamber 11 so as to face the solid source 14. The film formation substrate 18 is heated by a substrate heater 19.
[0011]
A gas guide tube 15 formed integrally with the source container 13 is provided between the source container 13 and the film forming substrate 18. The gas guide tube 15 is for guiding the vaporized gas from the solid source 14 to the film forming substrate 18 and has a larger diameter than the source container 13. In this embodiment, the source container 13 and the gas guide tube 15 are integrally formed by a quartz tube, but they may be separate.
Heaters 16a and 16b are arranged around the source container 13 and around the gas guide tube 15, respectively. The heaters 16a and 16b are surrounded by heat shields 20a and 20b.
[0012]
An additive source for adding impurities to the semiconductor film is supplied to the bottom of the gas guide tube 15 as a gas source by a gas introduction tube 21 disposed through the chamber 11. That is, the gas introduction pipe 21 penetrates the chamber 11, is inserted deeply into the inside of the gas guide pipe 15 from the upper end opening, and is disposed so as to have a gas outlet at the bottom of the gas guide pipe 15. The external end of the chamber 11 of the gas introduction pipe 21 is connected to an additive source cylinder 24 via a mass flow controller 22 and a valve 23.
[0013]
That is, in the HWE device of this embodiment, a portion called a reservoir for adding a solid source for an additive in the conventional device becomes a solid source portion A for forming a mother phase, and a gas guide pipe in which a solid source for forming a mother phase is disposed in the conventional device. The lower portion B of 15 is a gas source portion B. The upper portion C of the gas guide tube 15 constitutes a hot wall portion for heating and thermally decomposing a gas source supplied from the outside.
[0014]
Next, an embodiment in which an N (nitrogen) -added ZnTe film is formed on a GaAs substrate using the HWE device of this embodiment will be specifically described. A GaAs substrate having a (100) plane as a main surface was used as the film formation substrate 18, ZnTe was used as the solid source 14, and NH 3 was used as a gas source. The NH 3 flow rate was 0.5 to 10 cc / min. The heating conditions are as follows: the heater temperature of the portion A of the source container 13 is 500 to 700 ° C., the heater temperature of the lower portion B of the gas guide tube 15 (the portion corresponding to the conventional source portion) is 750 to 850 ° C. The heater temperature of the upper portion C (that is, the wall portion) was set to 500 to 600 ° C.
[0015]
The ZnTe film formed on the GaAs substrate under the above conditions was a film having good crystallinity with uniform atomic spacing.
In addition, ZnSe was used as a solid source instead of ZnTe, and an N-added ZnSe film was formed under the same conditions as in the above example. As a result, a film with uniform crystallinity and good crystallinity was obtained.
[0016]
As described above, according to this embodiment, N, which was difficult to add in the solid source, is thermally decomposed in the wall portion at a lower temperature than in the solid source portion by using NH 3 as the additive source to form a compound semiconductor film. Can be doped. Since a higher temperature than necessary is not given to the solid source portion, the obtained compound semiconductor film is of high quality.
[0017]
FIG. 2 shows an HWE device according to another embodiment of the present invention. Parts corresponding to those in the previous embodiment are denoted by the same reference numerals as in the previous embodiment, and detailed description is omitted. In this embodiment, the solid source container 13 is made of a continuous quartz tube having the same diameter as the gas guide tube 15. A thin quartz tube 31 penetrating the source container 13 vertically is provided, and the lower end thereof is connected to the tip of a gas introduction tube 21 for supplying a gas source. That is, the gas source from the gas introduction pipe 12 passes through the solid source 14 and is supplied to the upper part of the solid source container 13.
[0018]
An embodiment in which an N-doped ZnS film is formed on a GaAs substrate using the apparatus of this embodiment will be specifically described. A GaAs substrate having a (100) plane as a main surface was used as the film formation substrate 18, ZnS was used as the solid source 14, and NH 3 was used as a gas source. The NH 3 flow rate was 0.5 to 10 cc / min. The heating conditions were such that the heater temperature of the portion serving as the solid source portion A and the gas source portion B was 700 to 800 ° C, and the heater temperature of the wall portion C above the gas guide tube 15 was 500 to 600 ° C.
[0019]
The ZnS film formed on the GaAs substrate under the above conditions was a film having good crystallinity with uniform atomic spacing.
In addition, CdS was used as a solid source, the heater temperature around the source container was set to 600 to 700 ° C., and an N-added CdS film was formed under the same conditions as in the above example. A good film was obtained.
[0020]
【The invention's effect】
As described above, according to the present invention, an additive source such as nitrogen to be added to a semiconductor film is introduced into the apparatus in a gaseous state, so that the additive source is thermally decomposed without requiring high-temperature heating. Can be introduced into the semiconductor. Since a solid source is used as a material which is a mother phase of the semiconductor film, a high-purity semiconductor film can be obtained. Further, in the HWE device of the present invention, since a heating temperature suitable for evaporating a solid source serving as a mother phase of a semiconductor film can be used, the film quality of the semiconductor film can be improved.
[Brief description of the drawings]
FIG. 1 shows an HWE device according to an embodiment of the present invention.
FIG. 2 shows an HWE device according to another embodiment of the present invention.
FIG. 3 shows a conventional HWE device.
[Explanation of symbols]
11: chamber, 12: vacuum pump, 13: source container, 14: solid source, 15: gas guide tube, 16a, 16b: heater, 17: substrate holder, 18: substrate for film formation, 19: substrate heater 20a, 20b: heat shield, 21: gas introduction pipe, 22: mass flow controller, 23: valve, 24: cylinder.

Claims (2)

減圧されるチャンバ内に半導体膜の母相となる固体ソースとこれに対向させた成膜用基板とが配置され、固体ソースと成膜用基板の間に固体ソースからの蒸発気体を成膜用基板に案内するガス案内手段が設けられ、且つ前記固体ソースとガス案内手段の周囲に加熱手段が設けられた半導体膜製造装置を用いる半導体膜の製造方法において、
半導体膜中に添加する添加物ソースを、前記ガス案内手段の内部に上端開口から挿入される共に前記ガス案内手段の底部に気体出口をもつガス導入管により、気体の状態で前記チャンバの外部から前記固体ソースの上部に導入する
ことを特徴とする半導体膜の製造方法。
A solid source, which is a mother phase of the semiconductor film, and a film-forming substrate opposed thereto are arranged in the chamber to be decompressed, and vaporized gas from the solid source is formed between the solid source and the film-forming substrate for film formation. In a method of manufacturing a semiconductor film using a semiconductor film manufacturing apparatus provided with gas guide means for guiding a substrate, and a heating means provided around the solid source and the gas guide means,
An additive source to be added to the semiconductor film is introduced from the outside of the chamber in a gaseous state by a gas introduction pipe inserted into the gas guide means from the upper end opening and having a gas outlet at the bottom of the gas guide means. A method for manufacturing a semiconductor film, wherein the semiconductor film is introduced above the solid source.
減圧されるチャンバと、
このチャンバ内に設けられて固体ソースを収容するソース容器と、
前記チャンバ内の前記ソース容器の上方に配置されて成膜用基板を保持する基板保持手段と、
前記チャンバ内の前記ソース容器と基板保持手段の間に設けられて前記固体ソースからの蒸発ガスを前記成膜用基板に案内するガス案内手段と、
前記ソース容器及びガス案内手段を加熱する加熱手段と、
前記ガス案内手段の内部に上端開口から挿入される共に前記ガス案内手段の底部に気体出口をもち、前記チャンバの外部から前記固体ソースの上部に気体ソースを導入する気体ソース導入手段と
を備えたことを特徴とする半導体膜の製造装置。
A chamber to be depressurized;
A source container provided in the chamber and containing a solid source;
A substrate holding unit that is disposed above the source container in the chamber and holds a film formation substrate;
Gas guide means provided between the source container and the substrate holding means in the chamber and guiding the vaporized gas from the solid source to the film forming substrate,
Heating means for heating the source container and gas guide means,
A gas source introduction means inserted into the gas guide means from an upper end opening, having a gas outlet at the bottom of the gas guide means, and introducing a gas source from outside the chamber to the top of the solid source; An apparatus for manufacturing a semiconductor film, comprising:
JP09030595A 1995-03-23 1995-03-23 Semiconductor film manufacturing method and manufacturing apparatus Expired - Fee Related JP3576629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09030595A JP3576629B2 (en) 1995-03-23 1995-03-23 Semiconductor film manufacturing method and manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09030595A JP3576629B2 (en) 1995-03-23 1995-03-23 Semiconductor film manufacturing method and manufacturing apparatus

Publications (2)

Publication Number Publication Date
JPH08264463A JPH08264463A (en) 1996-10-11
JP3576629B2 true JP3576629B2 (en) 2004-10-13

Family

ID=13994836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09030595A Expired - Fee Related JP3576629B2 (en) 1995-03-23 1995-03-23 Semiconductor film manufacturing method and manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP3576629B2 (en)

Also Published As

Publication number Publication date
JPH08264463A (en) 1996-10-11

Similar Documents

Publication Publication Date Title
JP4121555B2 (en) Apparatus and method for epitaxial growth of objects by CVD
US5294286A (en) Process for forming a thin film of silicon
US6048398A (en) Device for epitaxially growing objects
JP2538042B2 (en) Method and apparatus for vaporizing and supplying organometallic compound
US20020170490A1 (en) Method and apparatus for growing aluminum nitride monocrystals
US5540777A (en) Aluminum oxide LPCVD system
KR101797182B1 (en) Method and apparatus for manufacturing large scaled single crystal monoatomic layer hexagonal boron nitride and single crystal monoatomic substrate growing graphene using the same
FR2578681A1 (en) PROCESS FOR FORMING A MONOCRYSTALLINE THIN LAYER OF SEMICONDUCTOR ELEMENT
JP5462805B2 (en) Ion source gas reactor
US4985281A (en) Elemental mercury source for metal-organic chemical vapor deposition
US3476593A (en) Method of forming gallium arsenide films by vacuum deposition techniques
JP3576629B2 (en) Semiconductor film manufacturing method and manufacturing apparatus
US4901670A (en) Elemental mercury source for metal-organic chemical vapor deposition
EP0609886B1 (en) Method and apparatus for preparing crystalline thin-films for solid-state lasers
JPH0253097B2 (en)
JP2001192299A (en) Method and device for producing silicon carbide single crystal
JP2611008B2 (en) Organic metal compound vaporizer
JPH03141192A (en) Device and method for gaseous phase growth
JPH0556650B2 (en)
JPS61261294A (en) Method of molecular beam epitaxial growth and molecular beam source
JPH0815143B2 (en) Method for manufacturing 3C-SiC semiconductor device
JPH10242058A (en) Manufacture of iii-v compound semiconductor film containing nitrogen
JPH10242170A (en) Manufacture of zinc-contg. ii-vi compd. semiconductor film
JPS6342137Y2 (en)
KR100397046B1 (en) Thin film deposition apparatus and the method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040308

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040607

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040708

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees