JPS6258006B2 - - Google Patents

Info

Publication number
JPS6258006B2
JPS6258006B2 JP54112323A JP11232379A JPS6258006B2 JP S6258006 B2 JPS6258006 B2 JP S6258006B2 JP 54112323 A JP54112323 A JP 54112323A JP 11232379 A JP11232379 A JP 11232379A JP S6258006 B2 JPS6258006 B2 JP S6258006B2
Authority
JP
Japan
Prior art keywords
signal
bogie
trolley
storage battery
charging station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54112323A
Other languages
Japanese (ja)
Other versions
JPS5639923A (en
Inventor
Yasuo Hasebe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Machinery Ltd
Original Assignee
Murata Machinery Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Machinery Ltd filed Critical Murata Machinery Ltd
Priority to JP11232379A priority Critical patent/JPS5639923A/en
Publication of JPS5639923A publication Critical patent/JPS5639923A/en
Publication of JPS6258006B2 publication Critical patent/JPS6258006B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Description

【発明の詳細な説明】 本発明は蓄電池を搭載して該蓄電池を走行駆動
モータの駆動源として走行する走行台車の充電方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for charging a traveling trolley equipped with a storage battery and traveling using the storage battery as a drive source for a travel drive motor.

このような走行台車においては、蓄電池は台車
の稼働時間と共に蓄電池容量が減少し、台車走行
が不可能になるまで減少すると作業者が別の充電
された蓄電池と放電した台車上の蓄電池を交換す
るか、又は台車を蓄電池充電位置まで移動させて
充電した後再び元の走行路へ復帰させることによ
り台車の走行を続行させていた。
In such traveling trolleys, the storage battery capacity decreases with the operating time of the trolley, and when the battery capacity decreases to the point where the trolley cannot run, the operator replaces the discharged storage battery on the trolley with another charged storage battery. Alternatively, the cart was moved to a storage battery charging position, charged, and then returned to its original traveling path to continue running.

従つて、走行路途中で台車の走行が停止し、作
業者が台車停止位置まで充電された新しい蓄電池
を運んだり、充電位置まで台車を移動させるけん
引車等の手段が必要となつていた。
Therefore, when the trolley stops midway along the travel route, a worker must carry a new charged storage battery to the trolley's stopping position, or a towing vehicle or other means is required to move the trolley to the charging position.

本発明は上記欠点を解消する為になされたもの
で、即ち台車の走行が不能になる前に設定した電
気容量まで減少した時には台車から地上制御装置
に電池容量不足信号を出し、地上制御装置は上記
信号を受信して上記台車を充電ステーシヨンまで
走行させ、該ステーシヨンにおいて自動充電を行
い、充電完了後充電ステーシヨンから地上制御装
置に充電完了信号を送信し、地上制御装置が上記
充電信号を受信し、台車を通常の走行路に戻し走
行開始させるようにするもので、以下本発明を実
施する装置に従つて説明する。
The present invention has been made in order to solve the above-mentioned drawbacks. That is, when the electric capacity decreases to a preset value before the bogie becomes unable to run, the bogie issues a battery capacity insufficient signal to the ground control device, and the ground control device Upon receiving the above signal, the bogie is driven to a charging station, automatic charging is performed at the station, and after charging is completed, the charging station transmits a charging completion signal to the ground control device, and the ground control device receives the charging signal. , the vehicle is returned to the normal traveling path and started traveling, and the apparatus implementing the present invention will be explained below.

第1図において、1は床面に埋設された走行用
電線ループで、該電線に低周波電流を流し、後述
する台車2のアンテナが上記電線の磁界を感知し
て駆動モータを作動させ、台車2は上記電線から
なる軌道1に沿つて走行する。
In FIG. 1, reference numeral 1 denotes a running electric wire loop buried in the floor. A low-frequency current is passed through the electric wire, and the antenna of the trolley 2, which will be described later, senses the magnetic field of the electric wire and operates the drive motor. 2 runs along the track 1 made of the above-mentioned electric wires.

又台車2は第2図に示す如く台車本体3と、走
行輪4,5と、1対の駆動輪6,7と該駆動輪を
駆動する蓄電池8,9と更に床面に埋設された電
線から指令を受け、又電線に信号を与える為の台
車の前後に設けたアンテナ10,11、更に又充
電ステーシヨンにおいて充電器12と結合する充
電コネクター13とより構成される。
As shown in FIG. 2, the truck 2 includes a truck body 3, running wheels 4, 5, a pair of driving wheels 6, 7, storage batteries 8, 9 for driving the driving wheels, and electric wires buried in the floor. It is comprised of antennas 10 and 11 provided at the front and rear of the cart for receiving commands from and giving signals to electric wires, and a charging connector 13 that is connected to a charger 12 at a charging station.

又、第3図は台車のアンテナ10又は11と各
ステーシヨンの床面に埋設された台車側信号の受
信用電線ループ14との関係を示す図でイは平面
図、ロは側面図である。なお、この受信用電線ル
ープ14は台車の走行コースの任意の所定位置に
複数個設置されている。即ち、上記電線ループ1
4の中心の2本の電線14a,14bがアンテナ
10又は11の中心下方を同方向に電流が流れる
如く、すなわち走行用ループ1と平行で、かつ2
本の電線14a,14b間に上記走行用電線1が
位置するようにループを形成する。上記床面に埋
設された電線ループ14には、台車のアンテナ1
0又は11に流した低周波電流の電磁誘導作用に
より誘導電圧が生じる。即ち上記アンテナに台車
電池容量不足信号の低周波電流が流れるとループ
に誘導電圧が生じ、上記各ループ14はそれぞれ
地上制御装置(第1図15)に接続されているた
め、地上制御装置は台車の蓄電池容量不足信号を
受信する。
FIG. 3 is a diagram showing the relationship between the antenna 10 or 11 of the truck and the electric wire loop 14 for receiving signals on the truck buried in the floor of each station, where A is a plan view and B is a side view. Note that a plurality of receiving wire loops 14 are installed at arbitrary predetermined positions on the traveling course of the truck. That is, the above electric wire loop 1
The two wires 14a and 14b at the center of the antenna 10 or 11 are parallel to the running loop 1 so that the current flows in the same direction below the center of the antenna 10 or 11, and
A loop is formed so that the running electric wire 1 is located between the real electric wires 14a and 14b. The antenna 1 of the trolley is attached to the electric wire loop 14 buried in the floor surface.
An induced voltage is generated due to the electromagnetic induction effect of the low frequency current passed through 0 or 11. That is, when the low frequency current of the bogie battery capacity insufficient signal flows through the antenna, an induced voltage is generated in the loop, and since each of the loops 14 is connected to the ground control device (FIG. 1, 15), the ground control device is connected to the bogie battery. Receives a signal that the storage battery capacity is insufficient.

以上のような装置において本発明方法を説明す
る。
The method of the present invention will be explained using the apparatus as described above.

第4図において、まず台車側において、16は
差動増巾器で、該差動増巾器16には蓄電池8,
9の電圧と基準電圧18が入力される。入力電圧
の基準電圧はコンバータを介して電池電圧より小
さくされ、蓄電池入力は抵抗19により基準電圧
と同電圧に落とされて入力される。上記蓄電池1
7の容量が減少すると電池17の電圧が下がり、
基準電圧18との差が大きくなり、即ち差動増巾
器16の出力が大きくなる。20は過大電圧防止
用の定電圧ダイオードである。蓄電池17の電圧
が規定値以下に下がつた場合は差動増巾器16の
出力が次段のアンド入力Hになりクロツク回路2
1のH入力とでアンドゲート22が開となりパル
スデジタル信号出力が変調回路23の入力とな
る。変調回路23の出力は周波電流となり増巾回
路24に入力され、該増巾回路24ではアンテナ
10又は11に流すに充分な電力をもつように増
巾される。
In FIG. 4, first on the truck side, 16 is a differential amplifier, and the differential amplifier 16 includes a storage battery 8,
9 and a reference voltage 18 are input. The reference voltage of the input voltage is made smaller than the battery voltage via the converter, and the storage battery input is reduced to the same voltage as the reference voltage by the resistor 19 and input. Above storage battery 1
When the capacity of battery 7 decreases, the voltage of battery 17 decreases,
The difference from the reference voltage 18 increases, that is, the output of the differential amplifier 16 increases. 20 is a constant voltage diode for overvoltage prevention. When the voltage of the storage battery 17 falls below the specified value, the output of the differential amplifier 16 becomes the AND input H of the next stage, and the clock circuit 2
With the H input of 1, the AND gate 22 is opened and the pulse digital signal output becomes the input to the modulation circuit 23. The output of the modulation circuit 23 becomes a frequency current and is input to the amplification circuit 24, where the amplification circuit 24 amplifies the frequency current to have enough power to flow through the antenna 10 or 11.

台車の蓄電池17の容量が減少すると、上述し
たようにアンテナ10又は11に低周波電流が流
れ、該アンテナから蓄電池容量不足信号が送信さ
れる。台車は該不足信号を出しながら走行し、前
記複数の受信ループのうち、上記不足信号を出し
始めて最初に台車が通過した受信ループにより該
不足信号は受信され、これを地上制御装置15の
増巾回路25に入力する。各受信ループ14は前
記したようにそれぞれ個別に該制御装置15に接
続されているので、該制御装置15にはどの受信
ループ14から送られてきた信号か、すなわちど
の位置で蓄電池が不足したのかが確認される。増
巾出力信号を復調回路26に入力し、デジタル信
号に変換し、該デジタル信号がモノステーブル2
7に入力される。該モノステーブル回路27では
上記デジタル信号が入力されている間、連続出力
信号になるように時定数が設定されている。更に
遅延回路28を経て雑音が除去されてバツフアー
29で増巾されて蓄電池容量不足出力信号が出力
される。又モノステーブル27からはどの受信ル
ープ14が不足信号を受信したかということ、す
なわち台車位置信号が出力され制御回路へ入力さ
れる。
When the capacity of the storage battery 17 of the truck decreases, a low frequency current flows through the antenna 10 or 11 as described above, and a storage battery capacity insufficient signal is transmitted from the antenna. The bogie travels while issuing the shortage signal, and the shortage signal is received by the first receiving loop that the bogie passes through after it starts issuing the shortage signal among the plurality of receiving loops. input to circuit 25; As described above, each of the receiving loops 14 is individually connected to the control device 15, so the control device 15 knows from which receiving loop 14 the signal was sent, that is, at what position the storage battery ran out. is confirmed. The amplified output signal is input to the demodulation circuit 26 and converted into a digital signal, and the digital signal is output to the monostable 2.
7 is input. In the monostable circuit 27, a time constant is set so as to output a continuous signal while the digital signal is being input. Further, noise is removed through a delay circuit 28, amplified by a buffer 29, and a storage battery capacity insufficient output signal is output. Further, the monostable 27 outputs information indicating which receiving loop 14 has received the missing signal, that is, a truck position signal, and inputs it to the control circuit.

更に第5図において蓄電池容量不足信号30が
走行制御回路31に入力される一方台車の現在位
置確認信号32が入力され、制御回路31より出
力される制御信号は走行コース決定回路33及び
発進指令回路34に入力される。35は上記各回
路33,34に低周波電流を流す低周波電流電源
回路である。
Furthermore, in FIG. 5, a storage battery capacity shortage signal 30 is input to a travel control circuit 31, while a bogie current position confirmation signal 32 is input, and a control signal output from the control circuit 31 is sent to a travel course determining circuit 33 and a start command circuit. 34. 35 is a low frequency current power supply circuit that supplies a low frequency current to each of the circuits 33 and 34 described above.

上記走行コース決定回路33によつて台車が現
在位置から充電ステーシヨンまで走行できるよう
に走行路に台車誘導用の低周波電流を流す49一
方、発進指令回路34により台車が現在位置から
充電ステーシヨン(第1図36)に向けて発進す
るように指令50される。すなわち、第1図にお
いて台車2が図左側方向に直進走行している途中
で図の位置で蓄電池容量が不足し、その位置にあ
る受信ループ14が不足信号を受信した場合に
は、次のようにして上記台車2は充電ステーシヨ
ン36まで誘導される。すなわち、上記台車2の
現在位置確認信号32による台車2の現在位置よ
り走行制御回路31内で、このまま直進して予定
の第1図の外環状走行ループを走行するよりも第
1図の中央の走行ループを走行した方が充電ステ
ーシヨン36へは最短コースであることが決定さ
れ、該コースを走行するように上記中央走行ルー
プに誘導電流が流れる。すなわち、交叉点に台車
2が進入した時に外環状走行ループの電流を切り
中央走行ループに電流を流すのである。
The running course determining circuit 33 causes a low frequency current to guide the bogie to flow through the running path so that the bogie can travel from the current position to the charging station 49. On the other hand, the start command circuit 34 causes the bogie to move from the current position to the charging station (49). A command 50 is given to start the vehicle toward 1, Figure 36). That is, in FIG. 1, when the storage battery capacity becomes insufficient at the position shown in the figure while the trolley 2 is traveling straight in the left direction in the figure, and the reception loop 14 at that position receives the shortage signal, the following occurs. Then, the trolley 2 is guided to the charging station 36. That is, from the current position of the bogie 2 based on the current position confirmation signal 32 of the bogie 2, the travel control circuit 31 determines that the center of FIG. It is determined that traveling along the traveling loop is the shortest course to the charging station 36, and an induced current flows through the central traveling loop so as to travel along this course. That is, when the bogie 2 enters the intersection, the current in the outer annular running loop is cut off and the current is passed through the central running loop.

なお、上記発進指令回路34は通過許可のため
の指令を出しており、上記最短コースが何らかの
理由で一時通れない時には通過(発進)指令50
を出さず、当該台車2をその場で停止させる。
The start command circuit 34 issues a command for permission to pass, and if the shortest course cannot be passed for some reason, the start command circuit 34 issues a pass (start) command 50.
The cart 2 is stopped on the spot without being released.

従つて、走行台車2はいずれの位置にあつて
も、充電ステーシヨン36へ向かう、すなわち上
記制御装置によつて決定された走行コースに沿つ
て充電ステーシヨン36へ走行し、定位置に停止
する如く制御される。
Therefore, no matter which position the traveling trolley 2 is in, it is controlled so that it heads toward the charging station 36, that is, travels to the charging station 36 along the traveling course determined by the control device and stops at a fixed position. be done.

自動充電ステーシヨン36において、第6図に
示す如く、台車は例えば走行路に設けた2個の鉄
片37,38により台車2に設けた2個の無接点
スイツチ39,40がオンとなり定位置に停止す
る。この時台車上の充電コネクタ13が地上側給
電装置12の充電電極41に結合される。即ち、
第7図において台車側コネクタ13は円筒体42
中をスライド自在な結合ロツド43が充電機側の
受容筒44中へ台車の移動と共に挿入され、結合
ロツド先端のトツグ45,45が受容筒中44の
電極46,46に挿入される。該電極46は複数
のドツキング確認用電極47と2本の充電電極4
8よりなる。ドツキングが確認されると充電器よ
り台車の蓄電池に充電が開始され、一定時間の後
タイマーにより充電完了信号が出され該充電完了
信号が地上制御装置へ入力されることにより、台
車の復帰路ループ電線に電流が流されると共に台
車発進信号が台車に入力されて台車が再び走行を
開始し、所定のステーシヨンへ走行する。
At the automatic charging station 36, as shown in FIG. 6, the cart is stopped at a fixed position by turning on two non-contact switches 39 and 40 provided on the cart 2, for example, by two iron pieces 37 and 38 provided on the running path. do. At this time, the charging connector 13 on the truck is coupled to the charging electrode 41 of the ground-side power supply device 12. That is,
In FIG. 7, the trolley side connector 13 is a cylindrical body 42.
A coupling rod 43, which is slidable inside, is inserted into a receiving tube 44 on the charger side as the carriage moves, and togs 45, 45 at the ends of the coupling rod are inserted into electrodes 46, 46 in the receiving tube 44. The electrodes 46 include a plurality of docking confirmation electrodes 47 and two charging electrodes 4.
Consists of 8. When docking is confirmed, the charger starts charging the storage battery of the bogie, and after a certain period of time, a charging completion signal is issued by the timer, and the charging completion signal is input to the ground control device, thereby starting the bogie return loop. A current is applied to the electric wire, and a truck start signal is input to the truck, so that the truck starts running again and travels to a predetermined station.

以上のように本発明では、蓄電池を有し床面に
埋設された走行電線ループの低周波電流により台
車に設けたアンテナに誘導電圧が生じ、走行電線
ループに沿つて走行する自走台車の電池容量が設
定容量より低くなれば台車から電池容量不足信号
をアンテナを介して床面に埋設された送信用電線
ループに流し、地上制御装置では上記電池容量不
足信号を受信した時、台車がいずれの位置にあつ
ても該台車を自動充電ステーシヨンまで走行させ
る命令を出し、台車が自動充電ステーシヨンに到
着後充電コネクターが充電器に結合され充電され
ると、充電ステーシヨンから地上制御装置に充電
完了信号を送信し、充電完了信号を受信した地上
制御装置からは台車に発進信号を送信し、台車を
走行電線ループ上に復帰させるようにしたので、
台車上の蓄電池の蓄電容量が減少し、台車の稼働
不能になる前に自動的に充電を行うことができ、
長期間の台車の無人運転が可能となる。
As described above, in the present invention, an induced voltage is generated in the antenna provided on the bogie due to the low frequency current of the running electric wire loop buried in the floor and has a storage battery, and the battery of the self-propelled bogie that runs along the running electric wire loop is generated. When the capacity becomes lower than the set capacity, a battery capacity insufficient signal is sent from the bogie to a transmission wire loop buried in the floor via an antenna, and when the ground control device receives the battery capacity insufficient signal, A command is issued to make the trolley travel to the automatic charging station even if the trolley is at the automatic charging station, and when the charging connector is connected to the charger and charged after the trolley arrives at the automatic charging station, the charging station sends a charging completion signal to the ground control device. After receiving the charge completion signal, the ground control device sends a start signal to the bogie and returns the bogie to the running wire loop.
It is possible to automatically charge the storage battery on the trolley before the storage capacity of the storage battery decreases and the trolley becomes inoperable.
This enables unmanned operation of trolleys for long periods of time.

また、台車がいずれの位置にあつても、選択さ
れた所定の走行コースをとつて充電ステーシヨン
へと走行せしめ、該特定の充電ステーシヨンにお
いて充電せしめるので充電ステーシヨンは1箇所
で済む。
Furthermore, no matter where the trolley is located, it travels along a selected predetermined travel course to a charging station and is charged at the specific charging station, so only one charging station is required.

さらに、上記充電ステーシヨンへの走行コース
は、電池容量不足信号と、該信号を出した台車の
現在位置確認信号とが地上側制御装置に入力され
て、上記各信号から充電ステーシヨンまでの走行
コースが決定回路によつて決定されるので、最短
コースを決定することが可能となり、充電ステー
シヨンへ向かう走行途中に電池切れが生じる可能
性も減少し、充電作業時間も短縮される。
Furthermore, the driving course to the charging station is determined by inputting the battery capacity insufficient signal and the current position confirmation signal of the bogie that issued the signal to the ground-side control device, and determining the driving course from each of the above signals to the charging station. Since the determination is made by the determination circuit, it is possible to determine the shortest course, reducing the possibility that the battery will run out while traveling to the charging station, and shortening the charging work time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施する為の台車走行路を示
す平面図、第2図は同台車の概略構成斜視図、第
3図はステーシヨンにおける電線ループの一実施
例図、第4図は電池容量不足信号を制御装置へ送
信するためのひとつの回路図、第5図は電池容量
不足信号を受信した制御装置から台車を充電ステ
ーシヨンに走行させる為の一ブロツク図、第6図
は充電ステーシヨンにおける台車と充電器の関係
を示す側面図、第7図は台車と充電器の結合手段
の一実施例図、第8図は充電器の電極を示す図で
ある。 1……走行コース用電線ループ、2……自走台
車、8,9……蓄電池、15……地上制御装置、
18……基準電圧、30……電池容量不足信号、
32……現在位置確認信号、33……走行コース
決定回路、36……充電ステーシヨン。
Fig. 1 is a plan view showing the running path of a bogie for carrying out the present invention, Fig. 2 is a schematic perspective view of the same bogie, Fig. 3 is a diagram of an example of the electric wire loop in the station, and Fig. 4 is A circuit diagram for transmitting a battery insufficient capacity signal to a control device, Fig. 5 is a block diagram for moving a trolley from a control device that receives a battery capacity insufficient signal to a charging station, and Fig. 6 shows a charging station. FIG. 7 is a side view showing the relationship between the trolley and the charger, FIG. 7 is a diagram showing an example of coupling means for the trolley and the charger, and FIG. 8 is a diagram showing the electrodes of the charger. 1... Electric wire loop for traveling course, 2... Self-propelled trolley, 8, 9... Storage battery, 15... Ground control device,
18...Reference voltage, 30...Battery capacity insufficient signal,
32...Current position confirmation signal, 33...Driving course determination circuit, 36...Charging station.

Claims (1)

【特許請求の範囲】 1 蓄電池を搭載し床面に埋設された電線の磁界
をたどりながら上記電線に沿つて走行する自走台
車の自動充電方法であつて、 該自走台車の上記蓄電池の電圧を基準電圧と比
較し、 該蓄電池の電池容量が設定電池容量以下になれ
ば、台車のアンテナに電流を流すことにより該ア
ンテナから電池容量不足信号を送信し、 該信号は台車の走行路の所定位置に設置された
複数個の受信ループのうち信号を出し始めて最初
に台車が通過した受信ループにより受信され、 該受信ループにより受信された信号は地上側制
御装置へ送られ、 該地上側制御装置においては受信した上記電池
容量不足信号と該信号画どの受信ループから送ら
れてきたかということから判別される台車の現在
位置情報とにより台車の現在位置から充電ステー
シヨンまでの走行コースを決定し、上記決定した
走行コースの電線に台車誘導電流を流して台車を
充電ステーシヨンへ走行させ、 該充電ステーシヨン位置において自動充電され
るようにしたことを特徴とする蓄電池を搭載した
自走台車の自動充電方法。
[Scope of Claims] 1. An automatic charging method for a self-propelled trolley carrying a storage battery and traveling along the electric wire while following the magnetic field of the electric wire buried in the floor, comprising: is compared with the reference voltage, and if the battery capacity of the storage battery is less than the set battery capacity, a current is sent to the antenna of the bogie to transmit a battery capacity insufficient signal from the antenna, and the signal is sent to a predetermined route of the bogie. Among the plurality of receiving loops installed at the position, the signal is received by the first receiving loop that the bogie passes after starting to output the signal, and the signal received by the receiving loop is sent to the ground-side control device, and the signal is sent to the ground-side control device. In this step, a traveling course from the current position of the cart to the charging station is determined based on the received battery capacity shortage signal and the current position information of the cart determined from which receiving loop the signal image was sent from. An automatic charging method for a self-propelled trolley equipped with a storage battery, characterized in that the trolley is driven to a charging station by passing a trolley induced current through the electric wire of a determined running course, and is automatically charged at the charging station position.
JP11232379A 1979-08-31 1979-08-31 Automatic battery charging method for self-running vehicle carrying built-in battery Granted JPS5639923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11232379A JPS5639923A (en) 1979-08-31 1979-08-31 Automatic battery charging method for self-running vehicle carrying built-in battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11232379A JPS5639923A (en) 1979-08-31 1979-08-31 Automatic battery charging method for self-running vehicle carrying built-in battery

Publications (2)

Publication Number Publication Date
JPS5639923A JPS5639923A (en) 1981-04-15
JPS6258006B2 true JPS6258006B2 (en) 1987-12-03

Family

ID=14583789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11232379A Granted JPS5639923A (en) 1979-08-31 1979-08-31 Automatic battery charging method for self-running vehicle carrying built-in battery

Country Status (1)

Country Link
JP (1) JPS5639923A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01295604A (en) * 1988-05-20 1989-11-29 Toshiba Corp Carriage controller
JPH01315202A (en) * 1988-06-13 1989-12-20 Toshiba Corp Conveyance controller
JPH0564302A (en) * 1991-09-02 1993-03-12 Daifuku Co Ltd Battery replacing time managing system for mobile car
JPH06189402A (en) * 1992-12-16 1994-07-08 Chugoku Electric Power Co Inc:The Measuring instrument for remaining travelable distance for electric vehicle
JP4167678B2 (en) * 2005-08-26 2008-10-15 株式会社神戸製鋼所 Electric vehicle traveling system
JP6754910B1 (en) * 2020-03-03 2020-09-16 Dmg森精機株式会社 Processing support equipment and processing support methods for machine tools

Also Published As

Publication number Publication date
JPS5639923A (en) 1981-04-15

Similar Documents

Publication Publication Date Title
US5289778A (en) Automated electric transportation system
US4331225A (en) Power control system for electrically driven vehicle
US3914562A (en) Supplying power to vehicles
US10874278B2 (en) Ground working system with multiple charging stations
JPS6258006B2 (en)
JP5335404B2 (en) CONNECTED VEHICLE, CONTROL METHOD AND PROGRAM FOR CONNECTED VEHICLE
JP7456852B2 (en) Wireless power supply system for vehicles, wireless power supply method to vehicles
JPH0934548A (en) Automatic guiding method for guided wagon
JP3053517B2 (en) Operation control method of wireless mobile trolley
JPS60164816A (en) Controller of motor car
JP2001216023A (en) Method for controlling baggage carrying facility
CN216101554U (en) AGV coordination algorithm application system
JP3010770B2 (en) Load transfer equipment
JP2562350Y2 (en) Tow type unmanned traveling vehicle
JPH0850513A (en) Autonomous driving method for automated guided vehicle
JPH03111910A (en) Unmanned carrying device
JP3959767B2 (en) Control device for automatic guided vehicle
JP3626967B2 (en) Connected electric vehicle
JPH0611849Y2 (en) Traveling control device for carrier vehicles
JPH01296319A (en) Load carrying facility
JP2004078671A (en) Method and device for controlling charge of unmanned carrier
JPS609845Y2 (en) Conveying device with branch station line
JP3858449B2 (en) Automated guided vehicle control system
JPS6039211A (en) Travelling control method in self-travelling dolly
JPS62161124U (en)