JPS6258337B2 - - Google Patents

Info

Publication number
JPS6258337B2
JPS6258337B2 JP54074937A JP7493779A JPS6258337B2 JP S6258337 B2 JPS6258337 B2 JP S6258337B2 JP 54074937 A JP54074937 A JP 54074937A JP 7493779 A JP7493779 A JP 7493779A JP S6258337 B2 JPS6258337 B2 JP S6258337B2
Authority
JP
Japan
Prior art keywords
cis
light
nerol
mercaptans
octadien
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54074937A
Other languages
Japanese (ja)
Other versions
JPS55167237A (en
Inventor
Tetsuo Cho
Akihiko Ueno
Atsuo Murata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Priority to JP7493779A priority Critical patent/JPS55167237A/en
Publication of JPS55167237A publication Critical patent/JPS55167237A/en
Publication of JPS6258337B2 publication Critical patent/JPS6258337B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は炭素数1〜18のアルキルメルカプタン
及び炭素数4〜8の環状チオールから選ばれるメ
ルカプタン類の存在下、高圧水銀灯及び/又はキ
セノンランプを光源として使用することを特徴と
する3.7−ジメチル−2.6−オクタジエン−1−オ
ールのシス−トランス異性化法に関する。 一般に不飽和アルコールのシス−トランス異性
化には酸触媒塩基触媒遷移金属触媒を使用する方
法が試みられる。これ等の触媒を使用する方法は
工業的実施には好ましい方法と考えられている。
然し、実際には不飽和化合物中の二重結合の移動
やOH基の転位を伴なうことが多く、選択的シス
−トランス異性化反応を得ることは極めて困難で
ある。 光反応に依る不飽和化合物のシス−トランス異
性化法もしばしば利用される。 然し、共役二重結合を有する不飽和化合物、例
えばα,β−不飽和アルデヒド、α、β−不飽和
カルボン酸等の光異性化は比較的容易であるが、
本発明で目的とする3.7−ジメチル−2.6−オクタ
ジエン−1−オールの光異性化は一般に極めて困
難である。 本発明人等は先に特開昭54−76506号に於いて
不飽和アルコールを増感剤の存在下に光照射する
ことにより選択的にシス−トランス異性化反応が
起ることを明らかにした。然し、この方法に於い
ても極めて多量の光エネルギーを必要とするこ
と、又高濃度では必要とする光量を吸収し難く、
且つ重合等に依る選択率の低下を伴ない易い為に
0.5〜5%の稀薄濃度で光異性化を行なはなけれ
ばならない等の経済的難点がある。 本発明人等は光反応に依る3.7−ジメチル−2.6
−オクタジエン−1−オールのシス−トランス異
性化に就いて詳細に研究した結果、メルカプタン
類の存在下に光照射することに依り、3.7−ジメ
チル−2.6−オクタジエン−1−オールのシス−
トランス異性化が選択的に進行することを発見
し、本発明を完成した。 本発明法は光増感反応ではない。メルカプタン
類は光を吸収しない。 従つて、メルカプタン類は所謂光増感剤ではな
く、光異性化を促進する添加物である。シス−ト
ランス異性化の起る作用機構は全く明らかでない
が3.7−ジメチル−2.6−オクタジエン−1−オー
ルにメルカプタン類を添加しても光照射しなけれ
ばシス−トランス異性化反応は一般に起り難く、
又メルカプタン類なしに光照射しても異性化反応
は起らない。メルカプタン類の存在下に光照射す
ることに依りシス体よりトランス体が、又トラン
ス体よりシス体が高選択率で得られる。 本発明に使用するメルカプタン類としてはC1
〜C18のアルキルメルカプタン類及びシクロヘキ
サンチオール、シクロペンタンチオール等の炭素
数4〜8の環状チオールが適当である。メルカプ
タン類の添加量は3.7−ジメチル−2.6−オクタジ
エン−1−オール1モルに対し、0.1〜5モルが
適当である。一般に添加量の多い方が選択率が若
干高い。3.7−ジメチル−2.6−オクタジエン−1
−オールを溶剤で稀釈すれば若干選択率が改善さ
れるが、溶剤なしでも高選択率が得られる。これ
は従来の光異性化では殆んど不可能と考えられて
きたことで驚くべき内容である。光源としては高
圧水銀灯、キセノンランプ等が適当である。 本発明は工業的に極めて有用であることの理由
として反応液が殆んど光を吸収しない為、必要な
光エネルギーは極めて少なく、光反応装置も単純
で設計が容易である。又、高濃度での反応が容易
で、且つ少量の高沸物が生成する以外は二重結合
の移動やOH基の転位等の副反応が全くない為、
反応後の目的化合物の分離精製も容易である。又
反応温度については特に制限はないが常温で行な
うのが好ましい。 従つて、極めて経済的に3.7−ジメチル−2.6−
オクタジエン−1−オールのシス−トランス異性
化を行うことが出来る。 以下実施例に依り本発明の内容を示す。 実施例 1 ネロール(シス−3.7−ジメチル−2.6−オクタ
ジエン−1−オル)とメルカプタン類をそれぞれ
0.05モル/の濃度になるようにベンゼンに溶解
しこの溶液をパイレツクス管中で窒素バブリング
した後封じ、常温のもとに高圧水銀灯で光照射し
た。照射終了後、反応液中のネロール及びゲラニ
オール(トランス−3.7−ジメチル−2.6−オクタ
ジエン−1−オル)をガスクロマトグラフで定量
した。 各種のメルカプタン類に就いて行なつた反応結
果を第1表に示す。
The present invention is characterized in that a high-pressure mercury lamp and/or a xenon lamp is used as a light source in the presence of a mercaptan selected from alkyl mercaptans having 1 to 18 carbon atoms and cyclic thiols having 4 to 8 carbon atoms. 2. Concerning the cis-trans isomerization method of 6-octadien-1-ol. Generally, a method using an acid catalyst, a base catalyst, and a transition metal catalyst is attempted for cis-trans isomerization of unsaturated alcohols. Methods using these catalysts are considered preferred for industrial practice.
However, in practice, this reaction often involves movement of double bonds or rearrangement of OH groups in unsaturated compounds, and it is extremely difficult to obtain a selective cis-trans isomerization reaction. Cis-trans isomerization of unsaturated compounds by photoreaction is also often utilized. However, although it is relatively easy to photoisomerize unsaturated compounds having conjugated double bonds, such as α,β-unsaturated aldehydes and α,β-unsaturated carboxylic acids,
Photoisomerization of 3,7-dimethyl-2,6-octadien-1-ol, which is the object of the present invention, is generally extremely difficult. The present inventors previously revealed in JP-A-54-76506 that a cis-trans isomerization reaction occurs selectively when an unsaturated alcohol is irradiated with light in the presence of a sensitizer. . However, even this method requires an extremely large amount of light energy, and at high concentrations it is difficult to absorb the required amount of light.
In addition, it is easy to cause a decrease in selectivity due to polymerization, etc.
There are economical difficulties, such as the need to carry out photoisomerization at a dilute concentration of 0.5 to 5%. The present inventors have demonstrated that 3.7-dimethyl-2.6 by photoreaction.
As a result of detailed research on the cis-trans isomerization of -octadien-1-ol, we found that the cis-trans isomerization of 3,7-dimethyl-2,6-octadien-1-ol was
They discovered that trans isomerization proceeds selectively and completed the present invention. The method of the present invention is not a photosensitization reaction. Mercaptans do not absorb light. Therefore, mercaptans are not so-called photosensitizers but additives that promote photoisomerization. The mechanism by which cis-trans isomerization occurs is not completely clear, but even if mercaptans are added to 3,7-dimethyl-2,6-octadien-1-ol, cis-trans isomerization is generally difficult to occur unless irradiated with light.
Furthermore, even if irradiated with light without mercaptans, no isomerization reaction occurs. By irradiating with light in the presence of mercaptans, the trans isomer can be obtained with higher selectivity than the cis isomer, and the cis isomer can be obtained with higher selectivity than the trans isomer. The mercaptans used in the present invention include C 1
~ C18 alkyl mercaptans and cyclic thiols having 4 to 8 carbon atoms such as cyclohexanethiol and cyclopentanethiol are suitable. The appropriate amount of mercaptans to be added is 0.1 to 5 moles per mole of 3.7-dimethyl-2.6-octadien-1-ol. Generally, the higher the amount added, the higher the selectivity. 3.7-dimethyl-2.6-octadiene-1
Diluting -ol with a solvent slightly improves the selectivity, but high selectivity can be obtained even without a solvent. This is surprising since it was thought to be almost impossible with conventional photoisomerization. Suitable light sources include high-pressure mercury lamps and xenon lamps. The reason why the present invention is extremely useful industrially is that since the reaction solution absorbs almost no light, the required light energy is extremely small, and the photoreaction device is simple and easy to design. In addition, it is easy to react at high concentrations, and there are no side reactions such as movement of double bonds or rearrangement of OH groups other than the production of small amounts of high-boiling substances.
It is also easy to separate and purify the target compound after the reaction. There is no particular restriction on the reaction temperature, but it is preferable to carry out the reaction at room temperature. Therefore, very economically 3.7-dimethyl-2.6-
Cis-trans isomerization of octadien-1-ol can be carried out. The contents of the present invention will be illustrated below with reference to Examples. Example 1 Nerol (cis-3.7-dimethyl-2.6-octadien-1-ol) and mercaptans, respectively
It was dissolved in benzene to a concentration of 0.05 mol/ml, and this solution was bubbled with nitrogen in a Pyrex tube, then sealed, and irradiated with light using a high-pressure mercury lamp at room temperature. After the irradiation was completed, nerol and geraniol (trans-3.7-dimethyl-2.6-octadien-1-ol) in the reaction solution were determined by gas chromatography. Table 1 shows the reaction results for various mercaptans.

【表】 実施例 2 添加剤としてn−デシルメルカプタンを用い、
その濃度を変えた以外は実施例1と仝様にしてネ
ロールの光異性化を行なつた結果を第2表に示
す。
[Table] Example 2 Using n-decyl mercaptan as an additive,
Table 2 shows the results of photoisomerizing nerol in the same manner as in Example 1 except that the concentration was changed.

【表】 実施例 3 添加剤としてn−デシルメルカプタンをネロー
ルと等モル使用し、光照射時間を30分とし、ネロ
ールの濃度を変えた以外は実施例1と同様にして
ネロールの光異性化を行なつた結果を第3表に示
す。
[Table] Example 3 Photoisomerization of nerol was carried out in the same manner as in Example 1, except that n-decyl mercaptan was used as an additive in equimolar amounts with nerol, the light irradiation time was 30 minutes, and the concentration of nerol was changed. The results are shown in Table 3.

【表】 実施例 4 ベンゼン溶媒を使用せず、ネロールとn−デシ
ルメルカプタンの等モル混合物を直接光照射した
以外は実施例1と同様にしてネロールの光異性化
を行なつた。光照射時間30分でネロールの転化率
25%、ゲラニオールの選択率は90%であつた。
又、光照射時間60分の場合はネロールの転化率48
%、ゲラニオールの選択率60%である。 実施例 5 添加剤としてn−ヘキシルメルカプタンを使用
した以外は実施例4と仝様にしてネロールの光異
性を行なつた。60分間、光照射してネロールの転
化率は37%、ゲラニオールの選択率77%であつ
た。 実施例 6 ゲラニオールとn−ヘキシルメルカプタンをそ
れぞれ0.05モル/の濃度になるようにベンゼン
に溶解した以外は実施例1と同様にしてゲラニオ
ールの光異性化を行なつた。光照射時間15分でゲ
ラニオールの転化率40%、ネロールの選択率は84
%であつた。光照射時間30分ではゲラニオールの
転化率68%、ネロールの選択率50%であつた。 以上のすべての実施例に於いて、二重結合の異
動したアルコール及びOH基の転位したアルコー
ル等は全く生成しておらず又メルカプタン類の消
費も全くなかつた。
[Table] Example 4 Photoisomerization of nerol was carried out in the same manner as in Example 1 except that a benzene solvent was not used and an equimolar mixture of nerol and n-decylmercaptan was directly irradiated with light. Conversion rate of nerol with light irradiation time of 30 minutes
The selectivity for geraniol was 90%.
In addition, when the light irradiation time is 60 minutes, the conversion rate of nerol is 48
%, and the selectivity for geraniol is 60%. Example 5 Photoisomerization of nerol was carried out in the same manner as in Example 4, except that n-hexyl mercaptan was used as an additive. After irradiation with light for 60 minutes, the conversion rate of nerol was 37% and the selectivity of geraniol was 77%. Example 6 Geraniol was photoisomerized in the same manner as in Example 1, except that geraniol and n-hexyl mercaptan were each dissolved in benzene to a concentration of 0.05 mol/. Conversion rate of geraniol is 40% and selectivity of nerol is 84 with light irradiation time of 15 minutes.
It was %. When the light irradiation time was 30 minutes, the conversion rate of geraniol was 68% and the selectivity of nerol was 50%. In all of the above Examples, no alcohols with shifted double bonds or alcohols with shifted OH groups were produced, and no mercaptans were consumed.

Claims (1)

【特許請求の範囲】[Claims] 1 炭素数1〜18のアルキルメルカプタン及び炭
素数4〜8の環状チオールから選ばれるメルカプ
タン類の存在下、高圧水銀灯及び/又はキセノン
ランプを光源として使用することを特徴とする
3.7−ジメチル−2.6−オクタジエン−1−オール
のシス−トランス異性化法。
1. A high-pressure mercury lamp and/or a xenon lamp is used as a light source in the presence of a mercaptan selected from alkyl mercaptans having 1 to 18 carbon atoms and cyclic thiols having 4 to 8 carbon atoms.
Cis-trans isomerization method of 3.7-dimethyl-2.6-octadien-1-ol.
JP7493779A 1979-06-14 1979-06-14 Cis-trans isomerization of unsaturated compound Granted JPS55167237A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7493779A JPS55167237A (en) 1979-06-14 1979-06-14 Cis-trans isomerization of unsaturated compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7493779A JPS55167237A (en) 1979-06-14 1979-06-14 Cis-trans isomerization of unsaturated compound

Publications (2)

Publication Number Publication Date
JPS55167237A JPS55167237A (en) 1980-12-26
JPS6258337B2 true JPS6258337B2 (en) 1987-12-05

Family

ID=13561755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7493779A Granted JPS55167237A (en) 1979-06-14 1979-06-14 Cis-trans isomerization of unsaturated compound

Country Status (1)

Country Link
JP (1) JPS55167237A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3340517B2 (en) * 1993-07-21 2002-11-05 信越化学工業株式会社 Method for producing trans form from cis-alkenyl compound
JP6183838B2 (en) * 2013-08-23 2017-08-23 公立大学法人首都大学東京 Isomerization reaction control method and isomer production method

Also Published As

Publication number Publication date
JPS55167237A (en) 1980-12-26

Similar Documents

Publication Publication Date Title
Heck Mechanism of arylation and carbomethoxylation of olefins with organopalladium compounds
Heiba et al. Oxidation by metal salts. VIII. Decomposition of ceric carboxylates in the presence of olefins and aromatic hydrocarbons
Funabiki et al. Stereoselective cyanation of vinyl halides catalyzed by tetracyanocobaltate (I)
JP2015520156A (en) Process for chemoselective reduction of terminally saturated carboxylic esters
Hutchins et al. The selective reduction of. alpha.,. beta.-unsaturated esters, nitriles and nitro compounds with sodium cyanoborohydride
ES449193A1 (en) Process for producing oxygenated two carbon compounds
Żukowska et al. Cross metathesis
Stille et al. Mechanism of acid chloride decarbonylation with chlorotris (triphenylphosphine) rhodium (I). Stereochemistry and direction of elimination
Yanovskaya et al. Prototropic Isomerisation of Olefins with Functional Groups and Its Use in Organic Synthesis
JPS6258337B2 (en)
JPH055815B2 (en)
JPWO2013125020A1 (en) Catalyst for dehydrogenation, carbonyl compound using the catalyst, and method for producing hydrogen
US2666771A (en) Catalyzing organic isomerization reactions with active magnesia
US3657368A (en) Catalysis by dispersions of metal halides in molten trihalostannate(ii) and trihalogermanate(ii) salts
Leppin et al. Direct photolysis of carbonyl sulfide in solution. Reactions of singlet D sulfur atoms in the liquid phase
ES2221866T3 (en) PROCEDURE FOR THE ISOMERIZATION OF ALILIC ALCOHOLS.
US4338170A (en) Isomerization of β-γ-unsaturated alcohol or its ester
Baldwin et al. Syntheses of Two Stereoselectively Trideuterated Vinylcyclopropanes
ES385061A1 (en) Procedure for the preparation of acetic acid. (Machine-translation by Google Translate, not legally binding)
Beebe et al. Oxidation of alcohols with acetyl hypoiodite
Brace Facile elimination of fluoride ion in the dehydrohalogenation of 3-iodo-4-(perfluoroalkyl) butanoic acids. Preparation of fluorinated sorbic acid analogs
JPS5848546B2 (en) Cis-trans isomerization method for unsaturated alcohols
Smith et al. Studies of Ionic Elimination Reactions in the sec-Butyl System
Christoffers et al. Some Iron (III) Catalyzed Michael Reactions of Chiral Donors, bis‐Donors, and a bis‐Acceptor
US5859268A (en) Process for the synthesis of α, β-unsaturated esters