JPS6257192B2 - - Google Patents

Info

Publication number
JPS6257192B2
JPS6257192B2 JP3272580A JP3272580A JPS6257192B2 JP S6257192 B2 JPS6257192 B2 JP S6257192B2 JP 3272580 A JP3272580 A JP 3272580A JP 3272580 A JP3272580 A JP 3272580A JP S6257192 B2 JPS6257192 B2 JP S6257192B2
Authority
JP
Japan
Prior art keywords
phosphoric acid
mol
chloride
reduced pressure
under reduced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3272580A
Other languages
Japanese (ja)
Other versions
JPS56131594A (en
Inventor
Isamu Yamamoto
Eiichi Noda
Yoshiaki Noguchi
Noboru Kawasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP3272580A priority Critical patent/JPS56131594A/en
Publication of JPS56131594A publication Critical patent/JPS56131594A/en
Publication of JPS6257192B2 publication Critical patent/JPS6257192B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はリン酸アルキルエステルを製造する方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing phosphoric acid alkyl esters.

現在、リン酸アルキルエステルは一般に次のよ
うに製造されている。すなわちリン酸モノアルキ
ルエステルおよびリン酸ジアルキルエステルを得
るには、オキシ塩化リンとアルコールとを前者で
は1:1、後者では1:2のモル比で3級アミン
存在下に反応させ、ついで水と反応させ加水分解
をして製造する。またリン酸トリアルキルエステ
ルを得るにはオキシ塩化リンとアルコールを1:
3のモル比で3級アミン存在下に反応させ製造す
る。しかし、この製造方法では原料として高価な
オキシ塩化リンを用いなければならない。このオ
キシ塩化リンは、一般にはリン鉱石より電力を大
量に消費する乾式法により得た黄リンを原料とし
ており、このために高価となつている。一方、近
年リン酸製造技術の進歩により、リン鉱石より黄
リンを経ることなく、すなわち大量にエネルギー
を消費することなく、純度の高いリン酸を製造す
る方法が開発され、高純度リン酸を安価に入手で
きるようになつた。
Currently, phosphoric acid alkyl esters are generally produced as follows. That is, to obtain phosphoric acid monoalkyl esters and phosphoric acid dialkyl esters, phosphorus oxychloride and alcohol are reacted in the presence of a tertiary amine at a molar ratio of 1:1 for the former and 1:2 for the latter, and then reacted with water. Manufactured by reaction and hydrolysis. In addition, to obtain phosphoric acid trialkyl ester, mix phosphorus oxychloride and alcohol in 1 part
It is produced by reacting in the presence of a tertiary amine at a molar ratio of 3. However, this production method requires the use of expensive phosphorus oxychloride as a raw material. This phosphorus oxychloride is generally made from yellow phosphorus obtained by a dry method that consumes more electricity than phosphate rock, and is therefore expensive. On the other hand, in recent years, advances in phosphoric acid production technology have led to the development of a method for producing highly pure phosphoric acid from phosphate ore without passing through yellow phosphorus, that is, without consuming a large amount of energy. became available.

そこで、本発明者らはこのように安価なリン酸
を用いるリン酸アルキルエステルの製造方法につ
いて鋭意研究し、その結果、本発明のリン酸アル
キルエステルの製造方法を完成した。
Therefore, the present inventors conducted extensive research on a method for producing an alkyl phosphate ester using such inexpensive phosphoric acid, and as a result, completed the method for producing an alkyl phosphate ester of the present invention.

すなわち、本発明の方法は、リン酸とハロゲン
化アルキルをアミンの存在下に反応させることを
特徴とするリン酸アルキルエステルの製造方法で
ある。
That is, the method of the present invention is a method for producing a phosphoric acid alkyl ester, which is characterized by reacting phosphoric acid and an alkyl halide in the presence of an amine.

本発明の方法において原料として用いるリン酸
としては、含水であつても含水していない100%
のリン酸であつても使用することができる。含水
しているリン酸としては、例えば、市販の75%リ
ン酸、85%リン酸を使用することができ、含水し
ていない100%リン酸は市販の含水リン酸と五酸
化リンより製造することができる。
The phosphoric acid used as a raw material in the method of the present invention is 100% hydrated or not.
phosphoric acid can also be used. As the hydrated phosphoric acid, for example, commercially available 75% phosphoric acid or 85% phosphoric acid can be used, and 100% phosphoric acid that does not contain water can be produced from commercially available hydrated phosphoric acid and phosphorus pentoxide. be able to.

ハロゲン化アルキルとはC1〜C20の直鎖状また
は分枝状アルキルの塩化物、臭化物および沃化物
であつて、例えば、塩化−n−ブチル、塩化イソ
ブチル、塩化−n−ヘキシル、塩化−n−オクチ
ル、塩化−2−エチルヘキシル、塩化−n−ラウ
リル、塩化−n−セチル、塩化−n−オクタデシ
ル、1,2−二塩化エタン、臭化エチル、臭化−
n−ブチル、臭化イソブチル、臭化−2−エチル
ヘキシル、臭化−n−ラウリル、臭化−n−セチ
ル、臭化−n−オクタデシル、1,2−二臭化エ
タン、ヨウ化メチル、ヨウ化エチル、ヨウ化−n
−オクチル、ヨウ化−n−ラウリル−ヨウ化−n
−セチル、ヨウ化−n−オクタデシル等である。
アルキル基は1級、2級を用いることができるが
1級の方が反応が早く好ましい。
Alkyl halides are chlorides, bromides and iodides of C1 - C20 straight-chain or branched alkyls, such as -n-butyl chloride, isobutyl chloride, -n-hexyl chloride, -chloride, etc. n-octyl, 2-ethylhexyl chloride, n-lauryl chloride, n-cetyl chloride, n-octadecyl chloride, 1,2-ethane dichloride, ethyl bromide, bromide
n-Butyl, isobutyl bromide, 2-ethylhexyl bromide, n-lauryl bromide, n-cetyl bromide, n-octadecyl bromide, 1,2-ethane dibromide, methyl iodide, iodine Ethyl chloride, iodide-n
-octyl, iodide-n-lauryl-iodide-n
-cetyl, -n-octadecyl iodide, etc.
Although primary and secondary alkyl groups can be used, primary is preferred because it reacts faster.

アミンとしては一般式 R1NH2 R1R2NH R1R2R3N (式中、R1,R2およびR3は炭素数1〜10のア
ルキル基、あるいはフエニル基、アラール基、ア
ルカリル基を示し、互に同一でも異なつていても
よい)で表わされる第1級アミン、第2級アミン
または第3級アミン、あるいは複素環アミンであ
る。これらのアミンの中、とくに第3級アミンが
好ましい。多用されるアミンとしては、トリエチ
ルアミン、トリ−n−ブチルアミン、トリ−n−
オクチルアミン、N,N−ジメチルアニリン、
N,N−ジメチルトルイジン、N,N−ジメチル
ベンジルアミン、ピリジン等である。
The amine has the general formula R 1 NH 2 R 1 R 2 NH R 1 R 2 R 3 N (wherein R 1 , R 2 and R 3 are an alkyl group having 1 to 10 carbon atoms, a phenyl group, an aral group, These are primary amines, secondary amines, tertiary amines, or heterocyclic amines, which represent an alkaryl group and may be the same or different. Among these amines, tertiary amines are particularly preferred. Commonly used amines include triethylamine, tri-n-butylamine, tri-n-
Octylamine, N,N-dimethylaniline,
These include N,N-dimethyltoluidine, N,N-dimethylbenzylamine, and pyridine.

本発明の方法は、原料のハロゲン化アルキルを
溶媒として使用すればとくに別種の溶媒の無存在
下でも十分反応を実施できるが、必要に応じて溶
媒を使用してもよい。このような溶媒としては、
例えばジオキサン、ジメトキシエタン、ジグリム
等のエーテル類、例えば酢酸メチル、酢酸エチ
ル、酢酸ブチル等のエステル類、例えばメタノー
ル、エタノール、イソプロピルアルコール、n−
プロピルアルコール、n−ブタノール、イソブタ
ノール、sec−ブタノール、n−ヘキサノール、
n−オクタノール等のアルコール類、およびN,
N−ジメチルホルムアミド、ジメチルスルホキシ
ド、ヘキサメチルホスホロトリアミド等である。
In the method of the present invention, if the raw alkyl halide is used as a solvent, the reaction can be carried out satisfactorily even in the absence of a different type of solvent, but a solvent may be used if necessary. Such solvents include
For example, ethers such as dioxane, dimethoxyethane, diglyme, etc., esters such as methyl acetate, ethyl acetate, butyl acetate, etc., such as methanol, ethanol, isopropyl alcohol, n-
Propyl alcohol, n-butanol, isobutanol, sec-butanol, n-hexanol,
Alcohols such as n-octanol, and N,
N-dimethylformamide, dimethylsulfoxide, hexamethylphosphorotriamide, and the like.

本発明のリン酸アルキルエステルの製造方法は
次のように進めることができる。リン酸とハロケ
ン化アルキルとアミンを混合し、加熱する。また
はリン酸とハロゲン化アルキルを混合後、加熱下
にアミンを滴下する。ハロゲン化アルキル以外に
別種の溶媒を用いる場合には溶媒とハロゲン化ア
ルキルを混合し、上記のハロゲン化アルキルと同
様に用いればよい。さらにはじめに溶媒とリン酸
を混合し、これにハロゲン化アルキルとアミンを
加熱下に同時に滴下してもよい。
The method for producing a phosphoric acid alkyl ester of the present invention can proceed as follows. Mix phosphoric acid, alkyl halide, and amine and heat. Alternatively, after mixing phosphoric acid and alkyl halide, amine is added dropwise while heating. When using a different type of solvent in addition to the alkyl halide, the solvent and the alkyl halide may be mixed and used in the same manner as the alkyl halide described above. Furthermore, a solvent and phosphoric acid may be mixed first, and the alkyl halide and amine may be simultaneously added dropwise to this mixture while heating.

加熱温度、加熱時間および滴下時間はハロゲン
の種類により異なるが、加熱温度は40〜150℃、
加熱時間は30分〜20時間、滴下時間は30分〜10時
間が好ましい。
The heating temperature, heating time, and dropping time vary depending on the type of halogen, but the heating temperature is 40 to 150℃,
The heating time is preferably 30 minutes to 20 hours, and the dropping time is preferably 30 minutes to 10 hours.

反応原料の使用量はリン酸モノアルキルエステ
ルを製造する場合は、リン酸に対してハロゲン化
アルキルを1〜30当量、アミンは約1当量、リン
酸ジアルキルエステルを製造する場合は、リン酸
に対してハロゲン化アルキルを2〜60当量、アミ
ンは約2当量、リン酸トリアルキルエステルを製
造する場合は、リン酸に対してハロゲン化アルキ
ルを3〜100当量、アミンは3〜6当量使用す
る。
The amount of reaction raw materials used is 1 to 30 equivalents of alkyl halide to phosphoric acid when producing monoalkyl phosphoric acid ester, and about 1 equivalent of amine to phosphoric acid, and about 1 equivalent of amine to phosphoric acid when producing dialkyl ester of phosphoric acid. For producing phosphoric acid trialkyl ester, use 2 to 60 equivalents of alkyl halide and about 2 equivalents of amine, and use 3 to 100 equivalents of alkyl halide and 3 to 6 equivalents of amine based on phosphoric acid. .

ハロゲン化アルキル以外に別種の溶媒を用いる
場合、溶媒の使用量はリン酸1重量に対して1〜
100重量倍、好ましくは1〜30重量である。リン
酸モノアルキルエステル、ジアルキルエステルの
製造の場合では、反応終了後塩化水素ガスを反応
液に吹き込むことにより、未反応のアミンを塩化
水素塩とし、沈殿として濾過により除くことがで
きる。この塩化水素を吹き込む操作は反応が定量
的に進行する場合には必要としない。さらに塩化
水素のかわりに臭化水素またはヨウ化水素をも用
いることができる。
When using a different type of solvent in addition to the alkyl halide, the amount of solvent used is 1 to 1 to 1 weight of phosphoric acid.
100 times by weight, preferably 1 to 30 times by weight. In the case of producing phosphoric acid monoalkyl esters and dialkyl esters, after the reaction is completed, hydrogen chloride gas is blown into the reaction solution to convert unreacted amine into a hydrogen chloride salt, which can be removed as a precipitate by filtration. This operation of blowing in hydrogen chloride is not necessary when the reaction proceeds quantitatively. Furthermore, hydrogen bromide or hydrogen iodide can also be used instead of hydrogen chloride.

塩を除いた濾液より減圧下に溶媒と過剰のハロ
ゲン化アルキルおよび水を除き、目的物を得る。
このとき目的物以外のリン酸アルキルエステルお
よび原料であるリン酸を含み、精製が必要なとき
は生成物を適当な塩例えばアニリン塩、シクロヘ
キシルアミン塩、カルシウム塩、バリウム塩など
とし、再結晶により精製することができる。また
結晶性の化合物については単に再結晶により精製
することができる。
The solvent, excess alkyl halide, and water are removed from the filtrate from which the salt has been removed under reduced pressure to obtain the desired product.
At this time, the product contains phosphoric acid alkyl ester other than the target product and phosphoric acid as a raw material, and if purification is required, the product is converted into an appropriate salt such as aniline salt, cyclohexylamine salt, calcium salt, barium salt, etc., and is recrystallized. Can be purified. Moreover, crystalline compounds can be purified simply by recrystallization.

リン酸トリアルキルエステルの場合では、反応
終了後のアミンのハロゲン化水素塩を濾過して除
き、濾液より減圧下に溶媒と過剰のアミンおよび
ハロゲン化アルキルを除き、目的物を得る。通常
の方法により蒸留可能なものについてはさらに蒸
留により精製する。または、反応終了後減圧下に
溶媒を除き、残渣に水とベンゼン、トルエン、キ
シレン、エーテル、エチレンクロライド、クロロ
ホルムまたはメチレンクロライド等の溶媒を加
え、充分混合してから有機層を分離し、さらに必
要に応じて水洗し、その後減圧下に溶媒を除き、
リン酸トリアルキルエステルを得る。さらに通常
の方法により蒸留可能なものについては蒸留によ
り精製する。リン酸トリアルキルエステルについ
ても結晶性の化合物については再結晶により精製
できる。
In the case of phosphoric acid trialkyl ester, the hydrogen halide salt of the amine after the completion of the reaction is removed by filtration, and the solvent and excess amine and alkyl halide are removed from the filtrate under reduced pressure to obtain the desired product. Those that can be distilled by conventional methods are further purified by distillation. Alternatively, after the reaction is complete, remove the solvent under reduced pressure, add water and a solvent such as benzene, toluene, xylene, ether, ethylene chloride, chloroform, or methylene chloride to the residue, mix well, separate the organic layer, and add more as needed. Wash with water, then remove the solvent under reduced pressure.
A phosphoric acid trialkyl ester is obtained. Further, those that can be distilled by conventional methods are purified by distillation. Crystalline compounds of phosphoric acid trialkyl esters can also be purified by recrystallization.

かくして、本発明の製造方法により、収率よ
く、しかも従来のオキシ塩化リンを用いる方法に
比較して、極めて安価にリン酸アルキルエステル
を製造することができる。
Thus, according to the production method of the present invention, phosphoric acid alkyl esters can be produced in good yield and at a much lower cost than conventional methods using phosphorus oxychloride.

得られたリン酸アルキルエステルは溶媒、触
媒、難燃剤、帯電防止剤、可塑剤、安定剤、防食
剤、抽出剤、潤滑油添加剤、作動油として用いる
ことができる。
The obtained phosphoric acid alkyl ester can be used as a solvent, a catalyst, a flame retardant, an antistatic agent, a plasticizer, a stabilizer, an anticorrosive agent, an extractant, a lubricating oil additive, and a hydraulic oil.

次に実施例によつて本発明を更に説明する。な
お、実施例で使用した100%リン酸は、つぎの方
法で合成した。85%リン酸、75%リン酸は市販の
ものを用いた。
Next, the present invention will be further explained with reference to Examples. Note that 100% phosphoric acid used in the examples was synthesized by the following method. Commercially available 85% phosphoric acid and 75% phosphoric acid were used.

100%リン酸の合成例 85%リン酸500gを氷−アセトン浴により−10
℃に冷却し、かくはんしつつ徐々に五酸化リン
191.5gを加える。均一な液体となつてから2日
間室温に放置した。
Synthesis example of 100% phosphoric acid 500g of 85% phosphoric acid was mixed with -10% in an ice-acetone bath.
Cool to ℃ and gradually add phosphorus pentoxide while stirring.
Add 191.5g. After it became a homogeneous liquid, it was left at room temperature for 2 days.

実施例 1 85%リン酸57.6g(0.5モル)をジメチルスル
ホキシド500gに溶解し、これに20℃以下に冷却
しながらベンジルメチルアミン67.5g(0.5モ
ル)を加え、さらにヨウ化セチル211.4g(0.6モ
ル)を加え70℃にて5時間加熱かくはんした。そ
の後20℃以下に冷却しながら塩化水素を反応液中
に発熱がなくなるまで吹き込んだ。ベンジルメチ
ルアミンのヨウ化水素塩および塩化水素塩を濾過
して除き、つぎに減圧下にジメチルスルホキシド
および水を除いた。残渣をジエチルエーテルより
結晶化させた後、同じくジエチルエーテルより再
結晶してリン酸モノ−n−セチル129g(融点72
℃)を得た。収率80% 元素分析 C16H35O4Pとしての 理論値(%) C59.60 H10.94 P9.61 実測値(%) C59.75 H10.85 P9.80 実施例 2 100%リン酸49g(0.5モル)を塩化−n−オク
チル743.5g(5モル)に混合し、これに100℃に
加熱しながらトリ−n−ブチルアミン92.6g
(0.5モル)を2時間で滴下し、その後同温にて3
時間加熱した。その後20℃以下に冷却しながら塩
化水素を反応液中に発熱がなくなるまで吹き込ん
だ。トリ−n−ブチルアミンの塩化水素塩を濾過
して除き、つぎに減圧下に塩化−n−オクチルを
除き、残渣にエタノール250mlとアニリン75mlを
加え、リン酸n−オクチルのモノアニリン塩の沈
殿を生じさせた。これを濾過してエタノールより
再結晶してリン酸n−オクチルモノアニリニウム
134.2g(融点129゜−130℃)を得た。収率82% 元素分析 C14H26NO4Pとしての 理論値(%) C58.71 H8.01 N4.28 P9.46 実測値(%) C58.56 H8.13 N4.11 P9.51 実施例 3 100%リン酸49g(0.5モル)をジメチルホルム
アミド250gに溶解し、これに冷却しながらトリ
−n−ブチルアミン185.3g(1.0モル)を加え、
さらに臭化−n−セチル381.6g(1.25モル)を
加え、90℃にて5時間加熱した。その後20℃以下
に冷却しながら塩化水素を反応液に発熱がなくな
るまで吹き込んだ。トリ−n−ブチルアミンの臭
化水素塩および塩化水素塩を濾過により除き、濾
液より減圧下にジメチルホルムアミドを除き、残
渣をジエチルエーテルより結晶化させた後、同じ
くジエチルエーテルより再結晶してリン酸ジ−n
−セチル213.3g(融点68゜−70℃)を得た。収
率78% 元素分析 C32H67O4Pとしての 理論値(%) C70.28 H12.35 P5.66 実測値(%) C70.10 H12.15 P5.78 実施例 4 85%リン酸57.6g(0.5モル)を酢酸エチ1225
gに溶解し、これを60℃に加熱した。これにヨウ
化メチル248.4g(1.75モル)とピリジン138.4g
(1.75モル)を1時間30分かけて同時に滴下し
た。このとき内温を60゜〜65℃に保持し、滴下終
了後1時間同温にて、かくはんを継続した。反応
終了後室温まで冷却し、ピリジンヨウ化水素の沈
殿を濾過して除き、減圧下に酢酸エチル、ヨウ化
メチル、ピリジン、水を除き、つぎに減圧蒸留に
より、リン酸トリメチル66.5g(85℃/24mm
Hg)を得た。収率95% 元素分析 C3H9O4Pとしての 理論値(%) C25.72 H6.48 P22.11 実測値(%) C26.00 H6.39 P22.00 実施例 5 75%リン酸65.3g(0.5モル)エタノール450g
に溶解し、これを80℃に加熱した。これに臭化エ
チル217.9g(2.0モル)とトリエチルアミン202.4
g(2.0モル)を1時間で同時に滴下した。この
とき内温は80゜〜85℃に保持し、滴下終了後1時
間同温にて、かくはんを継続した。反応終了後室
温まで冷却し、トリエチルアミンの塩化水素の塩
の沈殿を濾過して除き、減圧下にエタノール、臭
化エチル、トリエチルアミン、水を除いた後、減
圧蒸留によりリン酸トリエチル84.6g(108℃/
25mmHg)を得た。収率93% 元素分析 C6H15O4Pとしての 理論値(%) C39.56 H8.30 P17.60 実測値(%) C39.30 H8.15 P17.55 実施例 6 100%リン酸49g(0.5モル)をジグリム450g
に溶解し、これを120℃まで加熱した。これに塩
化−n−ブチル138.9g(1.5モル)とN,N−ジ
メチルアニリン181.8g(1.5モル)を4時間で同
時に滴下した。このとき内温を120゜−125℃に保
持し、滴下終了後4時間同温にて、かくはんを継
続した。反応終了後室温まで冷却し、N,N−ジ
メチルアニリンの塩化水素の塩の沈殿を濾過して
除き、減圧下にジグリムを除いた後、減圧蒸留に
よりリン酸トリブチル119.7g(160゜−162℃/
15mmHg)を得た。収率90% 元素分析 C12H22O4Pとしての 理論値(%) C54.12 H10.22 P11.63 実測値(%) C54.01 H10.52 P11.60 実施例 7 100%リン酸49g(0.5モル)を塩化−n−ヘキ
シル241.1g(2.0モル)に加え、かくはんして混
合し、130℃に加熱した。これにトリ−n−ブチ
ルアミン370.7g(2.0モル)を4時間で滴下し
た。このとき内温を130゜−135℃とし、滴下終了
後5時間同温にてかくはんを継続した。反応終了
後室温まで冷却し、トリ−n−ブチルアミン塩化
水素の沈殿を濾過して除き、減圧下にトリ−n−
ブチルアミン、塩化−n−ヘキシルを除いた後、
減圧蒸留によりリン酸トリヘキシル159.3g(187
゜−188℃/2mmHg)を得た。収率91% 元素分析 C18H39O4Pとしての 理論値(%) C61.69 H11.22 P8.84 実測値(%) C61.45 H11.15 P8.81 実施例 8 100%リン酸49g(0.5モル)を2−塩化−n−
ヘキシル241.1g(2.0モル)に加え、かくはんし
て混合し、130℃に加熱した。これにトリ−n−
ブチルアミン370.7g(2.0モル)を4時間で滴下
した。このとき内温を130゜〜135℃とし、滴下終
了後10時間同温にてかくはんを継続した。反応終
了後室温まで冷却し、トリ−n−ブチルアミン塩
化水素の沈殿を濾過して除き、減圧下にトリ−n
−ブチルアミン、2−塩化−n−ヘキシルを除い
た後、減圧蒸留によりリン酸トリス(2−メチル
アミル)143.7g(179゜−180℃/2mmHg)を得
た。収率82% 元素分析 C18H39O4Pとしての 理論値(%) C61.69 H11.22 P8.84 実測値(%) C61.70 H11.12 P8.91 実施例 9 100%リン酸49g(0.5モル)を塩化−n−オク
チル4460g(30モル)に加え、かくはんして混合
し、130゜に加熱した。これにトリ−n−オクチ
ルアミン884.2g(2.5モル)を7時間で滴下し
た。このとき内温を130゜〜135℃とし、滴下終了
後15時間同温にてかくはんを継続した。反応終了
後室温まで冷却し、トリ−n−オクチルアミンの
塩化水素の塩の沈殿を濾過して除き、減圧下にト
リ−n−オクチルアミン、塩化−n−オクチルを
除き、減圧蒸留により、リン酸トリオクチル
193.1g(228゜〜235℃/2mmHg)を得た。収率
89% 元素分析 C24H51O4Pとして 理論値(%) C66.32 H11.83 P7.13 実測値(%) C66.15 H11.80 P7.10 実施例 10 塩化ブチル625g(6.75モル)に100%リン酸49
g(0.5モル)とトリエチルアミン172.0g(1.7モ
ル)を加え混合し、78゜〜80℃で20時間加熱し
た。反応終了後室温まで冷却し、トリエチルアミ
ンの塩化水素の塩の沈殿を濾過して除き、減圧下
にトリエチルアミン、塩化ブチルを除いた。つぎ
に減圧蒸留により、リン酸トリブチル113g(160
゜〜162℃/15mmHg)を得た。収率85% 元素分析 C12H27O4Pとしての 理論値(%) C54.12 H10.22 P11.63 実測値(%) C54.22 H10.15 P11.56 実施例 11 75%リン酸65.3g(0.5モル)をジメチルホル
ムアミド500mlに溶解し、これに20℃以下に冷却
しながらトリ−n−ブチルアミン556.0g(3モ
ル)を加え、さらに塩化セチル782.7g(3モ
ル)を加え、130℃で18時間加熱かくはんした。
その後トリブチルアミンの塩下水素塩を濾過して
除き、さらに減圧下にジメチルホルムアミド、水
と過剰のトリ−n−ブチルアミンを除いた。残渣
をリグロインにより結晶化させた後、同じくリグ
ロインより再結晶して、リン酸トリ−n−セチル
327.8g(融点61℃)を得た。収率85% 元素分析 C48H99O4Pとしての 理論値(%) C74.75 H12.94 P4.02 実測値(%) C74.63 H12.85 P4.11 実施例 12 1,2−二塩化エタン3463g(35モル)に100
%リン酸49g(0.5モル)とトリエチルアミン
151.8gを加え混合し、15時間加熱還流させた。
反応終了後室温まで冷却し、エリエチルアミンの
塩化水素の塩の沈殿を濾過して除き、減圧下に
1,2−二塩化エタンを除いた。つぎに減圧蒸留
により、リン酸トリス(2−クロルエチル)95.2
g(180℃/5mmHg)を得た。収率86% 元素分析 C6−H12Cl3O4P 理論値(%) C32.54 H5.46 Cl48.02 P13.98 実測値(%) C32.40 H5.51Cl48.00 P14.01。
Example 1 57.6 g (0.5 mol) of 85% phosphoric acid was dissolved in 500 g of dimethyl sulfoxide, 67.5 g (0.5 mol) of benzylmethylamine was added to this while cooling to 20°C or less, and 211.4 g (0.6 mol) of cetyl iodide was added. mol) was added, and the mixture was heated and stirred at 70°C for 5 hours. Thereafter, hydrogen chloride was blown into the reaction solution while cooling it to 20° C. or below until no heat was generated. The hydrogen iodide and hydrogen chloride salts of benzylmethylamine were removed by filtration, and then the dimethyl sulfoxide and water were removed under reduced pressure. The residue was crystallized from diethyl ether and then recrystallized from diethyl ether to yield 129 g of mono-n-cetyl phosphate (melting point: 72
°C) was obtained. Yield 80% Elemental analysis C 16 H 35 O 4 Theoretical value as P (%) C59.60 H10.94 P9.61 Actual value (%) C59.75 H10.85 P9.80 Example 2 100% phosphoric acid 49 g (0.5 mol) was mixed with 743.5 g (5 mol) of -n-octyl chloride, and 92.6 g of tri-n-butylamine was added to this while heating to 100°C.
(0.5 mol) was added dropwise over 2 hours, and then at the same temperature for 3 hours.
heated for an hour. Thereafter, hydrogen chloride was blown into the reaction solution while cooling it to 20° C. or below until no heat was generated. The hydrogen chloride salt of tri-n-butylamine was removed by filtration, then the -n-octyl chloride was removed under reduced pressure, and 250 ml of ethanol and 75 ml of aniline were added to the residue to precipitate the monoaniline salt of n-octyl phosphate. brought about. This was filtered and recrystallized from ethanol to form n-octyl monoanilinium phosphate.
134.2g (melting point 129°-130°C) was obtained. Yield 82% Elemental analysis C 14 H 26 NO 4 Theoretical value as P (%) C58.71 H8.01 N4.28 P9.46 Actual value (%) C58.56 H8.13 N4.11 P9.51 Implementation Example 3 49 g (0.5 mol) of 100% phosphoric acid was dissolved in 250 g of dimethylformamide, and 185.3 g (1.0 mol) of tri-n-butylamine was added thereto while cooling.
Furthermore, 381.6 g (1.25 mol) of n-cetyl bromide was added, and the mixture was heated at 90°C for 5 hours. Thereafter, hydrogen chloride was blown into the reaction solution while cooling it to 20° C. or below until no heat was generated. Hydrogen bromide and hydrogen chloride of tri-n-butylamine were removed by filtration, dimethylformamide was removed from the filtrate under reduced pressure, the residue was crystallized from diethyl ether, and then recrystallized from diethyl ether to obtain phosphoric acid. G-n
-213.3 g of cetyl (melting point 68°-70°C) was obtained. Yield 78% Elemental analysis C 32 H 67 O 4 Theoretical value as P (%) C70.28 H12.35 P5.66 Actual value (%) C70.10 H12.15 P5.78 Example 4 85% phosphoric acid 57.6g (0.5mol) of ethyl acetate 1225
g and heated to 60°C. This includes 248.4 g (1.75 moles) of methyl iodide and 138.4 g of pyridine.
(1.75 mol) was simultaneously added dropwise over 1 hour and 30 minutes. At this time, the internal temperature was maintained at 60° to 65°C, and stirring was continued at the same temperature for 1 hour after the completion of the dropwise addition. After the reaction was completed, it was cooled to room temperature, the precipitate of pyridine hydrogen iodide was removed by filtration, ethyl acetate, methyl iodide, pyridine, and water were removed under reduced pressure, and then 66.5 g of trimethyl phosphate (85°C/ 24mm
Hg) was obtained. Yield 95% Elemental analysis Theoretical value as C 3 H 9 O 4 P (%) C25.72 H6.48 P22.11 Actual value (%) C26.00 H6.39 P22.00 Example 5 75% phosphoric acid 65.3g (0.5mol) ethanol 450g
and heated to 80°C. To this, 217.9 g (2.0 mol) of ethyl bromide and 202.4 g of triethylamine
g (2.0 mol) were simultaneously added dropwise over 1 hour. At this time, the internal temperature was maintained at 80° to 85°C, and stirring was continued at the same temperature for 1 hour after the completion of the dropwise addition. After the reaction was completed, the mixture was cooled to room temperature, the precipitated triethylamine hydrogen chloride salt was removed by filtration, and the ethanol, ethyl bromide, triethylamine, and water were removed under reduced pressure, and then 84.6 g of triethyl phosphate (108°C /
25mmHg). Yield 93% Elemental analysis Theoretical value as C 6 H 15 O 4 P (%) C39.56 H8.30 P17.60 Actual value (%) C39.30 H8.15 P17.55 Example 6 100% phosphoric acid 49g (0.5 mol) of diglyme 450g
and heated to 120°C. To this, 138.9 g (1.5 mol) of n-butyl chloride and 181.8 g (1.5 mol) of N,N-dimethylaniline were simultaneously added dropwise over 4 hours. At this time, the internal temperature was maintained at 120°-125°C, and stirring was continued at the same temperature for 4 hours after the completion of the dropwise addition. After the reaction was completed, it was cooled to room temperature, the precipitate of the salt of hydrogen chloride of N,N-dimethylaniline was removed by filtration, diglyme was removed under reduced pressure, and 119.7 g of tributyl phosphate (160°-162°C /
15mmHg). Yield 90% Elemental analysis C 12 H 22 O 4 Theoretical value as P (%) C54.12 H10.22 P11.63 Actual value (%) C54.01 H10.52 P11.60 Example 7 100% phosphoric acid 49 g (0.5 mol) was added to 241.1 g (2.0 mol) of -n-hexyl chloride, mixed by stirring and heated to 130°C. To this, 370.7 g (2.0 mol) of tri-n-butylamine was added dropwise over 4 hours. At this time, the internal temperature was set at 130°-135°C, and stirring was continued at the same temperature for 5 hours after the completion of the dropwise addition. After the reaction was completed, it was cooled to room temperature, the precipitate of tri-n-butylamine hydrogen chloride was removed by filtration, and the tri-n-butylamine hydrogen chloride was removed by filtration.
After removing butylamine and n-hexyl chloride,
Trihexyl phosphate 159.3 g (187
-188°C/2mmHg) was obtained. Yield 91% Elemental analysis C 18 H 39 O 4 Theoretical value as P (%) C61.69 H11.22 P8.84 Actual value (%) C61.45 H11.15 P8.81 Example 8 100% phosphoric acid 49 g (0.5 mol) of 2-chloride-n-
241.1 g (2.0 mol) of hexyl was added, mixed by stirring, and heated to 130°C. Tori-n-
370.7 g (2.0 mol) of butylamine was added dropwise over 4 hours. At this time, the internal temperature was set at 130° to 135°C, and stirring was continued at the same temperature for 10 hours after the completion of the dropwise addition. After the reaction was completed, it was cooled to room temperature, the precipitate of tri-n-butylamine hydrogen chloride was removed by filtration, and the tri-n-butylamine hydrogen chloride was removed under reduced pressure.
After removing -butylamine and 2-n-hexyl chloride, 143.7 g (179°-180°C/2 mmHg) of tris(2-methylamyl phosphate) was obtained by distillation under reduced pressure. Yield 82% Elemental analysis Theoretical value as C 18 H 39 O 4 P (%) C61.69 H11.22 P8.84 Actual value (%) C61.70 H11.12 P8.91 Example 9 100% phosphoric acid 49 g (0.5 mol) were added to 4460 g (30 mol) of -n-octyl chloride, mixed by stirring and heated to 130°. 884.2 g (2.5 mol) of tri-n-octylamine was added dropwise to this over 7 hours. At this time, the internal temperature was set at 130° to 135°C, and stirring was continued at the same temperature for 15 hours after the completion of the dropwise addition. After the reaction was completed, the mixture was cooled to room temperature, the precipitated salt of hydrogen chloride of tri-n-octylamine was removed by filtration, tri-n-octylamine and -n-octyl chloride were removed under reduced pressure, and the phosphorus was distilled under reduced pressure. trioctyl acid
193.1g (228°-235°C/2mmHg) was obtained. yield
89% Elemental analysis C 24 H 51 O 4 As P Theoretical value (%) C66.32 H11.83 P7.13 Actual value (%) C66.15 H11.80 P7.10 Example 10 Butyl chloride 625g (6.75 mol) 100% phosphoric acid 49
(0.5 mol) and 172.0 g (1.7 mol) of triethylamine were added and mixed, and the mixture was heated at 78° to 80° C. for 20 hours. After the reaction was completed, the mixture was cooled to room temperature, and the precipitated triethylamine hydrogen chloride salt was removed by filtration, and triethylamine and butyl chloride were removed under reduced pressure. Next, 113 g (160 g) of tributyl phosphate was distilled under reduced pressure.
~162°C/15mmHg) was obtained. Yield 85% Elemental analysis C 12 H 27 O 4 Theoretical value as P (%) C54.12 H10.22 P11.63 Actual value (%) C54.22 H10.15 P11.56 Example 11 75% phosphoric acid 65.3g (0.5mol) was dissolved in 500ml of dimethylformamide, and while cooling to below 20℃, 556.0g (3mol) of tri-n-butylamine was added, and further 782.7g (3mol) of cetyl chloride was added. The mixture was heated and stirred at ℃ for 18 hours.
Thereafter, the hydrogen salt of tributylamine was removed by filtration, and dimethylformamide, water and excess tri-n-butylamine were further removed under reduced pressure. The residue was crystallized from ligroin and then recrystallized from ligroin to obtain tri-n-cetyl phosphate.
327.8g (melting point 61°C) was obtained. Yield 85% Elemental analysis C 48 H 99 O 4 Theoretical value as P (%) C74.75 H12.94 P4.02 Actual value (%) C74.63 H12.85 P4.11 Example 12 1,2- 100 in 3463g (35mol) of ethane dichloride
% phosphoric acid 49g (0.5 mole) and triethylamine
151.8 g was added, mixed, and heated under reflux for 15 hours.
After the reaction was completed, the reaction mixture was cooled to room temperature, and the precipitated salt of erethylamine hydrogen chloride was removed by filtration, and 1,2-dichloroethane was removed under reduced pressure. Next, by vacuum distillation, tris(2-chloroethyl phosphate) 95.2
g (180°C/5mmHg). Yield 86% Elemental analysis C 6 −H 12 Cl 3 O 4 P Theoretical value (%) C32.54 H5.46 Cl48.02 P13.98 Actual value (%) C32.40 H5.51Cl48.00 P14.01.

Claims (1)

【特許請求の範囲】[Claims] 1 リン酸とハロゲン化アルキルをアミンの存在
下で反応させることを特徴とするリン酸アルキル
エステルの製造方法。
1. A method for producing a phosphoric acid alkyl ester, which comprises reacting phosphoric acid and an alkyl halide in the presence of an amine.
JP3272580A 1980-03-17 1980-03-17 Preparation of alkyl phosphate Granted JPS56131594A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3272580A JPS56131594A (en) 1980-03-17 1980-03-17 Preparation of alkyl phosphate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3272580A JPS56131594A (en) 1980-03-17 1980-03-17 Preparation of alkyl phosphate

Publications (2)

Publication Number Publication Date
JPS56131594A JPS56131594A (en) 1981-10-15
JPS6257192B2 true JPS6257192B2 (en) 1987-11-30

Family

ID=12366812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3272580A Granted JPS56131594A (en) 1980-03-17 1980-03-17 Preparation of alkyl phosphate

Country Status (1)

Country Link
JP (1) JPS56131594A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7229978B2 (en) * 2001-12-21 2007-06-12 Mgi Gp, Inc. Process for preparing water soluble phosphonooxymethyl derivatives of alcohol and phenol

Also Published As

Publication number Publication date
JPS56131594A (en) 1981-10-15

Similar Documents

Publication Publication Date Title
US4471137A (en) Highly sterically hindered guanidines and process for the production thereof
JPH0150712B2 (en)
US5051533A (en) Prophosphatrane compounds as proton abstracting reagents
JPH09309891A (en) Production of monoalkyl phosphonite
JPS6257192B2 (en)
CS240964B2 (en) Preparation method of n-phosphonomethylglycine
AU659150B2 (en) Process for the preparation of organic salts of N-phosphonomethylglycine
US6291700B1 (en) Method for preparing sterically hindered phosphoramidates
KR20220057180A (en) Method for preparing symmetric phosphate based compound
US4281128A (en) Bispiperazido phosphorus compounds
JPH03176435A (en) Synthetic preparation of perfluoroalkyl- bromide
US4191826A (en) Bispiperazido phosphorus acid esters
JPH0321021B2 (en)
US11254650B1 (en) Use of pnictogenium compounds in carbon-carbon bond formation
de la Fuente et al. The synthesis and characterization of mixed (alkylamino) and (arylamino) phenylphosphonium compounds
RU2374258C1 (en) Method of producing n,n-dialkyl,n'-acyl-(acyldialkoxyphosphoryl)ethaneamidines
US4229383A (en) Process for the preparation of phosphoramidates
US4900826A (en) Process for preparing N6,9-disubstituted adenine
US2856405A (en) Mecuration products of 1-(2-pyrimidyl)-3-allylurea
US2654781A (en) Bis (tetraalkyldiamidophosphoryl) alkanephosphonates
US3243452A (en) Bis (hydroxydiarylphosphine) decaboranes
JPH0453860B2 (en)
RU2203284C1 (en) Method of synthesis of n-substituted alkyl-(2-dialkoxyphosphoryl)alkylimidates
CS205961B1 (en) Method of preparation of the o,o-dimethyl/2-diethylamino-4-methyl-6-pyrimidinyl/thiophosphate
JPH02273688A (en) Cyclic phosphorous acid ester derivative