JPS6257276A - Semiconductor laser array device - Google Patents

Semiconductor laser array device

Info

Publication number
JPS6257276A
JPS6257276A JP19793885A JP19793885A JPS6257276A JP S6257276 A JPS6257276 A JP S6257276A JP 19793885 A JP19793885 A JP 19793885A JP 19793885 A JP19793885 A JP 19793885A JP S6257276 A JPS6257276 A JP S6257276A
Authority
JP
Japan
Prior art keywords
thin film
semiconductor laser
active
al2o3
laser array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19793885A
Other languages
Japanese (ja)
Inventor
Akihiro Matsumoto
晃広 松本
Mototaka Tanetani
元隆 種谷
Kaneki Matsui
完益 松井
Shusuke Kasai
秀典 河西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP19793885A priority Critical patent/JPS6257276A/en
Publication of JPS6257276A publication Critical patent/JPS6257276A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To convert the guided light of 180 deg. phase mode into the laser light emitting with the same phase and to make it possible to operate up to a high output region a stable single mode oscillation with a radiation pattern having a far-field pattern of single peak, by providing waveguides whose thickness is different with one another an output end surface of a plurality of active waveguides. CONSTITUTION:Thin films whose thickness is alternately different with one another are formed on each output end surface of a plurality of active wavegides. For example, a thin film 2a of Al2O3 is formed on the end surface of a resonator O composed of semiconductor laser array, and the window opening of resist is made on the confronted parts of this film with an active layer 20 and clad layers 19 and 21 of laser stripes 4, 6 and 8 out of five laser stripes 4-8 of the resonator O wherein stripes 4 and 8 are made on both sides and the stripes 6 at the center. Next, the thin film of Al2O3 and that of SiO2 are formed successively, and unnecessary parts of thin films are eliminated. Then the thin film of two layers composed of thin film 26 of Al2O3 and thin film 3 of SiO2 on thin film 2a of Al2O3 is formed on the confronting parts with active waveguides 4, 6 and 8. The single layer composed of only a thin film 2a, and the thin film of a plurality of layers composed of thin films 2a and 2b and a thin film 3 are alternately and periodically formed on the output end surfaces of active waveguides 4-8.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は複数の半導体レーザを同一基板上に平行に形成
して高出力化した半導体レーザアレイ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a semiconductor laser array device in which a plurality of semiconductor lasers are formed in parallel on the same substrate to achieve high output.

〈従来技術〉 半導体レーザの出力は、単体では実用性を考慮すると8
0mW程度が限界である。そこで、複数の半導体レーザ
を同一基板上に平行に並べて高出力化を図る半導体レー
ザアレイの研究が行なわれている。
<Conventional technology> Considering practicality, the output of a semiconductor laser alone is 8.
The limit is about 0 mW. Therefore, research is being conducted on semiconductor laser arrays in which a plurality of semiconductor lasers are arranged in parallel on the same substrate to increase output.

第5図は半導体レーザアレイにおける導波光の位相波形
を示す。複数の半導体レーザを平行に光学的結合をもた
せて並べた場合、各レーザに均一な利得を与えると、各
レーザ光の位相が同位相で同期する状態すなわち0°位
相モードaより位相力月80°反転する状態ずなわち1
80°位相モードbで発振しやすい。これは、18o°
位相モードの方がO°位相モードよりレーザ光の強度分
布が利得分布とよく一致し、発振に要する利得が少なく
てすむためである。
FIG. 5 shows the phase waveform of guided light in the semiconductor laser array. When a plurality of semiconductor lasers are arranged in parallel with optical coupling, and a uniform gain is given to each laser, the phase of each laser beam is synchronized with the same phase, that is, the phase power is 80 from 0° phase mode a. °Reverse state i.e. 1
Easy to oscillate in 80° phase mode b. This is 18o°
This is because in the phase mode, the intensity distribution of the laser beam matches the gain distribution better than in the O° phase mode, and less gain is required for oscillation.

〈発明が解決しようとする問題点〉 第6図と第7図Gオ1144体レーデアレイに才iJる
放射パターンの遠視野像を示す。0層位相モードでは単
峰性のピークであり、この場合、レーザ光をレンズで単
一・のスポットに集光することができる。一方、180
層位相モー1では複峰性のピークになり、レンズで単一
のスポットに集光することができず、この場合、光ディ
スク等の光源としては利用できない。したがって、半導
体レーザアレイからの出射光が同位相であることが望ま
れる。
<Problems to be Solved by the Invention> Figures 6 and 7 show far-field images of the radiation pattern of a 1144-body radar array. In the 0-layer phase mode, the peak is unimodal, and in this case, the laser beam can be focused on a single spot with a lens. On the other hand, 180
The layer phase modulus 1 has a multimodal peak, and cannot be focused on a single spot by a lens. In this case, it cannot be used as a light source for optical discs, etc. Therefore, it is desirable that the emitted light from the semiconductor laser array be in the same phase.

〈問題点を解決する為の手段〉 本発明は、複数の光学的に結合した活性導波路を有する
半導体レーザアレイ装置において、上記複数の活性導波
路の出射端面の各々に膜厚が交互に異なる薄膜を形成し
てなることを特徴とする。
<Means for Solving the Problems> The present invention provides a semiconductor laser array device having a plurality of optically coupled active waveguides, in which the emission end faces of the plurality of active waveguides have alternately different film thicknesses. It is characterized by forming a thin film.

〈原理〉 本発明では、半導体レーザアレイの出射端面に薄膜を形
成し、180層位相モードで導波するレーザ光を同位相
で出射するレーザ光に変換する。
<Principle> In the present invention, a thin film is formed on the emission end face of a semiconductor laser array, and laser light guided in a 180-layer phase mode is converted into laser light emitted in the same phase.

第2図は複数の活性導波路の出射端面に薄膜を形成した
半導体レーザアレイ装置の模式的な構成を示し、互いに
光学的に結合して平行に並んだ複数の活性導波路4,5
,6,7.8の出射端面9にこの活性!alli4. 
5.・・・、8の各々について膜厚が交互に異なる薄膜
1が形成されている。活性導波路4,5.・・・、8の
各々に均一な利得を与えることにより、180層位相モ
ー1bのレーザ光が導波する。
FIG. 2 shows a schematic configuration of a semiconductor laser array device in which a thin film is formed on the output end face of a plurality of active waveguides.
, 6, 7. This activation on the output end face 9 of 8! alli4.
5. . . , 8, thin films 1 having alternately different film thicknesses are formed. Active waveguides 4, 5. . . , 8, the laser light of the 180-layer phase mode 1b is guided.

いま、真空中でのレーザ光の波長をλ0、薄膜1の屈折
率をn、薄膜1の小さい方の膜厚をd、、大きい方の膜
厚をd、 十d2とすると、次式を満足する。
Now, if the wavelength of the laser beam in vacuum is λ0, the refractive index of thin film 1 is n, the smaller thickness of thin film 1 is d, the larger thickness is d, and 10d2, then the following formula is satisfied. do.

O (ただし、p−1+  3.5. ・・・)−−−(+
1これは、180層位相モードのレーザ光が薄膜lを伝
jullすることにより、隣接したレーザ光の位相差が
180°の奇数倍だけ変化し、薄膜lの出射端面10に
おいて同位相のレーザ光が出射するための条件となる。
O (However, p-1+ 3.5....)---(+
1 This is because when the laser beam in the 180-layer phase mode propagates through the thin film l, the phase difference between adjacent laser beams changes by an odd multiple of 180°, and the laser beams with the same phase at the output end face 10 of the thin film l change. is the condition for emission.

さらに、レーザ光が薄膜1を伝搬して薄膜lの膜厚が大
きい方の端面11と膜厚が小さい方の端面12でそれぞ
れ反射して端面9に戻ったときに隣接した導波路間のレ
ーザ光の位相差がレーザ光のWJ191への入射時の位
相差と一致して安定してレーザ発振するための条件は次
式7式% (ただし、q=1.2.3・・・)  −(21上述の
式(1). (21より、U*1の屈折率nが満足する
条件は、 n・ (q−p)−q(ただし、q>p)−・−(3)
となる。
Furthermore, when the laser beam propagates through the thin film 1 and is reflected at the thicker end face 11 and the thinner end face 12 of the thin film l, respectively, and returns to the end face 9, the laser light between adjacent waveguides is The conditions for stable laser oscillation with the phase difference of the light matching the phase difference of the laser beam when it enters WJ191 are the following formula 7% (however, q = 1.2.3...) - (21 Equation (1) above. (From 21, the condition that the refractive index n of U*1 satisfies is n. (q-p)-q (q>p)--(3)
becomes.

以上の条件を満足するように、薄膜1の屈折率nと膜厚
al、a2を設定すると、180層位相モードで導波す
るレーザ光を同位相で出射するレーザ光に変換すること
ができる。
By setting the refractive index n and film thicknesses al and a2 of the thin film 1 so as to satisfy the above conditions, it is possible to convert the laser light guided in the 180-layer phase mode into the laser light emitted in the same phase.

第3図に示す半導体レーザアレイ装置は、複数の活性導
波路4.5.・・・、8の出射端面9に複数の層からな
る薄膜と単一の層からなる薄膜が活性導波路4,5.・
・・、8の各々について交互に形成されている。薄膜2
は活性導波路4,5.・・・、8の各々について膜厚が
交互に異なり、この薄膜2の活性導波路4,6.8と対
向する端面にさらに薄膜3が形成されている。薄膜2と
薄膜3とは、屈折率が異なる。
The semiconductor laser array device shown in FIG. 3 includes a plurality of active waveguides 4.5. . . , a thin film consisting of a plurality of layers and a thin film consisting of a single layer are formed on the output end face 9 of the active waveguides 4, 5 .・
. . , 8 are formed alternately. thin film 2
are active waveguides 4, 5 . . Thin film 2 and thin film 3 have different refractive indexes.

いま、第1層目の薄膜2の屈折率をnl、薄膜2の小さ
い方の膜厚をdl、大きい方の膜厚をdi十d2、第2
層目のWIi−膜3の屈折率をn2、薄膜3の膜厚をd
3とする。ただし、2層の薄膜2゜3は、屈折率の差が
比較的小さいものを選ぶ。この場合、180層位相モー
ドのレーザ光を薄膜2゜3の出射端面13において同位
相の出射光とするための条件は、 =p−n               ・−(4)と
なる。さらに、レーザ光が薄膜2,3を伝搬して薄膜2
,3の端面14,15でそれぞれ反射して端面9に戻っ
たときに隣接した導波路間のレーザ光の位相差がレーザ
光の薄膜2への入射時の位相差と一致して安定したレー
ザ発振が行なわれるための条件は、次式で表わされる。
Now, the refractive index of the first thin film 2 is nl, the thickness of the smaller one of the thin films 2 is dl, the thickness of the larger one is di + d2, and the second
The refractive index of the WIi-film 3 of the layer is n2, and the thickness of the thin film 3 is d.
Set it to 3. However, the two-layer thin film 2°3 is selected to have a relatively small difference in refractive index. In this case, the condition for making the laser light of the 180-layer phase mode into the same phase emitted light at the emitting end face 13 of the thin film 2.3 is as follows: =p-n.-(4). Furthermore, the laser beam propagates through the thin films 2 and 3 and the thin film 2
, 3 and return to the end surface 9, the phase difference between the laser beams between adjacent waveguides matches the phase difference when the laser beam is incident on the thin film 2, so that the laser becomes stable. The conditions for oscillation are expressed by the following equation.

A C+ 上述の式(4)、 ff1lから膜厚(12,(13は
次の連立方程式を解くことにより求められる。
A C+ From the above equation (4), ff1l, the film thickness (12, (13) is obtained by solving the following simultaneous equations.

=〜 (6) nl ・d2 +n2− d3 = −−−−−λ0し
たがって、薄膜2,3の屈折率n1ln2が定まると、
適当な変数p、qを定めることにより、膜厚a2.d3
が定まる。
= ~ (6) nl ・d2 +n2− d3 = −−−−−λ0 Therefore, when the refractive index n1ln2 of the thin films 2 and 3 is determined,
By determining appropriate variables p and q, the film thickness a2. d3
is determined.

一般に、薄膜の層数あるいは各層の膜厚、屈折率が各々
の活性導波路について交互に周期的に異なるような薄膜
を形成することにより、1)180”位相モードの導波
光を同位相の出射光に変換する ii)薄膜を付加しても安定なレーザ発振を行なうの2
つの条件を満足するように薄膜の膜厚を設定すると、1
80°位相モードで発振するレーザ光を出射端面で同位
相の出射光に変換することができる。
In general, by forming a thin film in which the number of thin film layers or the film thickness and refractive index of each layer are alternately and periodically different for each active waveguide, 1) guided light in the 180" phase mode can be outputted in the same phase; 2) Stable laser oscillation even if a thin film is added
If the thickness of the thin film is set to satisfy two conditions, 1
Laser light oscillated in 80° phase mode can be converted into emitted light having the same phase at the emitting end face.

〈実施例〉 以下、本発明の一実施例として、半導体レーザにV −
channeled 5ubstrate 1nner
 5tripe  レーザ(VSISレーザ)を適用す
るとともに、導波路の出射端面にAl2O3と5i02
からなる薄膜を形成してなる半導体レーザアレイ装置に
ついて説明する。
<Example> Hereinafter, as an example of the present invention, V −
channeled 5ubstrate 1nner
In addition to applying a 5tripe laser (VSIS laser), Al2O3 and 5i02 are applied to the output end face of the waveguide.
A semiconductor laser array device formed by forming a thin film consisting of the following will be described.

第4図は半導体レーザアレイの断面構造を示す。FIG. 4 shows a cross-sectional structure of a semiconductor laser array.

この半導体レーザアレイの製法は、まず、p−GaAs
基板16上に液相エピタキシャル成長法(1,P E法
)などの結晶成長法により、逆極性接合となるn−Ga
As電流■電流層1止る。次に、フォトリソグラフィと
エツチング技術により、5本の平行ストライプを形成す
る■字形溝18をそれぞれ電流阻止層17の表面から基
板16内へ達する深さまで形成する。この■字形溝18
を形成することにより、基板16−1−から電流阻止層
17の除去された部分が電流の通路となる。
The manufacturing method for this semiconductor laser array begins with p-GaAs
N-Ga, which forms a reverse polarity junction, is grown on the substrate 16 by a crystal growth method such as a liquid phase epitaxial growth method (1, PE method).
As current■Current layer 1 stops. Next, by photolithography and etching techniques, five parallel stripes of square-shaped grooves 18 are formed from the surface of the current blocking layer 17 to a depth reaching into the substrate 16. This ■-shaped groove 18
By forming this, the portion where the current blocking layer 17 is removed from the substrate 16-1- becomes a current path.

再びLPE法を用いて、電流阻1に1層17および満1
8の上にp−A I xGa( −xAsクラッド層1
9、pまたはn−AIyGa+ −yAs活性層20、
n−A I xGal−XASクラッドff121を順
次成長させ、ダブルへテロ接合を介した活性層20を得
る。なお、x>yである。さらに、この上にn”GaA
sキャンプ層22を連続的に成長させて、レーザ動作用
の多層結晶構造を構成し、基板16側にp形抵抗性電極
23を形成し、成長層側すなわちキャンプ層22」二に
n形抵抗性電極24を形成した後、共振器長が200〜
300μmとなるように、レーザ面ミラーをストライプ
と直角方向にへき開法で形成する。
Using the LPE method again, one layer 17 and a full 1 layer were added to the current barrier 1.
8, a p-A I xGa(-xAs cladding layer 1
9, p- or n-AIyGa+ -yAs active layer 20,
The n-A I xGal-XAS cladding ff121 is sequentially grown to obtain the active layer 20 via a double heterojunction. Note that x>y. Furthermore, on top of this, n”GaA
The s-camp layer 22 is continuously grown to form a multilayer crystal structure for laser operation, a p-type resistive electrode 23 is formed on the substrate 16 side, and an n-type resistor is formed on the growth layer side, that is, the camp layer 22. After forming the sexual electrode 24, the resonator length is 200~
A laser plane mirror is formed by a cleavage method in a direction perpendicular to the stripes so that the thickness is 300 μm.

上述の方法で製作した半導体レーザアレイからなる共振
器の両端面に、まず、Al2O3の薄膜をこの半導体レ
ーザアレイの発振波長λeの半波長に等しい厚さくd+
 =0.34λe)に形成した。なお、この半導体レー
ザアレイの発振波長λeは780nmであり、このとき
のAl2O3の屈折率n1は1.76である。そして、
このAl2O3の薄膜を形成した共振器をCuブロック
上にマウントし、共振器に電流注入を行なってレーザ発
振させ、このときの放射パターンの遠視野像を観察する
と、出力が150mW付近まで第7図に示す複峰性のパ
ターンをもつ180°位相モードによる単一モード発振
が得られた。
First, a thin film of Al2O3 is deposited on both end faces of the resonator consisting of the semiconductor laser array manufactured by the above method to a thickness d+ equal to half the oscillation wavelength λe of the semiconductor laser array.
=0.34λe). Note that the oscillation wavelength λe of this semiconductor laser array is 780 nm, and the refractive index n1 of Al2O3 at this time is 1.76. and,
The resonator with this Al2O3 thin film formed thereon is mounted on a Cu block, current is injected into the resonator to cause laser oscillation, and the far-field pattern of the radiation pattern at this time is observed. As shown in Figure 7, the output reaches around 150 mW. A single mode oscillation with a 180° phase mode was obtained with the bimodal pattern shown in FIG.

第1図は半導体レーザアレイ装置の斜視構造を示す。上
述のように半導体レーザアレイからなる共振器0の端面
に形成したAl2O3の薄膜2aの上の共振器0の5本
のレーザストライプ4,5。
FIG. 1 shows a perspective structure of a semiconductor laser array device. Five laser stripes 4 and 5 of the resonator 0 are formed on the Al2O3 thin film 2a formed on the end face of the resonator 0 consisting of a semiconductor laser array as described above.

6、7.8の中の両端と中央のレーザストライプ4、6
.8の活性層20とクラッド層19.21に対向する部
分に、フォトリソグラフィ技術を用いてレジストの窓開
げを行なった。次に、−に述の薄膜の膜厚を決定する式
(61,+71にレーザアレイの発振波長λeが780
nmのときのAl2O3の屈折率rz =1.76と5
102の屈折率n2=1.45を代入して、Al2O3
の薄膜2bの膜厚d2と5i02の薄膜3の膜厚d3を
求めると、変数p=1.q=3のとき、 d2=o、+eλe、   d3=o、84λeとなる
。Al2O3と5i02の膜厚をこのように設定して、
レジスl−面−1二にAl2O3と5i02の薄膜を順
次に形成した。そして、不用な部分の薄膜をアセトンで
除去した。この結果、第1図に示すように、Al2O3
の薄膜2aの上にAl2O3の薄膜2bと5i02の薄
膜3からなる2層の薄膜が活性導波路4,6.8に対向
する部分に形成され、活性導波路4,5.6,7.8の
出射端面に薄M*2aだけの単一層とFJII!2a、
2bと薄膜3からなる複数層の薄膜が交互に周期的に形
成された構造になる。
6, 7. Laser stripes at both ends and center of 8 4, 6
.. A window in the resist was opened in a portion facing the active layer 20 and the cladding layer 19, 21 of No. 8 using photolithography technology. Next, in the formula (61, +71) for determining the film thickness of the thin film described in -, the oscillation wavelength λe of the laser array is 780
Refractive index of Al2O3 in nm rz = 1.76 and 5
By substituting the refractive index n2=1.45 of 102, Al2O3
When determining the thickness d2 of the thin film 2b of 5i02 and the thickness d3 of the thin film 3 of 5i02, the variable p=1. When q=3, d2=o, +eλe, d3=o, 84λe. By setting the film thicknesses of Al2O3 and 5i02 in this way,
Thin films of Al2O3 and 5i02 were sequentially formed on the resist l-plane-12. Then, unnecessary portions of the thin film were removed with acetone. As a result, as shown in Figure 1, Al2O3
A two-layer thin film consisting of a thin film 2b of Al2O3 and a thin film 3 of 5i02 is formed on the thin film 2a of , in a portion facing the active waveguides 4, 6.8. A single layer of thin M*2a on the output end face of FJII! 2a,
The structure is such that a plurality of thin films consisting of the thin film 2b and the thin film 3 are alternately and periodically formed.

上述のようにして構成した半導体レーザアレイ装置をC
uブロック上にマウントし、共振器0に電流注入を行な
ってレーザ発振を起こすと、放射パターンの遠視野像が
第6図に示ず単峰性ピークをもつ小−モード発振が出力
150mW付近まで得られた。このように、レーザアレ
イで導波するレーザ光が薄膜の出射端面で同位相で出射
するレーザ光に変換され、しかも、安定なレーザ発振が
可能になる。
The semiconductor laser array device configured as described above is
When mounted on the U block and injecting current into resonator 0 to cause laser oscillation, the far-field pattern of the radiation pattern is not shown in Figure 6, and small-mode oscillation with a single peak occurs up to an output of around 150 mW. Obtained. In this way, the laser light guided by the laser array is converted into laser light emitted with the same phase at the emission end face of the thin film, and moreover, stable laser oscillation is possible.

なお、この実施例では、半導体レーザアレイの出射端面
に形成する薄膜としてAl2O3と5i02を用いると
ともに、半導体レーザアレイの材料としてGaAs−G
aAlAs系を用いたが、本発明はこれに限定されるも
のではなく、薄膜として′I’i02やその他の材料お
よび半導体レーザアレイとしてInP−rnGaAsP
系やその伯の種々の材料を用いてもよいことはいうまで
もない。
In this example, Al2O3 and 5i02 are used as the thin films formed on the emission end face of the semiconductor laser array, and GaAs-G is used as the material of the semiconductor laser array.
Although the aAlAs system is used, the present invention is not limited thereto, and 'I'iO2 and other materials are used as the thin film, and InP-rnGaAsP is used as the semiconductor laser array.
It goes without saying that various types of materials may be used.

さらに、半導体レーザアレイのストライプ構造は、VS
TS構造以外に他の内部ストライプ構造やその他の素子
構造のものを適用することもできる。
Furthermore, the stripe structure of the semiconductor laser array is
In addition to the TS structure, other internal stripe structures or other element structures can also be applied.

〈効果〉 以上説明したように、本発明においては、複数の活性導
波路の出射端面に膜厚が交互に異なる薄膜を形成したこ
とにより、180°位相モードの導波光を同位相で出射
するレーザ光に変換して単峰性の遠視野像をもつ放射パ
ターンで高出力まで安定した単一モード発振が可能とな
る。
<Effects> As explained above, in the present invention, thin films having alternately different thicknesses are formed on the output end faces of a plurality of active waveguides, thereby creating a laser that emits guided light in the 180° phase mode in the same phase. When converted to light, it produces a radiation pattern with a single-peak far-field pattern, which enables stable single-mode oscillation up to high output.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例の半導体レーザアレイ装置の模式
的な斜視構造を示す図、第2図と第3図は本発明実施例
の模式的な平面構成を示す図、第4図は本発明実施例の
半導体レーザアレイの模式的な断面構造を示す図、第5
図は半導体レーザアレイの導波光の位相波形を示す図、
第6図と第7図は半導体レーザアレイの放射パターンの
遠視野像を示すグラフである。 1.2.2a、2b、3・=薄膜 4、 5. 6. 7. 8・・・活性導波路9・・・
出射端面 11.12,14.15・・・端面 第1図 第2図 第3図 第6図
FIG. 1 is a diagram showing a schematic perspective structure of a semiconductor laser array device according to an embodiment of the present invention, FIGS. 2 and 3 are diagrams showing a schematic planar configuration of an embodiment of the present invention, and FIG. FIG. 5 is a diagram showing a schematic cross-sectional structure of a semiconductor laser array according to an embodiment of the invention.
The figure shows the phase waveform of guided light in a semiconductor laser array.
6 and 7 are graphs showing far-field images of the radiation pattern of a semiconductor laser array. 1.2.2a, 2b, 3.=thin film 4, 5. 6. 7. 8... Active waveguide 9...
Output end faces 11.12, 14.15... end faces Figure 1 Figure 2 Figure 3 Figure 6

Claims (3)

【特許請求の範囲】[Claims] (1)複数の光学的に結合した活性導波路を有する半導
体レーザアレイ装置において、上記複数の活性導波路の
出射端面の各々に膜厚が交互に異なる薄膜を形成してな
ることを特徴とする半導体レーザアレイ装置。
(1) A semiconductor laser array device having a plurality of optically coupled active waveguides, characterized in that thin films having alternately different thicknesses are formed on each of the output end faces of the plurality of active waveguides. Semiconductor laser array device.
(2)上記複数の活性導波路の出射端面の各々について
上記薄膜は層数と屈折率が交互に異なる特許請求の範囲
第1項記載の半導体レーザアレイ装置。
(2) The semiconductor laser array device according to claim 1, wherein the number of layers and the refractive index of the thin film alternately differ for each of the emission end faces of the plurality of active waveguides.
(3)隣接した上記活性導波路から出射するレーザ光の
位相差が180°変化し上記薄膜の端面で反射したレー
ザ光が上記活性導波路に戻るときに隣接した上記活性導
波路間のレーザ光の位相差がレーザ光の上記薄膜への入
射時の位相差と一致する特許請求の範囲第1項および第
2項記載の半導体レーザアレイ装置。
(3) When the phase difference between the laser beams emitted from the adjacent active waveguides changes by 180° and the laser beam reflected from the end face of the thin film returns to the active waveguide, the laser beam between the adjacent active waveguides 3. The semiconductor laser array device according to claim 1, wherein the phase difference of the laser beam coincides with the phase difference of the laser beam when it is incident on the thin film.
JP19793885A 1985-09-06 1985-09-06 Semiconductor laser array device Pending JPS6257276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19793885A JPS6257276A (en) 1985-09-06 1985-09-06 Semiconductor laser array device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19793885A JPS6257276A (en) 1985-09-06 1985-09-06 Semiconductor laser array device

Publications (1)

Publication Number Publication Date
JPS6257276A true JPS6257276A (en) 1987-03-12

Family

ID=16382790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19793885A Pending JPS6257276A (en) 1985-09-06 1985-09-06 Semiconductor laser array device

Country Status (1)

Country Link
JP (1) JPS6257276A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62147790A (en) * 1985-12-23 1987-07-01 Hitachi Ltd Phase-locked array semiconductor laser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62147790A (en) * 1985-12-23 1987-07-01 Hitachi Ltd Phase-locked array semiconductor laser

Similar Documents

Publication Publication Date Title
JP5372349B2 (en) Quantum cascade laser device
US7262435B2 (en) Single-transverse-mode laser diode with multi-mode waveguide region and manufacturing method of the same
JP4445292B2 (en) Semiconductor light emitting device
JP2004273906A (en) Surface emitting laser element integral with optical amplifier
US20040136414A1 (en) Wavelength-tunable semiconductor optical device
JPS60124983A (en) Semiconductor laser
JPS6235689A (en) Semiconductor laser array device
JPH0810782B2 (en) Two-dimensional monolithic coherent semiconductor laser array
JPS6257276A (en) Semiconductor laser array device
JPS61296785A (en) Semiconductor laser array device
JPS645474B2 (en)
JP2009054699A (en) Semiconductor laser, and semiconductor laser device
US20080198890A1 (en) Vertically emitting laser and method of making the same
JP2002323629A (en) Optical waveguide element and semiconductor laser beam device
JP3541539B2 (en) Surface emitting semiconductor laser
JPS6257275A (en) Semiconductor laser array device
JPS63150981A (en) Semiconductor laser
JPS6079791A (en) Semiconductor laser
JPH055389B2 (en)
JPH0449273B2 (en)
JP3084042B2 (en) Semiconductor laser device and method of manufacturing the same
JPS63164286A (en) Semiconductor laser array device
JPS62136890A (en) Semiconductor laser device
JPS60214580A (en) Semiconductor laser-array device
JP2641296B2 (en) Semiconductor laser with optical isolator