JPS6257727A - Method for forging composite material reinforced with short fiber - Google Patents

Method for forging composite material reinforced with short fiber

Info

Publication number
JPS6257727A
JPS6257727A JP19761985A JP19761985A JPS6257727A JP S6257727 A JPS6257727 A JP S6257727A JP 19761985 A JP19761985 A JP 19761985A JP 19761985 A JP19761985 A JP 19761985A JP S6257727 A JPS6257727 A JP S6257727A
Authority
JP
Japan
Prior art keywords
forging
composite material
frame
metal frame
metallic frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19761985A
Other languages
Japanese (ja)
Inventor
Takenobu Dokou
武宜 土公
Koichi Yamashita
幸一 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Aluminum Co Ltd
Original Assignee
Furukawa Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Aluminum Co Ltd filed Critical Furukawa Aluminum Co Ltd
Priority to JP19761985A priority Critical patent/JPS6257727A/en
Publication of JPS6257727A publication Critical patent/JPS6257727A/en
Pending legal-status Critical Current

Links

Landscapes

  • Forging (AREA)

Abstract

PURPOSE:To prevent occurrence of cracks in a freely forged surface, by freely forging a composite material composed of an Al or Al-alloy matrix and short-fiber dispersant under a condition where the side of the material are kept by a metallic frame which is richer in plastic-workability than the composite material. CONSTITUTION:A composite material 2 is prepared by scattering short fibers of C, SiC, Al2O3, etc., as a reinforcing material in a matrix made of Al or an Al-alloy. The freely forging surface 6 on the side of the composite material 2 which is not directly contacted with a forging tool is kept with a metallic frame 1 made of Al, Al-alloy, etc., which is richer in plastic-workability than the composite material 2. It is desirable to set the thickness 8 of the metallic frame 1 at about >=30% of its height 9 and it is appropriate to set the clearance between the frame 1 and material 2 at about <=5mm. Thereafter, a forging pressure is applied to the surface 12 of the metallic frame 1 and the surface 4 of the material 2 contacting with a forging tool (not shown in the figure) in the direction shown by the arrows by means of the forging tool. Therefore, the composite material 2 is forged together with the metallic frame 1 and occurrence of cracks in the free forging surface 6 can be prevented.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、アルミニウム又はアルミニウム合金をマトリ
ックスとして、炭化珪素、炭素、アルミナなどのチョツ
プド繊維、ウィスカーおよび粒子を強化材とした短繊維
強化複合材料の成形工程における自由鍛造の方法に関す
る。
Detailed Description of the Invention [Technical Field] The present invention relates to a process for forming short fiber reinforced composite materials using aluminum or aluminum alloy as a matrix and chopped fibers, whiskers, and particles such as silicon carbide, carbon, and alumina as reinforcement materials. Regarding the method of free forging in.

〔従来の技術とその問題点〕[Conventional technology and its problems]

繊維強化複合材料は、強化材として連続繊維を用いたも
のと、チョツプド繊維、ウィスカー、および粒子などの
短繊維を用いたものとに分けられる。前者は強度や耐熱
性等に優れているが、各種の塑性加工による成形は繊維
の破断を引き起すために不可能である。後者は前者に比
べて強化面で劣るも強度に関する方向性の差はな(、マ
) IJフッ2フ 磨耗性は共に優れているし、鍛造、押出などの塑性加工
による成形は可能である。
Fiber-reinforced composite materials can be divided into those that use continuous fibers as reinforcing materials and those that use short fibers such as chopped fibers, whiskers, and particles. Although the former has excellent strength and heat resistance, it is impossible to form it by various types of plastic processing because it causes fiber breakage. Although the latter is inferior to the former in terms of reinforcement, there is no difference in the directionality of strength (, Ma).Both IJ and F2 are excellent in abrasion resistance, and can be formed by plastic working such as forging and extrusion.

然し、実際には後者即ち短繊維強化複合材料の製品を得
るには、その切削性が非常に悪いため知押出、自由鍛造
、型鍛造などによってできるだけ製品に近い形状にし、
それを切削加工する必要がある。このようにすれば加工
費の節減にもなるし製品の歩留りも上るのである。
However, in reality, in order to obtain the latter product, that is, a short fiber reinforced composite material, the machinability is very poor, so it is necessary to make it into a shape as close to the product as possible by extrusion, free forging, die forging, etc.
It is necessary to cut it. This will reduce processing costs and increase product yield.

短繊維強化複合材料の素材は一般に高圧鋳造法や粉末冶
金法でつくられているが、いずれも設備上の制約から製
造可能な素材の形状は円柱、角柱などの比較的単純な形
状に限られている。そのため所望の形状を得るためには
更に自由鍛造が必要となるし、又押出や型鍛造の前工程
としても自由鍛造が必要となる。
Short fiber-reinforced composite materials are generally made using high-pressure casting or powder metallurgy, but due to equipment limitations in both cases, the shapes that can be manufactured are limited to relatively simple shapes such as cylinders and prisms. ing. Therefore, free forging is required to obtain the desired shape, and free forging is also required as a pre-process before extrusion or die forging.

短繊維強化複合材料は押出や鍛造のできる塑性加工性を
有するとはいえ、変形抵抗は太き(、その加工性は良い
とは言えない。しかもこの材料の特性として高弾性で伸
び性が僅かであり、自由鍛造を行う場合に第2図人(複
合材料(2)に鍛造工具(3)をセットした状態の側面
図)で示すように鍛造加圧力は複合材料(2)の表面で
、鍛造工具(3)疋直接接している接工具面(4)を通
じて複合材料(2)に加えられ、第2図B(鍛造加圧さ
れた状態の側面図)で示すように鍛造加圧力による被加
工物の複合材料(2)にメタルフロー(5)が生じ複合
材料の側面で鍛造工具に直接していない部分即ち自由鍛
造面(6)に張力(力が働(のである。従って鍛造加圧
によって自由鍛造面(6)に割れが生じ易(なるという
問題点がある。
Although short fiber-reinforced composite materials have plastic workability that allows them to be extruded and forged, their deformation resistance is high (and their workability cannot be said to be good. Moreover, the characteristics of this material are high elasticity and only a little elongation). When performing free forging, the forging pressure is applied to the surface of the composite material (2), as shown in Figure 2 (side view of the forging tool (3) set on the composite material (2)). The forging force applied to the composite material (2) through the contact tool surface (4) that is in direct contact with the forging tool (3) is applied to the composite material (2) as shown in Figure 2B (side view of the forging pressurized state). Metal flow (5) occurs in the composite material (2) of the workpiece, and tension (force) acts on the side of the composite material that is not directly connected to the forging tool, that is, the free forging surface (6). Therefore, forging pressure is applied. There is a problem that cracks are likely to occur on the free forging surface (6).

かかる問題点はアルミニウム又はアルミニウム合金をマ
トリックスとする短繊維強化複合材料(以後複合材料と
仮称する)でもいえることであって、かかる問題点を解
決するような新たな鍛造方法を見出すことが本発明の目
的である。
These problems also apply to short fiber-reinforced composite materials (hereinafter tentatively referred to as composite materials) that have aluminum or aluminum alloy as a matrix, and the object of the present invention is to find a new forging method that solves these problems. This is the purpose of

〔発明の構成〕[Structure of the invention]

本発明は複合材料を鍛造工具によって自由鍛造するとき
、自由鍛造面に張力が生じても、割れを防止するように
、アルミニウム又はアルミニウム合金の金属枠をあてか
、つた状態で自由鍛造を行うことを特徴としている。
When free forging a composite material with a forging tool, the present invention is designed to perform free forging with a metal frame of aluminum or aluminum alloy applied or held against it so as to prevent cracking even if tension is generated on the free forging surface. It is characterized by

第1図によって更に詳しく説明する。第1図人は本発明
による金属枠(1)の斜視図を示し第1図Bは本発明に
よる金属枠(1)にはめ込まれる角柱型の複合材料(2
)の斜視図である。
This will be explained in more detail with reference to FIG. FIG. 1 shows a perspective view of a metal frame (1) according to the invention, and FIG. 1B shows a prismatic composite material (2) fitted into the metal frame (1) according to the invention.
) is a perspective view of.

第1図Cは円柱型の複合材料(2)が円筒形の金属枠(
1)にセットされた状態の斜視図で、第1図りはその側
断面図を示し自由鍛造面(6)を拘束するよう金属枠(
1)があてがわれている。鍛造加圧力(矢印)は鍛造工
具によって、接工具表面(4)と、枠(1)の面021
とに共に加えられる。
Figure 1C shows that the cylindrical composite material (2) is attached to a cylindrical metal frame (
1), the first diagram shows a side sectional view of the metal frame (6) to restrain the free forging surface (6).
1) is assigned. The forging pressure (arrow) is applied by the forging tool to the contact tool surface (4) and the surface 021 of the frame (1).
It is added together with.

金属枠の大きさについてであるが、鍛造時に枠に座屈を
起させない点を考慮すると、枠は太きければ大きい程良
いのであるが、鍛造の作業性の点から出来る丈は小さい
方が能率的且つ経済的である。第1図人及び第1図Cの
枠の肉厚(8)は枠の高さく9)の30チ以上とすれば
よい。
Regarding the size of the metal frame, in order to prevent the frame from buckling during forging, the thicker the frame the better, but from the standpoint of forging workability, the smaller the length, the more efficient it is. It is both practical and economical. The wall thickness (8) of the frames of Figure 1 and Figure 1 C may be 30 inches or more of the frame height 9).

金属枠と複合材料のクリアランスは、鍛造する複合材料
の種類によるが、約5 mm以下であれば、自由鍛造を
行なった際、自由な面に割れが生じる前に複合材料は金
属枠に拘束される。
The clearance between the metal frame and the composite material depends on the type of composite material to be forged, but if it is approximately 5 mm or less, when free forging is performed, the composite material will be restrained by the metal frame before cracks occur on the free surface. Ru.

第3図は本発明による鍛造で単純な据え込みによるもの
の側面図であるが、鍛造を行う複合材料の種類および枠
となるアルミニウム又はその合金の種類により程度の差
はあるが枠を小さくすれば第6図人に示すように複合材
料(2)は金属枠(1)と共に太鼓形になるし、枠を太
き(するときは第6図Bのようになる。従って複合材料
の種類および鍛造後の複合材料の形状や余尺により枠と
なるアルミニウム合金の種類と枠のサイズは考慮される
べきである。内枠に用いるアルミニウム及びアルミニウ
ム合金はいずれも複合材料より鍛造加工性がよいため、
何を用いても問題はないが、複合材料の割れを防止する
拘束力の点で、JIS 2014 。
Figure 3 is a side view of the forging according to the present invention using simple upsetting. As shown in Figure 6, the composite material (2) becomes drum-shaped together with the metal frame (1), and when the frame is made thicker, it becomes as shown in Figure 6B. Therefore, the type of composite material and forging The type of aluminum alloy used as the frame and the size of the frame should be considered depending on the shape and extra length of the composite material to be used.Both aluminum and aluminum alloy used for the inner frame have better forging workability than composite materials, so
There is no problem with using anything, but JIS 2014 is recommended in terms of binding force to prevent cracking of composite materials.

2024.5056.5083.6061 .7075
などでよ(、中でも高強度合金を用いた方が枠を小さく
できる。
2024.5056.5083.6061 . 7075
(However, the frame can be made smaller by using a high-strength alloy.

本発明法を用いることのできる複合材料は、強化材とし
ては炭化珪素繊維、炭素繊維、アルミナ繊維、ボロン繊
維などのチョツプド繊維および炭化珪素、窒化珪素、ア
ルミナ等のウィスカーおよび炭化珪素、窒化珪素、アル
ミナ等の粒子を1種又は2種以上を分散させたものでよ
い。マトリックスへの強化材の含有率は鍛造後の製品の
用途との関係で適宜に選択できる。
Composite materials to which the method of the present invention can be used include chopped fibers such as silicon carbide fibers, carbon fibers, alumina fibers, and boron fibers as reinforcing materials, whiskers such as silicon carbide, silicon nitride, and alumina, and silicon carbide, silicon nitride, It may be one in which one or more types of particles of alumina or the like are dispersed. The content of the reinforcing material in the matrix can be appropriately selected depending on the intended use of the product after forging.

〔実施例〕〔Example〕

実施例1 J工56061のマトリックス中に、炭化珪素、ウィス
カーの強化材を20vo1%分散させたものを高圧鋳造
法によって、径80 mm !高さ65mmの円柱型複
合材料の試料をい(つかつくった。その試料の一つを第
2図Bに示すように単純な据込み鍛造を行い高さα0)
を155mm迄鍛造したところ自由鍛造面(6)に割れ
が生じた。そこで同種の円柱型試料の他の一つ(2)を
第1図Cに示すようにJIS7075の肉厚(8)が2
0mmの円筒の枠(1)にはめ込み、第6図Bに示すよ
うに本発明による据込み鍛造をしたところ高さα0)が
25mmになる迄鍛造しても自由鍛造面(6)に割れは
生じなかった。
Example 1 A matrix of J-56061 with 20 vol. of silicon carbide and whisker reinforcing materials dispersed therein was cast into a diameter of 80 mm by high-pressure casting. A cylindrical composite material sample with a height of 65 mm was prepared. One of the samples was simply upset forged as shown in Figure 2B, and the height was α0.
When forged to 155 mm, cracks occurred on the free forging surface (6). Therefore, as shown in Figure 1C, another cylindrical sample (2) of the same type was prepared with a wall thickness (8) of JIS 7075 of 2.
When it was fitted into a 0mm cylindrical frame (1) and upset forged according to the present invention as shown in FIG. It did not occur.

実施例2 999%AIのマトリックス中に、炭化珪素クイスカー
フ5%と炭化珪素粒子(平均粒径4μm)25チからな
る強化材を25vo1%含有させたものを粉末冶金法に
よって、径80 mm 、高さ60mmの円柱型複合材
料の試料ない(つかつ(つた。その試料の一つを第2図
Bに示すように単純な据込み鍛造を行い高さく10)が
50mmになる迄鍛造したところ自由鍛造面(6)に割
れが生じた。然し同種の円柱型試料の他の一つ(2)を
第1図CのようKJIS 7075の肉厚(8) 20
 nunの金属枠(1)にはめ込み第3図Bに示すよう
に本発明による据込み鍛造したところ高さく1(llが
2・5 mmになる迄鍛造しても自由鍛造面(6)に割
れは生じなかった。そして高さ0■が20mm迄鍛造し
たものがはじめて割れが生じた。
Example 2 A 999% AI matrix containing 25vol% of a reinforcing material consisting of 5% of silicon carbide Quiscarf and 25cm of silicon carbide particles (average particle size: 4 μm) was prepared by powder metallurgy to have a diameter of 80 mm. A sample of cylindrical composite material with a height of 60 mm was forged to a height of 50 mm by simple upsetting forging as shown in Figure 2B. A crack occurred on the free forging surface (6).However, the other one (2) of the same type of cylindrical sample was made with a wall thickness of KJIS 7075 (8) 20 as shown in Figure 1C.
When it was fitted into the metal frame (1) of the nun and upset forged according to the present invention as shown in Fig. 3B, the free forging surface (6) was not cracked even if it was forged to a height of 1 (ll) of 2.5 mm. Cracks did not occur. Cracks occurred only when the forged piece had a height of 0 mm up to 20 mm.

実施例3 JIS 2024合金のマトリックス中に、炭化珪素ウ
ィスカーの強化材を25 vo1%含有させたものを高
圧鋳造法によって、縦55mm、横35 mm +長さ
く10が100mmの角柱型複合材料(第4図A)をつ
くり、その長さα■を130mmにする様鍛造を行った
が縦横の自由鍛造の面(6)から割れが生じたので、第
4図Bに示すような枠内に上記複合材料が入り、そして
肉厚(8)が65mmのJIS 5083の枠に入れ本
発明による鍛造したところ長さが130印になっても自
由鍛造面(6)からは割れは生じなかった。
Example 3 A prismatic composite material (length 55 mm, width 35 mm + length 10 = 100 mm) containing 25 vol% silicon carbide whisker reinforcement in a JIS 2024 alloy matrix was produced by high pressure casting. Figure 4A) was made and forged to make its length α■ 130 mm, but cracks occurred from the vertical and horizontal free forging surfaces (6), so the above was made within the frame shown in Figure 4B. When the composite material was inserted into a JIS 5083 frame with a wall thickness (8) of 65 mm and forged according to the present invention, no cracks occurred from the free forging surface (6) even when the length reached the 130 mark.

実施例4 JIS 6061合金のマトリックス中に、径7μmで
平均長さ1 mmの炭素繊維を強化材として15vol
チ含有せしめ、粉末冶金法によって縦50印、横50 
mm 、長さαωが100mmの角柱を横にした型の複
合材料第4図Aをつ(す、50mmX100印の面(1
1)を60mmX130mmがとれるよう鍛造を行った
が50 mm X 50 mmの面(6)に割れが入っ
たので第4図Bに示すような肉厚(8)が30mmのJ
IS 6061の枠に上記複合材料を入れて鍛造したと
ころ面Ql)が60mmX130世になっても自由鍛造
面(6)には割れが生じなかった。
Example 4 In a matrix of JIS 6061 alloy, 15 vol of carbon fiber with a diameter of 7 μm and an average length of 1 mm was used as a reinforcing material.
50 mark vertically and 50 horizontally by powder metallurgy method.
Figure 4 A is a composite material in the form of a rectangular prism with length αω of 100 mm and a side marked 50 mm x 100 (1
1) was forged to a size of 60 mm x 130 mm, but a crack appeared on the 50 mm x 50 mm surface (6), so a J with a wall thickness (8) of 30 mm as shown in Figure 4B was used.
When the composite material was placed in an IS 6061 frame and forged, no cracks occurred on the free forging surface (6) even when the surface Ql) was 60 mm x 130 mm.

実施例5 7091合金のマトリックス中に、炭化珪素粒子を強化
材として25 vol %含有せしめ粉末冶金法によっ
て径90+nn+、長さ70mmの円柱型複合材料をつ
くり、巾60mm、長さ120mmの角材がとれるよう
鍛造を行ったが側面に割れが生じたので、第1図Cの形
でJIS 2024合金の肉厚(3) 45 mmの枠
に入れ鍛造したところ割れは生じなかった。
Example 5 A cylindrical composite material with a diameter of 90+nn+ and a length of 70 mm was made by containing 25 vol % of silicon carbide particles as a reinforcing material in a matrix of 7091 alloy using a powder metallurgy method, and a square piece with a width of 60 mm and a length of 120 mm was obtained. However, a crack appeared on the side surface, so when it was forged in a JIS 2024 alloy frame with a wall thickness (3) of 45 mm in the shape shown in Figure 1C, no cracks occurred.

〔発明の効果〕〔Effect of the invention〕

短繊維強化アルミ系複合材料を金属枠で拘束し、枠と共
に鍛造するという方法で、該複合材料の鍛造加工量を著
しく増やすことを可能とした。
By restraining short fiber-reinforced aluminum-based composite material with a metal frame and forging it together with the frame, it has become possible to significantly increase the amount of forging of the composite material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図Aは本発明による金属枠の斜視図、第1図Bは角
柱型の複合材料の斜視図、第1図Cは本発明による金属
枠に円柱型の複合材料をはめ込んだ状態の斜視図、第1
図りはその側断面図。 第2図Aは複合材料を鍛造工具にセットした側面図、第
2図Bは鍛造圧加力を加えた状態の側面図。 第3図Aは肉厚の小さい金属枠を用いたときの加圧状態
の側面図、第3図Bは肉厚の大きい金属枠を用いたとき
の加圧状態の側面図。 第4図Aは角柱型を横にした複合材料の斜視図、第4図
Bは角柱用の金属枠の斜視図で、すべてその−例を示し
たものである。 1:金属枠     2:複合材料 3:鍛造工具    4:接工具面 5:メタルフロー   6:自由鍛造面7:張力   
    8:金属枠の肉厚9 :金属枠の高さく長さ)
 10:複合材料の高さく長さ)11:複合材料の面 
  12:金属枠の面第1図(A)     第1図C
B) 第1図(C)        第1図(D)第2図(A
)       第2図(B)第3図(A)     
   第3図(印第4図(A) J
FIG. 1A is a perspective view of a metal frame according to the present invention, FIG. 1B is a perspective view of a prismatic composite material, and FIG. 1C is a perspective view of a cylindrical composite material fitted into a metal frame according to the present invention. Figure, 1st
The figure is a side sectional view. FIG. 2A is a side view of the composite material set in a forging tool, and FIG. 2B is a side view of the composite material being applied with forging pressure. FIG. 3A is a side view of a pressurized state when a thin metal frame is used, and FIG. 3B is a side view of a pressurized state when a thick metal frame is used. FIG. 4A is a perspective view of a composite material with a prismatic shape lying on its side, and FIG. 4B is a perspective view of a metal frame for a prismatic shape, all examples of which are shown. 1: Metal frame 2: Composite material 3: Forging tool 4: Contact tool surface 5: Metal flow 6: Free forging surface 7: Tension
8: Thickness of metal frame 9: Height and length of metal frame)
10: Height and length of composite material) 11: Surface of composite material
12: Surface of metal frame Figure 1 (A) Figure 1 C
B) Figure 1 (C) Figure 1 (D) Figure 2 (A
) Figure 2 (B) Figure 3 (A)
Figure 3 (marked Figure 4 (A) J

Claims (2)

【特許請求の範囲】[Claims] (1)アルミニウム又はアルミニウム合金からなるマト
リックス中に強化材として短繊維を分散させた複合材料
を自由鍛造するに当り、該複合材料の側面で鍛造工具に
直接接しない面部を、該複合材料よりも塑性加工性に富
む金属枠で拘束したのち、該金属枠と共に鍛造すること
を特徴とする短繊維強化複合材料の鍛造方法。
(1) When free forging a composite material in which short fibers are dispersed as a reinforcing material in a matrix made of aluminum or aluminum alloy, the side surface of the composite material that is not in direct contact with the forging tool is A method for forging a short fiber-reinforced composite material, the method comprising restraining it with a metal frame having high plastic workability and then forging it together with the metal frame.
(2)上記複合材料より塑性加工性に富む金属枠とは、
アルミニウム又はアルミニウム合金でつくられた枠であ
ることよりなる特許請求の範囲第1項記載の短繊維強化
複合材料の鍛造方法。
(2) What is a metal frame that has better plastic workability than the above composite materials?
A method for forging a short fiber reinforced composite material according to claim 1, wherein the frame is made of aluminum or an aluminum alloy.
JP19761985A 1985-09-09 1985-09-09 Method for forging composite material reinforced with short fiber Pending JPS6257727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19761985A JPS6257727A (en) 1985-09-09 1985-09-09 Method for forging composite material reinforced with short fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19761985A JPS6257727A (en) 1985-09-09 1985-09-09 Method for forging composite material reinforced with short fiber

Publications (1)

Publication Number Publication Date
JPS6257727A true JPS6257727A (en) 1987-03-13

Family

ID=16377488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19761985A Pending JPS6257727A (en) 1985-09-09 1985-09-09 Method for forging composite material reinforced with short fiber

Country Status (1)

Country Link
JP (1) JPS6257727A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2364663B (en) * 2000-05-10 2004-06-16 Honda Motor Co Ltd Process for manufacturing a part of a metal matrix composite material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5656749A (en) * 1979-10-11 1981-05-18 Mitsubishi Electric Corp Working method of ni-w-base alloy cast ingot

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5656749A (en) * 1979-10-11 1981-05-18 Mitsubishi Electric Corp Working method of ni-w-base alloy cast ingot

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2364663B (en) * 2000-05-10 2004-06-16 Honda Motor Co Ltd Process for manufacturing a part of a metal matrix composite material

Similar Documents

Publication Publication Date Title
EP0108213B1 (en) Method for making composite material object by plastic processing
Shipway et al. Sliding wear behaviour of aluminium-based metal matrix composites produced by a novel liquid route
US6383656B1 (en) Perform for metal matrix composite material and cylinder block made of the same
JPS6341966B2 (en)
Vennett et al. Multiple necking of tungsten fibers in a brass-tungsten composite
JPS6257727A (en) Method for forging composite material reinforced with short fiber
US3833697A (en) Process for consolidation and extrusion of fiber-reinforced composites
FUKUNAGA et al. Composite structure of silicon carbide fiber reinforced metals by squeeze casting
CN110548829B (en) Forging method for controlling directional arrangement of aluminum matrix composite whiskers
See et al. The effects of pre-forge processing on forgeability and mechanical properties of co-sprayed aluminium-based MMCs
Mamalis et al. Defects in the processing of metals and composites
JPH0583820A (en) Compression/pressure adhesion clamping tool
US5216813A (en) Clamping tool
JPH06226553A (en) Manufacture of clamp head for compression/press application clamping tool
JP3137911B2 (en) Composite materials for extrusion
JPH0849033A (en) Aluminum alloy-base composite material excellent in fretting fatigue strength
JPH0531525A (en) Extrusion manufacture of hollow aluminium alloy for wear resistance
JPH0347616A (en) Pipe extruding method for metal base composite material
JPH0796128B2 (en) V-bending method for composite type damping steel sheet
Krishna et al. Studies on Deformation Behaviour of A356/Al–20Cu–10Mg Particulate Composite Metallic Materials
Minghetti et al. Advanced forming techniques for aluminium-based metal matrix composites
JPH07143629A (en) Wire compressor
JPS61147917A (en) Working method of fiber reinforced metallic material
Chan et al. Analysis of limit strains of a high strain-rate superplastic AI6061/20SiC w composite under equibiaxial tension
JPH0437409A (en) Drawing method for metallic base composite material