JPS6258218A - Thermo-writing liquid crystal light valve - Google Patents

Thermo-writing liquid crystal light valve

Info

Publication number
JPS6258218A
JPS6258218A JP60199984A JP19998485A JPS6258218A JP S6258218 A JPS6258218 A JP S6258218A JP 60199984 A JP60199984 A JP 60199984A JP 19998485 A JP19998485 A JP 19998485A JP S6258218 A JPS6258218 A JP S6258218A
Authority
JP
Japan
Prior art keywords
liquid crystal
light
light absorbing
film
films
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60199984A
Other languages
Japanese (ja)
Inventor
Yuji Kato
裕司 加藤
Yutaka Nishimoto
裕 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60199984A priority Critical patent/JPS6258218A/en
Publication of JPS6258218A publication Critical patent/JPS6258218A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To form a thermo-writing liquid crystal light valve which is high in displaying contrast and resolution, by shifting the 2nd light absorbing film from the 1st light absorbing film by one picture element. CONSTITUTION:The light absorbing film 5 of the light projecting side is constituted under a one-picture element shifted condition against the light absorbing film 8 formed on the writing light side. By providing a glass base plates and resin films having a smaller heat conductivity than the light absorbing films have and constituting the resin films and light absorbing films at every second picture element, escape of the heat produced in the light absorbing films in the direction of the base plate and in-plane direction is decreased and the produced heat is effectively used for raising the temperature of liquid crystal. Therefore, the scattering kernel is formed deeper and displaying contrast is improved. Moreover, picture elements of 10mum diameter are written and resolution is improved even if the diameter of a writing laser beam is expanded to 12mum, when, for example, the light absorbing films and resin films are formed at intervals of 10mum, because expansion of the heat in the in-plane direction is decreased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、液晶の熱光学効果を利用した表示装置すなわ
ち熱書込み液晶ライトバルブに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a display device that utilizes the thermo-optic effect of liquid crystal, that is, a thermal writing liquid crystal light valve.

〔従来の技術とその問題点〕[Conventional technology and its problems]

液晶を加熱、急冷することによってランダムな液晶分子
の配向状態が凍結され光を散乱する現象が生ずる。これ
を液晶の熱光学効果と称する。この現象を利用したもの
として液晶セルにレーザ光を照射して照射部分に温度上
昇を生ぜしめ画像書込みを行い、更に書込まれた画像を
消去するには液晶に電界をかけて液晶分子を強制的に配
向させる方式の液晶ライトバルブがある。液晶セルに照
射されたレーザ光は光吸収膜で吸収されて熱に変換され
る。液晶ライトバルブでは光吸収膜で発生した熱を液晶
層は伝えることにより液晶に相変化(スメクティック相
→ネマティック相→液相)を与え、液晶分子をランダム
な状態とし、液相からスメクティック相へ急冷すること
によってその状態を凍結(散乱核を形成)するわけであ
るが、この散乱核は液晶層厚全体に渡り形成された方が
表示コントラストは向上する。また、光吸収膜で発生し
た熱の光吸収膜面内での広がりが小さい方が解像度は向
上し、表示コントラストも向上する。
By heating and rapidly cooling the liquid crystal, the random orientation state of the liquid crystal molecules is frozen, causing a phenomenon in which light is scattered. This is called the thermo-optic effect of liquid crystal. Taking advantage of this phenomenon, an image is written by irradiating a liquid crystal cell with a laser beam to cause a temperature rise in the irradiated area, and to erase the written image, an electric field is applied to the liquid crystal to force the liquid crystal molecules. There is a type of liquid crystal light valve that aligns the light. The laser light irradiated onto the liquid crystal cell is absorbed by the light absorption film and converted into heat. In a liquid crystal light valve, the liquid crystal layer transfers the heat generated by the light absorption film, causing a phase change to the liquid crystal (smectic phase → nematic phase → liquid phase), placing the liquid crystal molecules in a random state, and rapidly cooling them from the liquid phase to the smectic phase. This freezes the state (forms scattering nuclei), but the display contrast is improved if these scattering nuclei are formed over the entire thickness of the liquid crystal layer. Furthermore, the smaller the spread of heat generated in the light absorption film within the plane of the light absorption film, the higher the resolution and the better the display contrast.

更に発生した熱の基板方向への逃げが少ない方が散乱核
はより深く形成され表示コントラストは向上する。
Furthermore, the less the generated heat escapes toward the substrate, the deeper the scattering nuclei are formed and the display contrast is improved.

第4図に従来の熱書込み液晶ライトバルブの断面図を示
す。レーザ光照射側基板1の内面には透明型[i2.光
吸収膜4.光反射膜3′、液晶配向膜5が順次形成され
ている。書込んだ画像は投射光により読み出されスクリ
ーン上に投射されるが、この投射光側の基板11の内面
には透明電極10゜液晶配向膜7が順次形成されている
。この2枚の基板1,11をスペーサ13.14を介し
て対向させ、周囲を接着剤15.16で封止して間隙に
液晶12を注入している(58年春応用物理学会。
FIG. 4 shows a cross-sectional view of a conventional thermal writing liquid crystal light valve. A transparent type [i2. Light absorption film 4. A light reflecting film 3' and a liquid crystal aligning film 5 are sequentially formed. The written image is read out by the projection light and projected onto the screen, and on the inner surface of the substrate 11 on the projection light side, a transparent electrode 10° and a liquid crystal alignment film 7 are sequentially formed. These two substrates 1 and 11 are placed facing each other with spacers 13 and 14 interposed therebetween, the periphery is sealed with adhesive 15 and 16, and liquid crystal 12 is injected into the gap (Spring 1958, Japan Society of Applied Physics).

7a−Y−3>。7a-Y-3>.

しかし、この従来の熱書込み液晶ライトバルブではレー
ザ光で画像書込みを行った場合、散乱様は液晶層厚の半
分程度までしが形成されておらず、十分高い表示コント
ラストが得られなかった。また、書込みレーザビームの
径を10μmに絞っても、液晶昇温時に熱の面内方向の
広がりのため、画素が10μm以上になり解像度が低下
するという欠点があった。
However, in this conventional thermal writing liquid crystal light valve, when an image was written using a laser beam, a scattering pattern was not formed up to about half the thickness of the liquid crystal layer, and a sufficiently high display contrast could not be obtained. Further, even if the diameter of the writing laser beam is narrowed down to 10 μm, there is a drawback that the size of the pixel becomes 10 μm or more, resulting in a decrease in resolution due to the in-plane spread of heat when the temperature of the liquid crystal increases.

〔発明の目的〕[Purpose of the invention]

本発明の目的は表示コントラストが高く、解像度の高い
熱書込み液晶ライトバルブを提供することにある。
An object of the present invention is to provide a thermal writing liquid crystal light valve with high display contrast and high resolution.

〔発明の構成〕[Structure of the invention]

本発明の熱書込み液晶ライトバルブは、相対向する第1
及び第2の基板の間隙に液晶を挟持し、第1及び第2の
基板の対向面上に書込みレーザ光を吸収する光吸収膜と
樹脂膜とを一画素おきに形成し、かつ第2の基板上の光
吸収膜は第1の基板上に形成された光吸収膜に対し一画
素ずらして構成されていることを特徴とする。
The thermal writing liquid crystal light valve of the present invention has two opposing first
and a liquid crystal is sandwiched between the second substrates, and a light absorption film and a resin film for absorbing the writing laser beam are formed every other pixel on the opposing surfaces of the first and second substrates, and The light absorbing film on the substrate is configured to be shifted by one pixel with respect to the light absorbing film formed on the first substrate.

〔発明の作用・原理〕[Function/principle of the invention]

本発明は、液晶を挟持する第1と第2の基板の対向面上
に書込みレーザ光を吸収する光吸収膜と樹脂膜とを一画
素おきに形成し、かつ第2の基板上の光吸収膜は第1の
基板上に形成された光吸収膜に対し一画素ずらして構成
されていることにより光吸収膜で発生した熱の面内方向
への逃げが減少し、散乱核形成の深さが増すため高い解
像度が得られ、かつ高い表示コントラストが得られる。
The present invention forms a light absorption film and a resin film for every other pixel on opposing surfaces of first and second substrates that sandwich a liquid crystal, and forms a light absorption film and a resin film for every other pixel on the opposing surfaces of a first and second substrate that sandwich a liquid crystal, and Since the film is configured to be shifted by one pixel from the light absorption film formed on the first substrate, the escape of heat generated in the light absorption film in the in-plane direction is reduced, and the depth of scattering nucleus formation is reduced. Since the resolution increases, high resolution and high display contrast can be obtained.

゛〔実施例〕 第1図は本発明の液晶ライトバルブの原理を示す断面図
である。書込みレーザ光照射側ガラス基板1の内面には
透明電極2.赤外線を透過し可視光を反射するコールド
ミラー3.樹脂膜4.半導体レーザの波長に最大吸収を
持つ赤外吸収色素より作製した光吸収膜5.液晶配向膜
6を順次形成する。一方、投射光側のガラス基板11の
内面には透明電極10.樹脂膜9.半導体レーザの波長
に最大吸収を持つ赤外吸収色素より作製な光吸収膜8.
液晶配向膜7を順次形成する。この2枚のガラス基板1
.11をスペーサ13.14を介して対向させ、周囲を
接着剤15.16で封止して間隙に液晶1またとえばノ
ルマル・オクチン・シアノ・ビフェニールを注入する。
[Embodiment] FIG. 1 is a sectional view showing the principle of the liquid crystal light valve of the present invention. A transparent electrode 2 is provided on the inner surface of the glass substrate 1 on the writing laser beam irradiation side. Cold mirror that transmits infrared rays and reflects visible light 3. Resin film 4. 5. A light-absorbing film made from an infrared-absorbing dye that has maximum absorption at the wavelength of a semiconductor laser. Liquid crystal alignment films 6 are sequentially formed. On the other hand, a transparent electrode 10 is provided on the inner surface of the glass substrate 11 on the projection light side. Resin film 9. 8. A light-absorbing film made from an infrared-absorbing dye that has maximum absorption at the wavelength of a semiconductor laser.
Liquid crystal alignment films 7 are sequentially formed. These two glass substrates 1
.. 11 are placed opposite to each other with spacers 13 and 14 interposed therebetween, their peripheries are sealed with an adhesive 15 and 16, and liquid crystal 1 or, for example, normal octyne cyano biphenyl is injected into the gap.

第2図は書込み先側基板の光吸収膜及び樹脂膜をそれぞ
れ投射光側から見た図を示す。−力投射光側の光吸収膜
は書込み光測に形成された光吸収膜に対し一画素ずムし
て構成する。
FIG. 2 shows the light absorption film and the resin film of the writing destination substrate as viewed from the projection light side. - The light absorption film on the power projection light side is configured to be offset by one pixel from the light absorption film formed on the writing photometer.

なお、樹脂膜4並びに9のパターン化は例えば基板への
ポリイミド塗布後、フォトレジストを塗布し、マスクを
使い露光し、フォトレジスト現像。
Note that the resin films 4 and 9 are patterned by, for example, coating a substrate with polyimide, then coating a photoresist, exposing it to light using a mask, and developing the photoresist.

ポリイミドエツチング、フォトレジストはく離のプロセ
スにより、あるいは感光性ポリイミドの基板への塗布、
マスクを使い露光、ポリイミド現像のプロセスにより行
なう。上記パターン形成後、マスクを用い赤外吸収色素
を蒸着により光吸収膜形成を行う。なお、赤外吸収色素
より作製する光吸収膜並びにポリイミド膜は、可視光に
対しほぼ透明であるため投射光に対して何ら影響はない
By polyimide etching, photoresist stripping process, or by coating photosensitive polyimide onto the substrate,
This is done through a process of exposure using a mask and polyimide development. After forming the pattern, a light-absorbing film is formed by vapor-depositing an infrared-absorbing dye using a mask. Note that the light-absorbing film and polyimide film made from infrared-absorbing dyes are almost transparent to visible light, so they have no effect on the projected light.

ガラス基板、並びに光吸収膜よりも熱伝導率の小さな樹
脂膜を設け、更に、樹脂膜と光吸収膜とを一画素おきに
構成とすることにより、光吸収膜で発生した熱の基板方
向、並びに、面内方向の逃げが減少し、発生した熱が液
晶昇温に有効に使われるため散乱、核はより深く形成さ
れ表示コントラストは向上する。更に、熱の面内方向へ
9広がりの減少のため、例えば光吸収膜と樹脂膜を10
μmおきに形成すれば、書込みレーザビーム径が12μ
mと広がった場合でも10μm径の画素が書込まれ解像
度は向上する。また光吸収膜と樹脂膜が一画素おきに形
成され、かつ第2の基板上の光吸収膜が第1の基板上に
形成された光吸収膜に対し一画素ずらして構成されてい
ることにより、第1の基板上の光吸収膜でレーザ光を吸
収し画像を書込み、レーザ光を走査して次の画素へ書込
みを行う場合、レーザ光が全て第2の基板上の光吸収膜
で吸収され画像が書込まれる。このように本発明におい
ては、第1の基板上に形成されたドツト状光吸収膜と、
第2の基板上に形成されたドツト状光吸収膜の両方によ
って画像が書き込まれる。
By providing a glass substrate and a resin film having a lower thermal conductivity than the light absorption film, and configuring the resin film and the light absorption film every other pixel, the heat generated in the light absorption film is directed toward the substrate. In addition, since the escape in the in-plane direction is reduced and the generated heat is effectively used to raise the temperature of the liquid crystal, the scattering and nuclei are formed deeper and the display contrast is improved. Furthermore, in order to reduce the spread of heat in the in-plane direction, for example, the light absorption film and the resin film are
If it is formed every μm, the writing laser beam diameter will be 12 μm.
Even when the area is expanded to m, pixels with a diameter of 10 μm are written and the resolution is improved. In addition, a light absorption film and a resin film are formed every other pixel, and the light absorption film on the second substrate is shifted by one pixel with respect to the light absorption film formed on the first substrate. , when writing an image by absorbing laser light with the light absorption film on the first substrate, and writing to the next pixel by scanning the laser light, all of the laser light is absorbed by the light absorption film on the second substrate. and the image is written. As described above, in the present invention, the dot-shaped light absorption film formed on the first substrate,
An image is written by both dot-shaped light absorbing films formed on the second substrate.

したがって、熱の面内方向への広がりが防止でき解像度
とコントラストの良い画像を得ることができる。
Therefore, the spread of heat in the in-plane direction can be prevented, and an image with good resolution and contrast can be obtained.

第1図では光吸収膜5を樹脂膜4の一部分に埋め込む形
状としたが、第3図に示すように光吸収膜5と樹脂膜4
を等しい厚さに形成しても光吸収膜で発生した熱の面内
での広がりが減少するため解像度は向上し、更に表示コ
ントラストも向上する。また、第1図では書込み光測の
透明電極2と樹脂膜4の間にコーツドミラ−3を設けた
が、樹脂膜4.光吸収膜5と液晶配向膜6の間にコール
ドミラー3を設けても、更にコールドミラー3を除いた
透過型の構成の液晶ライトバルブにしても何ら影響はな
い。
In FIG. 1, the light absorption film 5 is embedded in a part of the resin film 4, but as shown in FIG.
Even if they are formed to have the same thickness, the in-plane spread of heat generated in the light absorbing film is reduced, resulting in improved resolution and further improved display contrast. Further, in FIG. 1, the coated mirror 3 is provided between the transparent electrode 2 for writing photometry and the resin film 4, but the resin film 4. Even if the cold mirror 3 is provided between the light absorption film 5 and the liquid crystal alignment film 6, there is no effect even if the liquid crystal light valve has a transmissive structure without the cold mirror 3.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば表示コントラスト
が高く、解像度の高い熱書込み液晶ライトバルブが得ら
れる。
As described above, according to the present invention, a thermal writing liquid crystal light valve with high display contrast and high resolution can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第3図は本発明の液晶ライトバルブの断面図、
第2図は書込み基板側の樹脂膜と光吸収膜を投射光側か
ら見た図、第4図は従来の構造の液晶ライトバルブの断
面図である。 1.11・・・ガラス基板、2.10・・・透明電極、
3・・・コールドミラー、3′・・・光反射膜、4.9
・・・樹脂膜、5.8・・・光吸収膜、6,7・・・液
晶配向膜、12・・・液晶、13.14・・・スペーサ
、15.16・・・接着剤。 殆/ 図 第2図 第3図 粥4−図 〆 J0透湖屹極 、7鵬配向暁 〃基板
1 and 3 are cross-sectional views of the liquid crystal light valve of the present invention,
FIG. 2 is a view of the resin film and light absorption film on the writing substrate side as seen from the projection light side, and FIG. 4 is a sectional view of a liquid crystal light valve with a conventional structure. 1.11...Glass substrate, 2.10...Transparent electrode,
3...Cold mirror, 3'...Light reflecting film, 4.9
...Resin film, 5.8...Light absorption film, 6,7...Liquid crystal alignment film, 12...Liquid crystal, 13.14...Spacer, 15.16...Adhesive. Most / Figure 2 Figure 3 Porridge 4-Figure J0 Translucent Lake Pole, 7 Peng Oriented Xiao〃Substrate

Claims (1)

【特許請求の範囲】[Claims] 第1及び第2の基板の一表面上に光吸収膜と樹脂膜とを
一画素おきに形成し、前記第1の基板および第2の基板
をこれら基板に形成された光吸収膜が一画素ずれるよう
に相対向して配置し、両基板の間隙に液晶を充填したこ
とを特徴とする熱書込み液晶ライトバルブ。
A light absorption film and a resin film are formed on every other pixel on one surface of the first and second substrates, and the light absorption film and the resin film formed on these substrates are formed on each pixel of the first and second substrates. A thermal writing liquid crystal light valve characterized in that the substrates are arranged facing each other so as to be offset from each other, and the gap between the two substrates is filled with liquid crystal.
JP60199984A 1985-09-09 1985-09-09 Thermo-writing liquid crystal light valve Pending JPS6258218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60199984A JPS6258218A (en) 1985-09-09 1985-09-09 Thermo-writing liquid crystal light valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60199984A JPS6258218A (en) 1985-09-09 1985-09-09 Thermo-writing liquid crystal light valve

Publications (1)

Publication Number Publication Date
JPS6258218A true JPS6258218A (en) 1987-03-13

Family

ID=16416850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60199984A Pending JPS6258218A (en) 1985-09-09 1985-09-09 Thermo-writing liquid crystal light valve

Country Status (1)

Country Link
JP (1) JPS6258218A (en)

Similar Documents

Publication Publication Date Title
JP2698218B2 (en) Reflective liquid crystal display device and method of manufacturing the same
US4679910A (en) Dual liquid-crystal cell-based visible-to-infrared dynamic image converter
KR100827962B1 (en) liquid crystal display devices and manufacturing method of the same
US7973893B2 (en) Method of manufacturing a substrate for a liquid crystal display device
TW548689B (en) Reflection type liquid crystal display device and manufacturing method thereof
JPS6230614B2 (en)
JPH0627481A (en) Reflective active matrix substrate, its production and liquid crystal display device
JP2004199030A (en) Semi-transmission/reflection type display device with different pretilt angles
JPS6258218A (en) Thermo-writing liquid crystal light valve
JP3414189B2 (en) Reflection type color filter and method of manufacturing the same
JPS6236633A (en) Heat writing liquid crystal light valve
JPS6239820A (en) Thermal write liquid crystal light valbe
JP2000187208A (en) Reflective liquid crystal display device and its manufacture
JP2001075121A (en) Liquid crystal display element
JP3566874B2 (en) Manufacturing method of liquid crystal display device
JP2001318373A (en) Liquid crystal display device
JP3412775B2 (en) Liquid crystal element
JPS62206523A (en) Thermally writing liquid crystal light valve
JP2004309780A (en) Liquid crystal display element
JP4007101B2 (en) Reflective liquid crystal display
JPS61215519A (en) Reflection type liquid-crystal light valve
JP2002014342A (en) Front light type liquid crystal display device
JPH05249431A (en) Liquid crystal display device
JPH1172619A (en) Polarizing material
Liu et al. The opto-thermal effect on encapsulated cholesteric liquid crystals