JPS6257299A - Transmitting electromagnetic wave varying sheet-shaped object - Google Patents

Transmitting electromagnetic wave varying sheet-shaped object

Info

Publication number
JPS6257299A
JPS6257299A JP19606685A JP19606685A JPS6257299A JP S6257299 A JPS6257299 A JP S6257299A JP 19606685 A JP19606685 A JP 19606685A JP 19606685 A JP19606685 A JP 19606685A JP S6257299 A JPS6257299 A JP S6257299A
Authority
JP
Japan
Prior art keywords
sheet
electromagnetic wave
transmission
elongation
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19606685A
Other languages
Japanese (ja)
Inventor
裕司 吉田
森内 昭夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP19606685A priority Critical patent/JPS6257299A/en
Publication of JPS6257299A publication Critical patent/JPS6257299A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、透過電磁波可変シート状物に関する。[Detailed description of the invention] Industrial applications TECHNICAL FIELD The present invention relates to a sheet-like material with variable transmission electromagnetic waves.

更に詳しくは入射してくる電磁波の透過量を、変化させ
る事が可能なシート状物に関するものである。
More specifically, it relates to a sheet-like material that can change the amount of transmission of incident electromagnetic waves.

従来の技術 紫外線、可視光線、赤外線、放射線などの電磁波を、反
射及び/又は吸収するシート状物がある。
2. Description of the Related Art There are sheet-like materials that reflect and/or absorb electromagnetic waves such as ultraviolet rays, visible rays, infrared rays, and radiation.

例えばポリエチレンフィルムにアルミニウjf積層した
シート状物は、紫外線、可視光線、赤外線に対して優れ
た反射性を示し、各種包装資材、建築資材、農業資材等
に広く利用されている。しかし、これらのシート状物は
電磁波の透過量を変える事が出来ず、たとえ、何らかの
手段で電磁波の透過量が変わったとしても元の状態には
戻らず。
For example, a sheet-like product made by laminating aluminum film on a polyethylene film exhibits excellent reflectivity for ultraviolet rays, visible light, and infrared rays, and is widely used in various packaging materials, construction materials, agricultural materials, and the like. However, these sheet-like materials cannot change the amount of electromagnetic waves transmitted through them, and even if the amount of electromagnetic waves transmitted through them is changed by some means, they will not return to their original state.

産業上広く利用できるものではない。このように、電磁
波の透過量が可変でき、かつ1反復使用可能なシート状
物拡見当たらない。
It is not widely applicable in industry. In this way, there is no sheet-like material that can vary the amount of electromagnetic wave transmission and that can be used repeatedly.

発明が解決しようとする問題点 本発明は、紫外線、可視光線、赤外線、放射線などの電
磁波の透過量が可変でき、かつ、反復使用可能なシート
状物を得る事を目的とする。
Problems to be Solved by the Invention The object of the present invention is to obtain a sheet-like material that can vary the amount of transmission of electromagnetic waves such as ultraviolet rays, visible rays, infrared rays, and radiation, and can be used repeatedly.

問題点を解決するための手段 本発明は、伸長回復率70チ以上であるシート状物の少
なくとも一面に厚み0.01−100μの金属蒸着層を
有する事を%徴とする透過電磁波可変シート状物である
Means for Solving the Problems The present invention provides a sheet-like material with variable transmission electromagnetic waves, which has a metal vapor deposited layer with a thickness of 0.01-100μ on at least one surface of the sheet-like material and has an elongation recovery rate of 70 cm or more. It is a thing.

以下、本発明の構成を具体的に説明する。Hereinafter, the configuration of the present invention will be specifically explained.

本発明による伸長回復率70−以上であるシート状物と
は、編物、織物、不織布、フィルムであり、伸長が容易
で、かつ伸長回復に優れるものである。例えば編物では
、タックやウェルトを多用した組織よりも、ニットの多
いスムース地に近い物はど良く、織物では、平織、綾織
、朱子織など任意であるが、バイヤス使いとすれば良好
な伸長性と伸長回復性が得られる。また、これら以外に
The sheet-like material having an elongation recovery rate of 70 or more according to the present invention is a knitted fabric, a woven fabric, a nonwoven fabric, or a film, which is easily elongated and has excellent elongation recovery. For example, in knitted fabrics, it is better to use smooth fabrics with many knits rather than those with many tucks and welts, and in woven fabrics, you can use plain weave, twill weave, satin weave, etc., but if you use bias, it will have good elongation. and elongation recovery properties are obtained. Also, besides these.

ポリウレタン系やポリブチレンテレフタール系など、素
材そのものに優れた伸長性と伸長回復性を有する物をシ
ート状物に含有していれば、曳好な伸長性と伸長回復性
をもったものができる。4Gに不織布やフィルムでは、
素材そのものに優れた伸長性と伸長回復性を有するもの
を含有している必要があり、これを含有していない場合
には伸長が困難で、伸長回復性もほとんどないシート状
物となる。勿論、素材そのものに優れた伸長性と伸長回
復性を有するものを使用し、交編、交織すれば。
If the sheet-like material contains a material such as polyurethane or polybutylene terephthal that has excellent elongation and elongation recovery properties, it can be made with excellent elongation and elongation recovery properties. . With non-woven fabrics and films for 4G,
The material itself must contain something that has excellent stretchability and stretch recovery; if it does not contain this, it will be difficult to stretch and the sheet-like product will have almost no stretch recovery. Of course, if the material itself has excellent elongation and elongation recovery properties, and inter-knit or inter-weave is used.

優れた伸長性と伸長回復性を有する編物織物が得られる
A knitted fabric with excellent elongation and elongation recovery properties can be obtained.

素材そのものに優れた伸長性と伸長回復率を有するポリ
ウレタン系やポリブチレンテレフタレート系などの素材
と、それ以外の素材、例えばポリエステル系やポリアミ
ド系、ポリアクリルニトリル系などの合成繊維素材、セ
ルロース素材など。
Materials such as polyurethane and polybutylene terephthalate, which have excellent elongation and elongation recovery rates, and other materials, such as synthetic fiber materials such as polyester, polyamide, and polyacrylonitrile, and cellulose materials. .

特に限定されず任意な素材との混合率は任意で、編物、
織物では優れた伸長性と伸長回復率を有する素材が全く
含まれていなくても1本発明の要件である伸長回復率7
0−以上のシート状物は得られる。しかし、好ましくは
、優れた伸長性と伸長回復性を有する素材が3重号−以
上含まれている方が更に優れた伸長回復性を示し、かつ
1編、織物組織も選択範囲が広くなる。また、フィルム
では優れた伸長性と伸長回復性を有する素材の特性が太
いに発揮可能で、該素材の混合率が高くなる程、伸長性
、伸長回復性ともに良好なフィルムが得られ、特に、優
れた伸長性と伸長回復性を有する素材が70重量−以上
含有するフィルムが、本発明のシート状物に最も適して
いる。
There are no particular limitations, and the mixing ratio with any material is arbitrary; knitted fabrics,
Even if the woven fabric does not contain any material with excellent elongation properties and elongation recovery rate, it still has the elongation recovery rate 7, which is a requirement of the present invention.
A sheet-like material having a density of 0- or more is obtained. However, it is preferable that a material having excellent elongation and elongation recovery properties of 3 or more is included, which exhibits even more excellent elongation recovery properties and widens the selection range of single knit and woven structures. In addition, the properties of the material having excellent extensibility and elongation recovery can be fully exhibited in the film, and the higher the mixing ratio of the material, the better the film can be obtained in both elongation and elongation recovery. A film containing 70 weight or more of a material having excellent extensibility and elongation recovery is most suitable for the sheet-like article of the present invention.

優れた伸長性と伸長回復性を有する素材と、そうでない
素材との混合方法については任意であるが、例えば次の
ような方法により混合可能である■ 優れた伸長性と伸
長回復性を有する素材(以下A素材と称す)と、そうで
ない素材(以下B素材と称す)とを加熱、又は溶剤によ
り溶解し。
Materials with excellent elongation and elongation recovery and materials that do not have good elongation can be mixed in any way, but for example, they can be mixed using the following methods: ■ Materials with excellent elongation and elongation recovery (hereinafter referred to as A material) and other materials (hereinafter referred to as B material) are dissolved by heating or using a solvent.

十分攪拌後、溶融押し出し、又はコーティングによりフ
ィルム化する。この時、溶剤を使用してフィルム化した
ものの脱溶剤は、乾式法で行なう方がフィルム強度が高
いものが得られる。
After sufficient stirring, it is formed into a film by melt extrusion or coating. At this time, when the solvent is used to form a film, a film with higher strength can be obtained if the solvent is removed by a dry method.

■ A素材を溶剤で溶かし、B素材で製造された編物、
織物の上にコーティングし、脱溶剤を行なう。この時、
A素材が、編物、織物中に侵透(いわゆる含浸法)して
も1編物、織物上にフィルムを形成しても良い。また、
A素材でフィルムを製造後、編物、織物上に転写うぽネ
ートしても良い。さらに、それぞれの素材中に、他の素
材が混合されていても勿論良い。
■ A knitted fabric made from material B by dissolving material A with a solvent,
Coat the fabric and remove the solvent. At this time,
The material A may penetrate into a knitted fabric or woven fabric (so-called impregnation method) or form a film on a knitted fabric or woven fabric. Also,
After producing a film using material A, it may be transferred onto knitted or woven fabrics. Furthermore, it goes without saying that other materials may be mixed in each material.

■ A素材とB素材の糸を使用して、編物、織物。■ Knitting and weaving using threads of material A and material B.

不織布を製造する。糸配列は任意であるが、A・素材が
シート状物に均一に散布するように配列する。また、そ
れぞれの糸は各素材100重量%でなく、カバリング、
混紡などにより、A。
Manufacture nonwoven fabrics. Although the thread arrangement is arbitrary, A. Arrange the threads so that the material is evenly distributed on the sheet-like object. In addition, each thread is not 100% by weight of each material, but the covering,
A. By blending etc.

B素材が混合されていても良い。B material may be mixed.

以上のような方法により本発明のシート状物が得られる
が、上記■の方法により得られた7−ト状物上に、直接
全域を蒸着を行なった場合1表面の凹凸が激しい為に電
磁波の反射性が上記、■。
The sheet-like product of the present invention can be obtained by the method described above, but when vapor deposition is performed directly over the entire area on the 7-tate-like product obtained by the above method (1), electromagnetic waves are generated due to severe surface irregularities. The reflectivity is above, ■.

■法のシート状物に比べ少し劣ったものになる。■It is a little inferior to the sheet-like material of the law.

従って本発明のシート状物としては、■法又は■法によ
って得られたシート状物が適しているといえる。
Therefore, it can be said that sheet-like products obtained by method (1) or (2) are suitable as the sheet-like product of the present invention.

本発明によるシート状物の伸長回復率は7Gチ以上必要
であるが、yes未満では伸長回復性が不十分で、伸長
したシート状物が元に戻らず、電磁波透過性も伸びる前
の状態にはほど遠いものになる。従って反復使用可能な
シート状物にするには、伸長回復率が’roqIi以上
必要で、好ましくは85−以上、更に好ましくは95−
以上の伸長回復率を示すものが良い。なお、本発明てい
うシート状物の伸長回復率は、 JIS L1018r
伸長回復率」A法(定伸長法)に準じ1次の方法により
測定する。
The elongation recovery rate of the sheet-like material according to the present invention is required to be 7G or more, but if the elongation recovery rate is less than YES, the elongation recovery property is insufficient, the stretched sheet-like material does not return to its original state, and the electromagnetic wave permeability remains in the state before stretching. It's going to be a long way off. Therefore, in order to make a sheet-like product that can be used repeatedly, the elongation recovery rate must be `roqIi or more, preferably 85- or more, and more preferably 95- or more.
It is preferable that the elongation recovery rate is higher than the above. In addition, the elongation recovery rate of the sheet-like material referred to in the present invention is based on JIS L1018r.
Elongation recovery rate: Measured by the first method according to method A (constant elongation method).

(イ)試料の大きさ  5 cm X 20 cm (
チャック間隔)(ロ)測 定 機   テンシロン引張
試験機(ハ)引張速度  10 m/m に)伸長率 20% (ホ)伸長回復率の求め方 残留伸びの測定は、伸長回復させた後1分散装置してか
ら行なう。
(b) Sample size 5 cm x 20 cm (
Chuck spacing) (b) Measuring machine: Tensilon tensile tester (c) Tensile speed: 10 m/m) Elongation rate: 20% (e) How to determine elongation recovery rate: To measure residual elongation, measure 1 dispersion after elongation recovery. Do this after installing the device.

本発明のシート状物の厚みについては特に限定されない
が、目的とする電磁波の透過を妨げないように設定する
。例えば電磁波が可視光線であれば、なるべく厚みを薄
(L、1m以内にするのが好ましい。
The thickness of the sheet-like material of the present invention is not particularly limited, but is set so as not to impede transmission of the intended electromagnetic waves. For example, if the electromagnetic wave is visible light, it is preferable to keep the thickness as thin as possible (L, 1 m or less).

また、シート状物中には、目的とする電磁波の透過を大
きく阻害しない範囲内であれば、任意の物質を混合して
も良い。例えば電磁波が赤外線である場合には、シート
状物中に酸化チタンなどの艶消し剤を混合しても良い。
Furthermore, any substance may be mixed into the sheet-like material as long as it does not significantly inhibit the transmission of the intended electromagnetic waves. For example, when the electromagnetic wave is infrared rays, a matting agent such as titanium oxide may be mixed into the sheet material.

本発明の透過電磁波可変シート状物では、シート状物の
少なくとも片面に金属蒸着層を有するがここでいう蒸着
とは、真空蒸着法、スパッタリング法による金属積層を
いう。tた、金属とは、At、 Ay、Au %CuS
Cr、 Ni、 Mo、 Ti5W、 Pt、 Ta、
 81SZn、 Cd。
The transmission electromagnetic wave variable sheet material of the present invention has a metal vapor deposition layer on at least one side of the sheet material, and vapor deposition here refers to metal lamination by vacuum vapor deposition method or sputtering method. The metals are At, Ay, Au%CuS
Cr, Ni, Mo, Ti5W, Pt, Ta,
81SZn, Cd.

Eib、 Pb、 Co、 Bi、 Ga  などすべ
ての金属及び金属化合物をいう。これらの金属は、目的
とする電磁波により任意に選択する。すなわちシート状
物の伸長により透過させたい電磁波を、シート状物未伸
長時には反射又は吸収される金属を蒸着すれば良い。例
えば、赤外線を反射する場合にはAt、Au。
Refers to all metals and metal compounds such as Eib, Pb, Co, Bi, and Ga. These metals are arbitrarily selected depending on the intended electromagnetic wave. That is, it is sufficient to deposit a metal that reflects or absorbs the electromagnetic waves to be transmitted when the sheet-like material is stretched when the sheet-like material is not stretched. For example, when reflecting infrared rays, use At or Au.

Ni−Ca合金、など可視光線を反射する場合には、R
h、 Af、At など紫外線を反射する場合にはAp
When reflecting visible light such as Ni-Ca alloy, R
h, Af, At, etc. when reflecting ultraviolet rays, Ap.
.

Ni、 At、 Pb  など放射線を反射する場合に
はpbなどを選択すれば良い。
When reflecting radiation such as Ni, At, or Pb, pb or the like may be selected.

本発明では、シート状物の少なくとも一面に金属蒸着層
を有するが、金属薄層の厚みについては0.01 #1
00μ、好ましくは0.03〜50μさらに好ましくは
0.04〜10μとなるように蒸着したものである。金
属蒸着層が0.01μ未満では、電磁波の反射性に劣り
、シート状物を伸長しない時でも電磁波の透過量が多い
。また、金属蒸着層が100μより厚くなると、電磁波
の反射性は良好であるが、シート状物の伸長時にも電磁
波をよく反射し、透過量が十分得られない。また、シー
ト状物が高温にさらされ、シート状物の強度低下を生じ
る事があり好ましくない。これらの金属蒸着層の厚みの
測定については、水晶発振法、マイクロバランス法、化
学的微量分析法、定量分析法、電気抵抗測定法、電気容
量測定法、光電測光法、多量光干渉法、だ円偏光法、電
離圧力針及び質量分析法、触針法、X線螢光分析法、β
線吸収及び逆散乱法、放射能測定法などがあり、任意の
方法を選択して金属蒸着層の厚みを測定すれば良い。
In the present invention, the sheet-like material has a metal vapor deposited layer on at least one surface, and the thickness of the metal thin layer is 0.01 #1.
00μ, preferably 0.03 to 50μ, more preferably 0.04 to 10μ. If the metal vapor deposition layer is less than 0.01 μm, the reflectivity of electromagnetic waves will be poor, and a large amount of electromagnetic waves will be transmitted even when the sheet-like article is not stretched. Furthermore, if the metal vapor deposition layer is thicker than 100 μm, the reflectivity of electromagnetic waves is good, but the electromagnetic waves are well reflected even when the sheet-like object is stretched, and a sufficient amount of transmission cannot be obtained. Further, the sheet-like material is exposed to high temperatures, which may cause a decrease in the strength of the sheet-like material, which is not preferable. The thickness of these metal vapor deposition layers can be measured using the crystal oscillation method, microbalance method, chemical trace analysis method, quantitative analysis method, electrical resistance measurement method, capacitance measurement method, photoelectric photometry method, multi-quantity optical interferometry method, etc. Circular polarization method, ionization pressure needle and mass spectrometry, stylus method, X-ray fluorescence spectrometry, β
There are linear absorption and inverse scattering methods, radioactivity measurement methods, etc., and any method may be selected to measure the thickness of the metal vapor deposited layer.

本発明では、シート状物の少なくとも一面に金属蒸着層
を有するが、金属蒸着層の酸化や脱落を防止する為に、
優れた伸長性と伸長回復性とを有するポリウレタン系フ
ィルムなどを、金属蒸着層の上にコーティングや転写ラ
ミネートにより積層するのが好しく、これにより、シー
ト状物の強力も向上する。tた、編物や織物を金属蒸着
層の上に接着剤によシ積層してもよく、織物が比較的透
明なモノフィラメント使用の目付30〜809/TI!
の生地であれば、電磁波が可視光線であっても。
In the present invention, the sheet material has a metal vapor deposited layer on at least one surface, but in order to prevent the metal vapor deposit layer from oxidizing or falling off,
It is preferable to laminate a polyurethane film or the like having excellent elongation and elongation recovery properties on the metal vapor-deposited layer by coating or transfer lamination, thereby improving the strength of the sheet-like material. Alternatively, a knitted fabric or woven fabric may be laminated with an adhesive on the metal vapor deposited layer, and the woven fabric may have a fabric weight of 30 to 809/TI using relatively transparent monofilament!
fabric, even if the electromagnetic radiation is visible light.

シート状物の伸長時に可視光線の透過はToまり阻害さ
れず、金属蒸着層の保護と透過電磁波可変シート状物の
強力向上がはかれる。
When the sheet-like material is stretched, the transmission of visible light is not inhibited, and the metal vapor deposited layer is protected and the strength of the sheet-like material with variable transmission electromagnetic waves is improved.

以上のようにして製造できた本発明の透過電磁波可変シ
ート状物は、伸長により電磁波の透過量が変化するが、
これはシート状物の少なくとも一面に積層された金属蒸
着層の、金属原子又は分子の横方向の密度が伸長によし
粗になるため、伸長前は反射及び吸収されていた電磁波
が、金属原子又は分子の隙間から透過するものと思われ
る。従って、伸長率を増すほど電磁波の透過も増加し。
The electromagnetic wave transmission variable sheet material of the present invention manufactured as described above changes the amount of electromagnetic wave transmission due to stretching.
This is because the lateral density of metal atoms or molecules in the metal vapor deposited layer laminated on at least one surface of the sheet-like object becomes coarse due to elongation, so that the electromagnetic waves that were reflected and absorbed before elongation are It is thought that it permeates through the gaps between molecules. Therefore, as the elongation rate increases, the transmission of electromagnetic waves also increases.

隙間が拡大していくと考えられる。It is thought that the gap will continue to expand.

実施例 次に実施例を示すが、実施例で得られた透過電磁波可変
シート状物の、各電磁波透過量11次の方法で測定した
ものである。
EXAMPLE Next, an example will be shown in which the electromagnetic wave transmission amount of each electromagnetic wave transmission amount of the variable transmission electromagnetic wave sheet material obtained in the example was measured by the 11th order method.

■可視光線透過量; 内側を黒く塗った六面体の一面に開口部を設け。■Visible light transmission amount; An opening is provided on one side of the hexahedron with the inside painted black.

そこに透過電磁波可変シート状物を隙間ができないよう
密着して開口部を閉じた。この開口部に相対する一面に
は、ペンタックス・デジタルスポットメーター(旭光学
工業■製)を設置した。次に。
A transparent electromagnetic wave variable sheet material was tightly attached to the opening to close the opening. A Pentax digital spot meter (manufactured by Asahi Kogaku Kogyo ■) was installed on one side facing this opening. next.

透過電磁波可変シート状物を青天に向け、ペンタックス
・デジタルスポットメーターで透過電磁波可変シート状
物の明るさく可視光線透過量)を測定し、 cd/♂に
換算して透過電磁波可変シート状物の2091伸長時及
び未伸長時の可視光線透過量を求めた。また、反復使用
性を20チ伸長→伸長解除を5回繰り返し、5回目の伸
長時及び伸長解除時の可視光線透過量を測定した。
Aim the variable transmission electromagnetic wave sheet material toward the blue sky, and measure the brightness and visible light transmission amount of the variable transmission electromagnetic wave sheet material using a Pentax digital spot meter, and convert it to CD/♂, which is 2091 of the variable transmission electromagnetic wave sheet material. The amount of visible light transmitted when stretched and unstretched was determined. In addition, for repeated use, the process of stretching 20 inches and then releasing the extension was repeated 5 times, and the amount of visible light transmitted at the time of the 5th extension and when the extension was released was measured.

■赤外線透過量; 気温20℃の恒温室内で、内部に温度センサー(白金測
温抵抗体)を設置し、−面に開口部を持ち他の面は断熱
材で覆った六面体を作成した。この六面体の開口部に隙
間が出来ないように透過電磁波可変シート状物を設置し
、該シート状物から60 vm lliれた場所にふく
対車0.9となるよう黒色塗料を塗った加熱板を置いた
。この装置で、加熱板の温度を50’Cの一定に保ち、
1時間経過後の透過電磁波可変シート状物の20%伸長
時及び未伸長時の六面体内部温度上昇を測定した。また
■Amount of infrared transmission: A temperature sensor (platinum resistance thermometer) was installed inside a thermostatic chamber at a temperature of 20°C, and a hexahedron with an opening on the - side and the other sides covered with heat insulating material was created. A sheet-like material with variable transmission of electromagnetic waves is installed so that there is no gap in the opening of this hexahedron, and a heating plate coated with black paint is installed at a place 60 vm lli away from the sheet-like material so that the width is 0.9 to the vehicle. I placed it. With this device, the temperature of the heating plate is kept constant at 50'C,
After 1 hour had elapsed, the temperature rise inside the hexahedron was measured when the transmitted electromagnetic wave variable sheet material was stretched by 20% and when it was not stretched. Also.

反復使用性については ■可視光線透過量測定に準じて
行なった。
Regarding repeatability, it was conducted in accordance with ①Measurement of visible light transmission amount.

◎X線透過量 次の測定装置及び測定条件でX線透過量を測定し1反復
使用性も■に準じて行なった。
◎Amount of X-ray transmission The amount of X-ray transmission was measured using the following measuring device and measurement conditions, and the repeatability was also determined according to (■).

X線発生装置  サークレックスp−5ac(高滓製作
所)管電圧       1lOKv 管電流         4mA ろ過フィルター   AAl、5源 照視野         !OX20gg(ファントム
表面)ファントム     20X20X20ai水測
定器 電離箱型 DR−2!B シート状物の大きさ   180 X 9oチ部屋の大
きさ  4.2m(巾)x@m(長さ)X2.?ff1
(高さ)X線管と7アントム中心までの距離  45国
フントム中心から測定器までの距離 110Ga測定位
置の高さ    9Gam シート状物の位置 測定器のSaw前に立てる。
X-ray generator Circlex P-5AC (Takasu Seisakusho) Tube voltage 1lOKv Tube current 4mA Filtration filter AAl, 5-source illumination field! OX20gg (Phantom Surface) Phantom 20X20X20ai water measuring instrument ionization box type DR-2! B Sheet size: 180 x 9ochi Room size: 4.2m (width) x@m (length) x 2. ? ff1
(Height) Distance between the X-ray tube and the center of 7 Antom Distance from the center of Funtom in 45 countries to the measuring device 110Ga Height of measurement position 9Gam Position of sheet-like object Stand in front of the saw of the measuring device.

透過量の求め方 実施例1 ポリウレタンを溶剤で溶解した溶液を、表面をシリコン
処理したポリエステルフィルム上に、四−ルコーターで
コーティングし、熱風乾燥機で脱溶剤及び凝固を行なっ
た。このポリウレタンシート状物の膜厚は40μで5次
に真空蒸着機にて片面に紅を0.05μの膜厚で蒸着し
た。このようにして製造した透過電磁波可変シート状物
の、伸長回復率は10G−であり1次iで伸長時及び未
伸長時の可視光線透過量を測定し、その結果を第1表に
示す。
Example 1 How to determine the amount of permeation A solution of polyurethane dissolved in a solvent was coated on a polyester film whose surface had been siliconized using a four-wheel coater, and the solvent was removed and coagulated using a hot air dryer. The film thickness of this polyurethane sheet material was 40 μm, and red color was then vapor-deposited on one side using a vacuum evaporator to a film thickness of 0.05 μm. The transmission electromagnetic wave variable sheet thus produced had an elongation recovery rate of 10 G-, and the visible light transmission amount was measured in the first order i when elongated and when not elongated, and the results are shown in Table 1.

実施例1に於て、金属蒸着層の膜厚を変えた透過電磁波
可変シート状物を製造し、可視光線透過量を測定しだ。
In Example 1, sheet-like materials with variable transmission electromagnetic waves having different thicknesses of metal vapor deposited layers were manufactured, and the amount of visible light transmitted was measured.

その結果を第1表に示す。さらに。The results are shown in Table 1. moreover.

実施例1に於て、ポリウレタン溶液中へポリアクリルニ
トリルを溶剤で溶解した溶液を混合して。
In Example 1, a solution of polyacrylonitrile dissolved in a solvent was mixed into a polyurethane solution.

ポリウレタン、ポリアクリルニトリル混合シート状物を
作る方法によって、伸長回復率を変化させた透過電磁波
可変シート状物を製造した。この透過電磁波可変シート
状物の可視光線透過量を測定し、その結果を第1表に示
す。
A sheet material with variable transmission electromagnetic waves with varying elongation recovery rate was manufactured by a method of making a polyurethane/polyacrylonitrile mixed sheet material. The amount of visible light transmitted through this variable transmission electromagnetic wave sheet was measured, and the results are shown in Table 1.

また、実施例1に於て製造した透過電磁波可変シート状
物の、伸長率増加による可視光線透過量変化を測定し、
その結果を第1図に示す。
In addition, the change in visible light transmission amount due to increase in elongation rate of the electromagnetic wave variable transmission sheet produced in Example 1 was measured,
The results are shown in FIG.

なお比較例として、伸長回復率4oチのポリエステルフ
ィルムに、AIを0.05μの膜厚で金属蒸着したシー
ト状物を用いた。
As a comparative example, a sheet material was used in which AI was metal-deposited to a thickness of 0.05 μm on a polyester film with an elongation recovery rate of 4°.

以下余白 第1表より本発明の透過電磁波可変シート状物は、未伸
長時の可視光線透過が殆んどないが、 20チ伸長する
と透過量が30倍に著しく増加した。
As shown in Table 1 below, the variable transmission electromagnetic wave sheet material of the present invention hardly transmits visible light when unstretched, but when stretched by 20 inches, the amount of transmission significantly increased by 30 times.

また、金属蒸着層の膜厚は0.0l−Zooμ、シート
状物の伸長回復率は70チ以上である範囲が、透過電磁
波可変シート状物に適し、また1反復使用も可能である
といえる。
In addition, a range in which the film thickness of the metal vapor deposited layer is 0.0l-Zooμ and the elongation recovery rate of the sheet-like material is 70 inches or more is suitable for a sheet-like material with variable transmission electromagnetic waves, and can be used repeatedly. .

これらに対し、比較例のポリエステルシートに。In contrast to these, the polyester sheet of the comparative example.

AAを蒸着したシート状物は、伸長回復性に乏しく反復
使用できず、産業上広く利用出来るものではない。
Sheet-like materials deposited with AA have poor elongation recovery properties and cannot be used repeatedly, and cannot be widely used industrially.

また、第1図に示す如く、伸長率が増加するに従って、
可視光線透過量も著しく増加するので。
Also, as shown in Figure 1, as the elongation rate increases,
The amount of visible light transmitted also increases significantly.

透過量を選択出来る範囲が、かなり広い透過電磁波可変
シート状物であるといえる。
It can be said that the sheet-like material has a fairly wide range in which the amount of transmission can be selected.

実施例2 ポリエステル糸を使ってスムース組織の目付100 f
/♂の編物を製造した。これとは別に、離型紙上にポリ
ウレタン溶液をコーティングし、熱風乾燥機で脱溶剤、
凝固を行ない、膜厚10μのシート状物を得た。このシ
ート状物に、ポリウレタン系の接着剤をコーティングし
、半乾燥後先に製造しておいた編物を接着し、プレス、
乾燥を行なった。次に、こうして出来たシート状物Qポ
リウレタン表面上に% 0.1μの膜厚でAuをスパッ
タリングした。この透過電磁波可変シート状物の伸長回
復率は95−であり、未伸長時及び伸長時の赤外線透過
量を測定し、その結果を第2表に示す。
Example 2 Smooth structure using polyester yarn with a basis weight of 100 f
A knitted fabric of /♂ was manufactured. Separately, a polyurethane solution was coated on release paper, and the solvent was removed using a hot air dryer.
Coagulation was performed to obtain a sheet-like material with a film thickness of 10 μm. This sheet-like material is coated with a polyurethane adhesive, and after semi-drying, the previously produced knitted fabric is glued, pressed,
Drying was performed. Next, Au was sputtered to a thickness of 0.1 μm on the surface of the polyurethane sheet Q thus produced. This sheet material with variable transmission electromagnetic waves had an elongation recovery rate of 95-, and the amount of infrared transmission was measured when it was not elongated and when it was elongated, and the results are shown in Table 2.

実施例3 厚み5μのポリウレタンシート状物に、Pbを、100
μの膜厚でスパッタリングした。このpbをスパッタリ
ングしたポリウレタンシート状物2枚をポリウレタン系
の接着剤で接着する工程を1゜回繰り返し、厚み1.5
uのシート状物とした。さらシτ、鉛繊維不織布状シー
トをポリウレタン含浸してシート状物しンtものに接着
し、厚み2.7藺の透過電磁波可変シート状物を得た。
Example 3 100% Pb was added to a polyurethane sheet with a thickness of 5 μm.
Sputtering was performed to a film thickness of μ. The process of gluing two polyurethane sheets sputtered with this PB using a polyurethane adhesive was repeated 1°, resulting in a thickness of 1.5 cm.
It was made into a sheet-like product. A nonwoven lead fiber sheet was impregnated with polyurethane and adhered to a sheet material to obtain a sheet material with variable transmission electromagnetic waves having a thickness of 2.7 mm.

この透過電磁波可変シート状物の伸長回復率は85チで
あり、未伸長時及び伸長時のX線透過鎗を測定し、七の
結果を第2表に示す。
The elongation recovery rate of this transparent electromagnetic wave variable sheet material was 85 cm.The X-ray transmission spear was measured when it was not elongated and when it was elongated, and the results are shown in Table 2.

第  2  表 第2衣より、本発明の透過電磁波可変シート状物の電磁
波透過量が未伸長時と伸長時とで、大きく変わっている
ことが判る。勿論、反復使用しても殆んどこのデータが
変わらないのは自然である。
From Table 2, it can be seen that the electromagnetic wave transmission amount of the variable transmission electromagnetic wave sheet material of the present invention changes greatly between when it is unstretched and when it is stretched. Of course, it is natural that almost no data will change even after repeated use.

発明の効果 本発明の透過電磁波可変シート状物では、シート状物上
に積層された金属蒸着層の金属の種類により、目的とす
る電磁波の反射及び吸収が行なえ透過電磁波可変シート
状物を伸長しない時VCC電電磁波透過はほとんどない
か、透過してもごく僅かである。この透過電磁波可変シ
ート状物を伸長すれば、反射及び吸収されていた電磁波
が、透過するようになる。また、伸長率を増すに従がい
、透過量も増加するので透過量も選択できる。さらに伸
長を解除すれば電磁波の透過はまたほとんどないか、透
過してもごくわずかとなる。このように、電磁波の透過
量が透過電磁波可変シート状物の伸長、伸長解除により
変化し、この現象は反復して行なっても変わらないもの
である。
Effects of the Invention In the transmission electromagnetic wave variable sheet material of the present invention, the desired electromagnetic waves can be reflected and absorbed depending on the type of metal in the metal vapor deposition layer laminated on the sheet material, and the transmission electromagnetic wave variable sheet material is not stretched. When the VCC electromagnetic wave is transmitted, there is almost no transmission, or even if it is transmitted, it is very small. If this transparent electromagnetic wave variable sheet material is stretched, the electromagnetic waves that have been reflected and absorbed will be transmitted. Further, as the elongation rate increases, the amount of transmission also increases, so the amount of transmission can also be selected. Furthermore, if the expansion is canceled, almost no electromagnetic waves will be transmitted, or even if they are transmitted, only a small amount will be transmitted. In this way, the amount of electromagnetic wave transmission changes as the electromagnetic wave transmission variable sheet material is stretched and unstretched, and this phenomenon does not change even if the process is repeated.

本発明の透過電磁波可変シート状物は、伸長により電磁
波の透過量が変化し、反復使用も可能である為、各種の
光センサ−、可視光線へ透過量コントロールが必要なビ
ニールハウスなどの実業資材、放射線を扱う医用衣服及
び機材、赤外線反射、透過ヲコントロールするカーテン
地や定温水槽などの産業資材、その他各樽分野での利用
が可能である。
The variable transmission electromagnetic wave sheet material of the present invention changes the amount of electromagnetic wave transmission by stretching and can be used repeatedly, so it can be used for various optical sensors and industrial materials such as vinyl houses that require control of the amount of visible light transmitted. It can be used in medical clothing and equipment that handles radiation, industrial materials such as curtain fabrics and constant temperature water tanks that control infrared reflection and transmission, and other barrel fields.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明透過電磁波可変シート状物の伸長事変
化と可視光線透過量変化を示すグラフである。 第1図 伸長率 ゛%ゝ
FIG. 1 is a graph showing changes in elongation and visible light transmission amount of the electromagnetic wave variable sheet according to the present invention. Figure 1 Elongation rate ゛%ゝ

Claims (1)

【特許請求の範囲】[Claims] 伸長回復率70%以上であるシート状物の少なくとも一
面に厚み0.01〜100μの金属蒸着層を有すること
を特徴とする透過電磁波可変シート状物
A transparent electromagnetic wave variable sheet material having a metal vapor deposition layer having a thickness of 0.01 to 100 μ on at least one surface of the sheet material having an elongation recovery rate of 70% or more.
JP19606685A 1985-09-06 1985-09-06 Transmitting electromagnetic wave varying sheet-shaped object Pending JPS6257299A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19606685A JPS6257299A (en) 1985-09-06 1985-09-06 Transmitting electromagnetic wave varying sheet-shaped object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19606685A JPS6257299A (en) 1985-09-06 1985-09-06 Transmitting electromagnetic wave varying sheet-shaped object

Publications (1)

Publication Number Publication Date
JPS6257299A true JPS6257299A (en) 1987-03-12

Family

ID=16351628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19606685A Pending JPS6257299A (en) 1985-09-06 1985-09-06 Transmitting electromagnetic wave varying sheet-shaped object

Country Status (1)

Country Link
JP (1) JPS6257299A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004022826A1 (en) * 2002-09-04 2004-03-18 Toyo Boseki Kabushiki Kaisya Stretch fabric exhibiting thermal insulating effect and method for production thereof
JP2007046321A (en) * 2005-08-10 2007-02-22 Tajima Inc Floor structure, floor finishing material and floor construction method
JP2007518459A (en) * 2003-09-12 2007-07-12 テクストロニクス, インク. System and method for monitoring blood pressure
JP2013163362A (en) * 2012-02-10 2013-08-22 Ndfos Co Ltd High transparency solar film excellent in anti-oxidation effect
JP2017188516A (en) * 2016-04-04 2017-10-12 丸五ゴム工業株式会社 Electromagnetic wave shield structure
WO2018135425A1 (en) * 2017-01-17 2018-07-26 積水化学工業株式会社 Electromagnetic shielding material, electromagnetic shielding member and case internally containing electronic device
JP2022508193A (en) * 2018-11-27 2022-01-19 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Composite material with adjustable spectral characteristics

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004022826A1 (en) * 2002-09-04 2004-03-18 Toyo Boseki Kabushiki Kaisya Stretch fabric exhibiting thermal insulating effect and method for production thereof
JP2007518459A (en) * 2003-09-12 2007-07-12 テクストロニクス, インク. System and method for monitoring blood pressure
US7896810B2 (en) 2003-09-12 2011-03-01 Textronics, Inc. Blood pressure monitoring system and method having an extended optical range
US8145291B2 (en) 2003-09-12 2012-03-27 Textronics, Inc. Extended optical range reflective system for monitoring motion of a member
US8428686B2 (en) 2003-09-12 2013-04-23 Textronics, Inc. Extended optical range system for monitoring motion of a member
JP2007046321A (en) * 2005-08-10 2007-02-22 Tajima Inc Floor structure, floor finishing material and floor construction method
JP2013163362A (en) * 2012-02-10 2013-08-22 Ndfos Co Ltd High transparency solar film excellent in anti-oxidation effect
JP2017188516A (en) * 2016-04-04 2017-10-12 丸五ゴム工業株式会社 Electromagnetic wave shield structure
WO2018135425A1 (en) * 2017-01-17 2018-07-26 積水化学工業株式会社 Electromagnetic shielding material, electromagnetic shielding member and case internally containing electronic device
JP2018117010A (en) * 2017-01-17 2018-07-26 積水化学工業株式会社 Electromagnetic wave shield material, electromagnetic wave shield member, and enclosure incorporating electronic device
JP2022508193A (en) * 2018-11-27 2022-01-19 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Composite material with adjustable spectral characteristics

Similar Documents

Publication Publication Date Title
CN106062597B (en) Liquid crystal display polarizing film reflective polarizer films, liquid crystal display polarizing film, liquid crystal display optical component and liquid crystal display comprising it
RU2127194C1 (en) Material with coating reflecting infra-red radiation
CA1157363A (en) Metallised composite structure and a method of preparing same
CN101258267B (en) Porous metallized sheets coated with an inorganic layer having low emissivity and high moisture vapor permeability
US4787506A (en) Magazine for photosensitive materials
JPS6257299A (en) Transmitting electromagnetic wave varying sheet-shaped object
CN102239278A (en) High rate deposition of thin films with improved barrier layer properties
CN100557074C (en) The porous material of functionalized by vacuum deposition
JP3035580B2 (en) Shading material for controlling photoperiod reaction
UA127342C2 (en) Energy saving greenhouse screen
WO2015156199A1 (en) Polarizer-protecting polyester film, and polarization plate obtained using same
CN112912563A (en) Metallized fabric for enhanced thermal insulation
Zhao et al. Diphylleia grayi-inspired intelligent temperature-responsive transparent nanofiber membranes
US10221477B2 (en) Method for producing a hydrogen-detection sensor and resulting sensor
JP3081789B2 (en) Humidity sensor
JPH03161538A (en) Flame-retardant decorative film
Amberg et al. Absorbing TiOx thin film enabling laser welding of polyurethane membranes and polyamide fibers
JPS60193645A (en) Moisture-permeable heat-insulating material
KR100745468B1 (en) Functional cloths laminated with a monolithic film
EA003479B1 (en) Artificial fur and method for its manufacture
JP2001061357A (en) Sunshade sheet and usage thereof
JP5427678B2 (en) Cairo parts sheet
JPS6260638A (en) Smoothness-proof nonwoven fabric
NO166015B (en) WHITE SHEET MATERIALS REFLECTING UV RAYS.
JPH0711345Y2 (en) Camouflage sheet