JPS6258122B2 - - Google Patents

Info

Publication number
JPS6258122B2
JPS6258122B2 JP7953283A JP7953283A JPS6258122B2 JP S6258122 B2 JPS6258122 B2 JP S6258122B2 JP 7953283 A JP7953283 A JP 7953283A JP 7953283 A JP7953283 A JP 7953283A JP S6258122 B2 JPS6258122 B2 JP S6258122B2
Authority
JP
Japan
Prior art keywords
current
command signal
excitation
differential
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7953283A
Other languages
Japanese (ja)
Other versions
JPS59204214A (en
Inventor
Munehiko Mimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP7953283A priority Critical patent/JPS59204214A/en
Publication of JPS59204214A publication Critical patent/JPS59204214A/en
Publication of JPS6258122B2 publication Critical patent/JPS6258122B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/22Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for supplying energising current for relay coil
    • H01H47/32Energising current supplied by semiconductor device
    • H01H47/325Energising current supplied by semiconductor device by switching regulator

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Relay Circuits (AREA)

Description

【発明の詳細な説明】 この発明はリレー.ソレノイド等電磁機構を有
する各種アクチエータの制御装置に係り、特に電
源電圧変動が大きくても励磁コイル損失が軽減さ
れるとともに、初期吸引時には充分な性能を得る
電磁機構の制御装置を得ようとするものである。
[Detailed Description of the Invention] This invention is a relay. This invention relates to a control device for various actuators having an electromagnetic mechanism such as a solenoid, and is intended to provide a control device for an electromagnetic mechanism that reduces excitation coil loss even when power supply voltage fluctuations are large, and provides sufficient performance during initial attraction. It is.

従来、この種の装置として第1図に示すものが
あつた。図中、1は電流指令信号SIと電流帰還
信号SOとを入力としてオンオフ制御信号S1を得
るヒステリシスコンバレータ、2はオンオフ制御
信号S1の論理反転を行ない、オンオフ制御信号S2
を得るインバータ、3はオンオフ制御信号S2で制
御されるPNPトランジスタ、4は励磁制御信号S3
で制御されるNPNトランジスタ、5は還流ダイ
オード、6はコイル電流検出抵抗、8は電磁機構
の励磁コイル、9は電源である。なお71,7
2,73はヒステリシスコンバレータを形成する
抵抗で、それぞれ設定抵抗、ヒステリシス抵抗、
帰還抵抗である。74,75はトランジスタ3,
4のそれぞれベース抵抗である。
Conventionally, there has been a device of this type as shown in FIG. In the figure, 1 is a hysteresis converter that inputs a current command signal S I and a current feedback signal S O to obtain an on-off control signal S 1 , and 2 performs logical inversion of the on-off control signal S 1 to generate an on-off control signal S 2
3 is a PNP transistor controlled by on/off control signal S2 , 4 is excitation control signal S3
5 is a freewheeling diode, 6 is a coil current detection resistor, 8 is an excitation coil of an electromagnetic mechanism, and 9 is a power source. Furthermore, 71,7
2 and 73 are resistors forming a hysteresis converter, which are a setting resistor, a hysteresis resistor, and a hysteresis resistor, respectively.
It is a feedback resistance. 74 and 75 are transistors 3,
4, each of which is a base resistance.

次に第1図の従来装置の動作について第2図に
従つて説明する。図中イは励磁コイル8を励磁す
るかしないかの信号である励磁制御信号SS、ロ
は電流指令信号SIと励磁コイル電流IO、ハは励
磁コイル電圧VOを示すタイムチヤート図であ
る。励磁コイル8は時点tONから時点tOFFの間
励磁される。
Next, the operation of the conventional device shown in FIG. 1 will be explained with reference to FIG. 2. In the figure, A is the excitation control signal S S which is a signal for whether or not to excite the excitation coil 8, B is the current command signal S I and the excitation coil current I O , and C is a time chart showing the excitation coil voltage VO . be. The excitation coil 8 is excited between the time t ON and the time t OFF .

時点tONでは励磁コイル電流IOは零であり、
トランジスタ3,4が共にONとなるtONからt1
の期間では、励磁コイル8の電気回路時定数で増
加していく。電流指令信号SIは常に一定値を示
しており、コンバレータヒステリシスがあるため
励磁コイル電流がヒステリシス分だけ大きなIOM
となる時点t1でトランジスタ3がオフになる。す
ると、励磁コイル電流は還流ダイオードを通り減
衰していく。そして時点t2においては増加の場合
と逆に電流指令信号SIよりもコンバレータヒス
テリシスより小さいIONとなり、再びトランジス
タ3がONになり、コイル電流IOが増加してい
く。以下時点tOFFまで以上の動作を繰り返す。
このようにトランジスタ3のオンオフリツプルを
含むが、一定電流指令信号SIに追従した電流制
御を行なつている。このようにして電源電圧変動
が大きくかわる場合でも定電流制御を行ない励磁
のための損失を最小に制御していた。しかしなが
ら従来の制御方式は初期吸引時には電源電圧Eと
励磁コイルインピーダンスとにより制限されるコ
イル電流となるので、初期吸引時の電流が不足し
応答が悪かつた。
At time t ON , the exciting coil current I O is zero,
Transistors 3 and 4 both turn on from t ON to t 1
In the period , it increases with the electric circuit time constant of the excitation coil 8. The current command signal S I always shows a constant value, and since there is comparator hysteresis, the exciting coil current increases by the hysteresis I OM
At the time t1 , the transistor 3 is turned off. Then, the exciting coil current passes through the freewheeling diode and attenuates. Then, at time t 2 , contrary to the case of increase, I ON is smaller than the current command signal S I than the comparator hysteresis, the transistor 3 is turned on again, and the coil current I O increases. The above operation is repeated until time t OFF .
In this way, although the on/off ripple of the transistor 3 is included, current control is performed that follows the constant current command signal S I. In this way, even when the power supply voltage fluctuates greatly, constant current control is performed to minimize excitation loss. However, in the conventional control system, the coil current is limited by the power supply voltage E and the excitation coil impedance at the time of initial attraction, so the current at the time of initial attraction is insufficient and the response is poor.

この発明は初期吸引時の性能をあげると共に必
要最小励磁コイル電流制御とすることにより励磁
損失の少ない制御装置を提供することを目的とし
ている。
It is an object of the present invention to provide a control device that improves performance during initial attraction and reduces excitation loss by controlling the necessary minimum excitation coil current.

そのため励磁コイルインピーダンスと電源との
協調をはかるとともに励磁制御信号SSの立上り
微分を得てヒステリシスコンバレータの電流指令
信号に加算することにより初期励磁電流を大きく
するようにし、保持後には電流指令信号に応じた
定電流制御を行なうようにしている。
Therefore, the initial excitation current is increased by coordinating the excitation coil impedance and the power supply, and by obtaining the rising differential of the excitation control signal S S and adding it to the current command signal of the hysteresis converter. Constant current control is performed according to the

以下、この発明の一実施例を第3図を用いて説
明する。図中、1はヒステリシスコンバレータ、
2はインバータ、3はPNPトランジスタ、4は
NPNトランジスタ、5は還流ダイオード、6は
電流検出抵抗、8は励磁コイル、9は電源であ
る。10は抵抗101とコンデンサ102とから
なる微分要素である。71は設定抵抗、72はヒ
ステリシス抵抗、73は帰還抵抗、74,75は
トランジスタ3および4のベース抵抗である。
An embodiment of the present invention will be described below with reference to FIG. In the figure, 1 is a hysteresis converter,
2 is an inverter, 3 is a PNP transistor, 4 is
5 is a freewheeling diode, 6 is a current detection resistor, 8 is an excitation coil, and 9 is a power supply. 10 is a differential element consisting of a resistor 101 and a capacitor 102. 71 is a setting resistor, 72 is a hysteresis resistor, 73 is a feedback resistor, and 74 and 75 are base resistors of transistors 3 and 4.

第4図は第3図に示した実施例の場合の動作説
明図であり、イは励磁制御信号SSを示し、ロは
電流指令信号SIと微分電流指令信号SDとの加算
結果である合成電流指令信号SIDと励磁コイル電
流IOとを示し、ハはコイル電圧VOのタイムチヤ
ート波形を示している。
FIG. 4 is an explanatory diagram of the operation in the case of the embodiment shown in FIG. 3, where A shows the excitation control signal S S and B shows the addition result of the current command signal S I and the differential current command signal S D. A certain composite current command signal S ID and exciting coil current I O are shown, and C shows a time chart waveform of the coil voltage V O.

従来例と同様にトランジスタ3のオンオフ制御
によつて微分補償後の合成電流指令信号SIDに追
従制御される。図中時点tONからtWまでの期間
(一次遅れ時定数で示す)に励磁電流を大きくす
れば電磁力が増加し、初期吸引特性を向上するこ
とができる。
As in the conventional example, the transistor 3 is controlled to follow the differentially compensated composite current command signal S ID by on/off control. If the excitation current is increased during the period from time t ON to t W in the figure (indicated by a first-order lag time constant), the electromagnetic force increases and the initial attraction characteristics can be improved.

吸引後は従来と同様に保持電流である電流指令
信号SIに追随制御する。
After attraction, control is performed to follow the current command signal S I , which is the holding current, as in the conventional case.

このようにすれば、初期吸引時の性能を上げる
とともに、その後の保持は必要最小限の電流制御
ができるので、従来の欠点をなくすことができ
る。
In this way, the performance at the time of initial suction can be improved, and the subsequent holding can be controlled with the minimum necessary current, so that the drawbacks of the conventional method can be eliminated.

なお、第3図の実施例では微分要素として抵抗
とコンデンサを用いたが、論理回路を用い、初期
吸引時の時点tONからtWのパルス巾信号を得て
も良いことは言うまでもない。
In the embodiment shown in FIG. 3, a resistor and a capacitor are used as differential elements, but it goes without saying that a logic circuit may be used to obtain a pulse width signal of t W from time t ON at the time of initial attraction.

第5図は論理回路として単安定マルチバイブレ
ータ103とAND要素104とを用いて励磁制
御信号SSの立ち上り微分を得る回路の構成図を
示し、第6図においてイは励磁制御信号SS、ロ
は微分電流指令信号SDとのタイムチヤート波形
を示している。
FIG. 5 shows a configuration diagram of a circuit for obtaining the rising edge differential of the excitation control signal S S using the monostable multivibrator 103 and the AND element 104 as a logic circuit. shows a time chart waveform with the differential current command signal S D.

以上のようにこの発明によれば、初期吸引時の
性能をあげるとともに、その後の保持に必要最小
電流制御を行ない、励磁損失の少ない電磁機構の
制御装置を得ることができる。
As described above, according to the present invention, it is possible to obtain a control device for an electromagnetic mechanism that improves performance during initial attraction, performs minimum current control necessary for subsequent holding, and has low excitation loss.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の実施例の構成図、第2図は第1
図の動作説明図、第3図はこの発明の一実施例を
示す構成図、第4図は第3図の動作説明図、第5
図は微分要素の変形例を示す図、第6図は第5図
の動作説明図である。 図中、1はコンバレータ、2はインバータ、3
はPNPトランジスタ、4はNPNトランジスタ、
5は還流ダイオード、6は電流検出抵抗、8は励
磁コイル、9は電源、10は微分要素である。
Figure 1 is a configuration diagram of a conventional embodiment, and Figure 2 is a diagram of the configuration of a conventional embodiment.
3 is a configuration diagram showing an embodiment of the present invention. FIG. 4 is an explanatory diagram of the operation of FIG. 3.
The figure shows a modification of the differential element, and FIG. 6 is an explanatory diagram of the operation of FIG. 5. In the figure, 1 is a converter, 2 is an inverter, and 3
is a PNP transistor, 4 is an NPN transistor,
5 is a freewheeling diode, 6 is a current detection resistor, 8 is an exciting coil, 9 is a power source, and 10 is a differential element.

Claims (1)

【特許請求の範囲】[Claims] 1 一定電流指令信号に応じて定電流制御を行な
う電磁機構の制御装置において、励磁の要否を示
す励磁制御信号の立ち上り微分信号である微分電
流指令信号を得る微分要素を付加し、上記一定電
流指令信号と上記微分電流指令信号との和を励磁
コイルの指令信号としたことを特徴とする電磁機
構の制御装置。
1. In a control device for an electromagnetic mechanism that performs constant current control in response to a constant current command signal, a differential element is added to obtain a differential current command signal that is a rising differential signal of an excitation control signal indicating whether or not excitation is necessary, and the constant current A control device for an electromagnetic mechanism, characterized in that the sum of a command signal and the differential current command signal is used as a command signal for an exciting coil.
JP7953283A 1983-05-07 1983-05-07 Controller for electromagnetic mechanism Granted JPS59204214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7953283A JPS59204214A (en) 1983-05-07 1983-05-07 Controller for electromagnetic mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7953283A JPS59204214A (en) 1983-05-07 1983-05-07 Controller for electromagnetic mechanism

Publications (2)

Publication Number Publication Date
JPS59204214A JPS59204214A (en) 1984-11-19
JPS6258122B2 true JPS6258122B2 (en) 1987-12-04

Family

ID=13692597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7953283A Granted JPS59204214A (en) 1983-05-07 1983-05-07 Controller for electromagnetic mechanism

Country Status (1)

Country Link
JP (1) JPS59204214A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008028083A (en) * 2006-07-20 2008-02-07 Shindengen Mechatronics Co Ltd Solenoid drive control circuit, and solenoid
JP6249784B2 (en) * 2014-01-15 2017-12-20 三菱電機株式会社 In-vehicle relay drive circuit and in-vehicle equipment

Also Published As

Publication number Publication date
JPS59204214A (en) 1984-11-19

Similar Documents

Publication Publication Date Title
JPS631039B2 (en)
US4431955A (en) Step motor control circuit
EP0653833B1 (en) A brushless electric motor and a method for controlling the motor
JPS6258122B2 (en)
JP2573300B2 (en) Electromagnet coil drive
JPH06165571A (en) Controller for brushless motor
US4920308A (en) Regulator for automotive charging systems
US3328598A (en) Semi-conductor switching circuit with automatic unlock
EP0481933A1 (en) A control circuit for a brushless electric motor with n phases
US4962348A (en) Switched filter with low offset
JPS61161988A (en) Servo motor drive device
JPS5852655Y2 (en) Plunger drive circuit
JPH0568399A (en) Actuator driver
JPS61147799A (en) Drive circuit of stepping motor
JPS6077298U (en) Motor actuator drive control device
JPH10208575A (en) Relay controlling method
US4079270A (en) Gate control apparatus
JPS6098900A (en) Current control system of electromagnetic mechanism
JPS6325949B2 (en)
JPS60143610A (en) Solenoid driving circuit
JP3045633B2 (en) Current power supply for electromagnet
JPS5833799B2 (en) Inductive load drive circuit
JPS5883599A (en) Driving device for step motor
JP3187985B2 (en) Stepping motor drive
JPS58195495A (en) Transistor chopper