JPS6257171B2 - - Google Patents

Info

Publication number
JPS6257171B2
JPS6257171B2 JP60106079A JP10607985A JPS6257171B2 JP S6257171 B2 JPS6257171 B2 JP S6257171B2 JP 60106079 A JP60106079 A JP 60106079A JP 10607985 A JP10607985 A JP 10607985A JP S6257171 B2 JPS6257171 B2 JP S6257171B2
Authority
JP
Japan
Prior art keywords
butyl
reaction
rhodium
diazabutadiene
iso
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60106079A
Other languages
Japanese (ja)
Other versions
JPS61263941A (en
Inventor
Hirosuke Wada
Hidekazu Watanabe
Yoshinori Hara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP60106079A priority Critical patent/JPS61263941A/en
Publication of JPS61263941A publication Critical patent/JPS61263941A/en
Publication of JPS6257171B2 publication Critical patent/JPS6257171B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は合成ガス、即ち一酸化炭素と水素との
混合物からエチレングリコールを製造する方法に
関する。エチレングリコールはポリエステル繊維
原料、有機化学原料、あるいは不揮発性不凍液等
として工業的に極めて重要な化学品である。 [従来の技術] 従来、エチレングリコールはエチレンの酸化反
応で製造されてきた、近年、エチレングリコール
を製造する方法として、エチレンに比較してより
安価かつ豊富な原料である合成ガスを原料とする
技術が開発されつつある。 例えば、特公昭53−31122号、特公昭55−43821
号、特公昭53−15047号、特開昭50−32118号、特
公昭56−40131号、特公昭55−5497号、特公昭55
−33694号、特公昭55−33697号、特開昭51−
125203号、特公昭56−10894号、特公昭56−40698
号、特開昭52−42809号、特開昭52−42810号、特
公昭56−40132号、特開昭53−121714号、特開昭
54−71098号、特開昭54−48703号、特開昭54−
92903号、特開昭54−16415号、特開昭54−122211
号、特開昭55−9065号、特開昭53−108889号、特
開昭56−75498号、特開昭57−128645号、特開昭
57−130941号及び特開昭57−130942号の各公報並
びに米国特許4013700号、4199520号、4133776
号、4151192号、4153623号、4225530号、4199521
号、4190598号、4211719号及び4302547号の各明
細書に記載されているように、ロジウム触媒を使
用して、高温、高圧条件下に、一酸化炭素と水素
とを反応させる方法がよく知られている。 [発明が解決しようとする問題点] しかしながら、以上に例示した先行諸技術の方
法では、高価なロジウムを使用するのに見合うだ
けの触媒活性が未だ実現されていないため、工業
的規模で実施する方法としては採用し難い等の問
題点を抱えていた。 [問題点を解決するための手段] 本発明者等は、以上の事実を考慮し、ロジウム
触媒の活性を高めるべく鋭意検討した結果、本発
明に到達したものである。 即ち、本発明は、一酸化炭素及び水素を液相で
ロジウム触媒の存在下に反応させてエチレングリ
コールを製造する方法において、反応系にトリア
ルキルホスフイン及び1,4−ジアザブタジエン
骨格を有する化合物を存在させることを特徴とす
るエチレングリコールを製造する方法、を要旨と
するものである。 以下、本発明につき詳細に説明する。 本発明で使用する原料ガス、即ち一酸化炭素及
び水素の調達源については特に限定されることは
なく、若干量の窒素ガス、二酸化炭素等の不活性
ガスを含有するものであつてもよい。水素と一酸
化炭素との体積比は通常1/10〜10/1の範囲であ
り、1/5〜5/1の範囲の組成のものを使用するのが
好ましい。 本発明においては、触媒成分としてロジウムを
存在させる。 該ロジウム成分の供給形態としては、反応帯域
でロジウム・カルボニル化合物を形成し得るロジ
ウム金属或いはロジウム化合物のいずれもが使用
可能である。該ロジウム化合物の具体例として
は、ジロジウムオクタカルボニル等の0価化合
物;アセチルアセトナトビス(カルボニル)ロジ
ウム、ブロモトリス(ピリジン)ロジウム等の1
価錯化合物;三塩化ロジウム、硝酸ロジウム、酢
酸ロジウム等の塩類;三水酸化ロジウム等の酸化
物;トリス(アセチルアセトナト)ロジウム等の
3価錯化合物;テトラロジウムドデカカルボニ
ル、ヘキサロジウムヘキサデカカルボニル等のク
ラスター類;ロジウムテトラカルボニル・アニオ
ン、カルビドヘキサロジウムペンタデカカルボニ
ル・ジアニオン等のアニオン錯体等があげられ
る。 さらに本発明においては、反応促進剤として作
用するホスフイン化合物を予め配位させたロジウ
ム化合物を使用することもできる。その具体例と
しては、RhH[P(i−Pr)3、RhH
(PEt34、RhH(PEt33、{trans−Rh(CO)
(py)[P(i−Pr)3}BPh4、trans−RhH
(CO)[P(c−C6H113、trans−RhH
(CO)[P(i−Pr)3、Rh(CO)[P(n−
Bu)3、RhH[P(t−Bu)3、RhH[P
(c−C6H113、[Rh(CO)3P(i−Pr)3
、Rh2(CO)3[P(i−Pr)3、Rh2
(CO)4[P(t−Bu)3、Rh2(CO)4[P(c
−C6H113等が挙げられる。 (なお、上記各化学式において、i−Prはイ
ソプロピル基を、Etはエチル基を、pyはピリジ
ンを、Phはフエニル基を、c−C6H11はシクロヘ
キシル基を、n−Buはn−ブチル基をt−Buは
t−ブチル基を、それぞれ表わす。) ロジウムの使用量は、反応液中の濃度として、
反応溶液1リツトル当り、0.0001〜100グラム原
子、好ましくは0.001〜10グラム原子の範囲であ
る。 本発明においては、さらに触媒成分として、反
応促進剤の作用をするトリアルキルホスフイン及
び一般式(): で示される1,4−ジアザブタジエン骨格を有す
る化合物を存在させる。 トリアルキルホスフインは主触媒であるロジウ
ムに配位して、その電子状態を制御する機能をも
つものと考えられる。その制御の機構の詳細は必
ずしも明らかではないが、例えばトリアルキルホ
スフインの電子供与能力等が重要な役割を担うも
のと推測される。事実、ロジウム−ホスフイン触
媒系の水素化活性とエチレングリコールへの選択
性はホスフインの種類に依存して大きく変動す
る。従つて高水準のエチレングリコール収率を実
現するためにはホスフインの中でも一般式
PR1R2R3(式中、R1,R2及びR3は第一級アルキ
ル基、第二級アルキル基、第三級アルキル基又は
シクロアルキル基を示し、相互に異なつていても
よい)で表わされるトリアルキルホスフインを使
用することが殊に有効である。 本発明で使用されるトリアルキルホスフインの
具体例としては、トリメチルホスフイン、トリエ
チルホスフイン、トリ−n−プロピルホスフイ
ン、トリ−n−ブチルホスフイン、トリ−n−オ
クチルホスフイン、トリ−iso−ブチルホスフイ
ン、トリス(2−エチルヘキシル)ホスフイン、
ジ−n−ブチル−iso−ブチルホスフイン等の3
個の第一級アルキル基を有するトリアルキルホス
フイン;トリ−iso−プロピルホスフイン、トリ
−sec−ブチルホスフイン、トリ−t−ブチルホ
スフイン、トリシクロペンチルホスフイン、トリ
シクロヘキシルホスフイン、ジ−iso−プロピル
−シクロペンチルホスフイン、ジ−iso−プロピ
ル−t−ブチルホスフイン、ジ−t−ブチル−
iso−ブロピルホスフイン、ジ−t−ブチル−sec
−ブチルホスフイン、ジ−sec−ブチル−iso−プ
ロピルホスフイン、ジ−iso−プロピル−シクロ
ヘキシルホスフイン、ジ−t−ブチル−シクロペ
ンチルホスフイン、ジ−t−ブチル−シクロヘキ
シルホスフイン、ジ−sec−ブチル−シクロヘキ
シルホスフイン、ジシクロペンチル−iso−プロ
ピルホスフイン、ジシクロペンチル−t−ブチル
ホスフイン、ジシクロヘキシル−iso−プロピル
ホスフイン、ジアダマンチル−iso−プロピルホ
スフイン、シクロペンチル−シクロヘキシル−t
−ブチルホスフイン等の3個の第二級アルキル
基、第三級アルキル基又はシクロアルキル基(以
下これらを「α−分岐アルキル基」と総称する)
を有するトリアルキルホスフイン;ジ−n−ブチ
ル−iso−プロピルホスフイン、ジ−n−ブチル
−t−ブチルホスフイン、ジ−n−ブチル−シク
ロペンチルホスフイン、ジエチル−iso−プロピ
ルホスフイン、ジエチル−シクロペンチルホスフ
イン等の2個の第一級アルキル基と1個のα−分
岐アルキル基を有するトリアルキルホスフイン;
ジ−iso−プロピル−エチルホスフイン、ジ−iso
−プロピル−n−ブチルホスフイン、ジ−t−ブ
チル−メチルホスフイン、ジ−t−ブチル−n−
プロピルホスフイン、ジ−t−ブチル−n−ブチ
ルホスフイン、ジシクロペンチル−エチルホスフ
イン、ジシクロペンチル−n−プロピルホスフイ
ン、ジシクロペンチル−n−ブチルホスフイン、
ジシクロヘキシル−n−ブチルホスフイン、ジシ
クロヘキシル−n−プロピルホスフイン、ジアダ
マンチル−エチルホスフイン、ジアダマンチル−
n−ブチルホスフイン、ジノルボルニル−エチル
ホスフイン、ジノルボルニル−n−ブチルホスフ
イン、iso−プロピル−t−ブチル−n−ブチル
ホスフイン、t−ブチル−シクロヘキシル−エチ
ルホスフイン、iso−プロピル−シクロペンチル
−n−オクチルホスフイン等の1個の第一級アル
キル基と2個のα−分岐アルキル基を有するトリ
アルキルホスフインが挙げられる。 上記したトリアルキルホスフインの使用量は、
ロジウム1グラム原子に対して、通常、0.2〜
1000モル、好ましくは0.5〜100モル、更に好まし
くは0.8〜10モルの範囲である。 また、前記の一般式()で示される1,4−
ジアザブタジエン骨格を有する化合物のうちで
も、一般式(): (式中、R1,R2,R3及びR4は同一かまたは互
いに相異なる水素原子、アルキル基、アリール
基、複素環基、水酸基又はアミノ基を示す。ま
た、R1とR2、R2とR3及びR3とR4は互いに結合し
て環を形成していてもよい。) で示される1,4−ジアザブタジエン骨格を有す
る化合物を使用するのがさらに好ましい。 具体的には、 N,N′−ジメチル−1,4−ジアザブタジエン N,N′−ジ−n−ブチル−1,4−ジアザブタ
ジエン N,N′−ジイソプロピル−1,4−ジアザブタ
ジエン N,N′−ジ−t−ブチル−1,4−ジアザブタ
ジエン N,N′−ジシクロヘキシル−1,4−ジアザブ
タジエン N,N′−ジイソプロピル−2,3−ジメチル−
1,4−ジアザブタジエン N,N′−ジ−t−ブチル−1,4−ジアザブタ
ジエン N,N′−ジ−p−トリル−1,4−ジアザブタ
ジエン N,N′−ビス(2,6−ジメチルフエニル)−
1,4−ジアザブタジエン N,N′−ビス(2,4,6−トリメチルフエニ
ル)−1,4−ジアザブタジエン N,N′−ジ−p−トリル−2,3−ジメチル−
1,4−ジアザブタジエン 3,4,5,6,3′,4′,5′,6′−オクタヒドロ
−2,2′−ジピリジル 等の1,4−ジアザブタジエン類; N−メチルピコリンイミン N−フエニルピコリンイミン N−メチル−2−メチルイミダゾールイミン 等のモノ複素環含有α−ジイミン類; ジメチルグリオキシム 1,2−ベンゾキノンジオキシム グリオキサールジヒドラゾン ビアセチルジヒドラゾン 2−ピリジンアルドキシム フエニル−2−ピリジルケトキシム ジ−2−ピリジルケトキシム 等のN−ヘテロ原子置換α−ジイミン類; 2,2′−ビピリジン、3,3′−ジカルボメトキシ
−2,2′−ビピリジン、6−メチル−2,2′−ビ
ピリジン、6,6′−ジメチル−2,2′−ビピリジ
ン、6−ブチル−2,2′−ビピリジン、6−フエ
ニル−2,2′−ビピリジン、4,4′−ジカルボキ
シ−2,2′−ビピリジン、4,4′−ジフエニル−
2,2′−ビピリジン、4−ニトロ−2,2′−ビピ
リジン、4,4′−ジクロル−2,2′−ビピリジ
ン、4,4′−ジ−t−ブチル−2,2′−ビピリジ
ン等の2,2′−ビピリジン類;1,10−フエナン
トロリン、2,9−ジメチル,−1,10−フエナ
ントロリン、2−メチル−1,10−フエナントロ
リン、5−アミノ−1,10−フエナントロリン、
4,7−ジメチル−1,10−フエナントロリン、
3,4,7,8−テトラメチル−1,10−フエナ
ントロリン、4,7−ジフエニル−1,10−フエ
ナントロリン等の1,10−フエナントロリン類; 2,2′−ビキノリン、 2,2′−ビピラジン 2,2′−ビイミダゾール 4,4′,5,5′−テトラシアノ−2,2′−ビイミ
ダゾール 2,2′−ビス(5−メチル−2−チアゾリン) 1,4,5,8−テトラアザフエナントレン 等のビス複素環類; 2−(2−ピリジル)キノリン ピリド〔2,3−e〕ベンゾチアゾール 2−(2−ピリジル)イミダゾール 2−(2−ピリジル)ベンズイミダゾール 2−(2−ピリジル)イミダゾリン 2−(2−ピリジル)チアゾール 等の非対称ビス複素環化合物; 2,2′:6′,2″−ターピリジン 2,6−ジ(2−キノリル)ピリジン N′−(2−ピリジルメチル)ピコリンアミジン ピコリンアルデヒドアジン 2−(2−ピリジル)−1,8−ナフチリジン 2,7−ジ(2−ピリジル)−1,8−ナフチリ
ジン 等の多座配位型α−ジイミン類等があげられる。 上記した1,4−ジアザブタジエン骨格を有す
る化合物の使用量はロジウム1グラム原子に対し
て、通常、0.2〜1000モル、好ましくは0.5〜100
モル、さらに好ましくは0.8〜10モルの範囲であ
る。 本発明は溶媒の不存在下に、すなわち反応原料
及び触媒成分自体を反応媒体として実施すること
もできるが、溶媒を使用することもできる。この
ような溶媒としては例えば、ジエチルエーテル、
アニソール、テトラヒドロフラン、エチレングリ
コールジメチルエーテル、ジオキサン等のエーテ
ル類;アセトン、メチルエチルケトン、アセトフ
エノン等のケトン類;メタノール、エタノール、
n−ブタノール、ベンジルアルコール、フエノー
ル、エチレングリコール、ジエチレングリコール
等のアルコール類;ギ酸、酢酸、プロピオン酸、
トルイル酸等のカルボン酸類;酢酸メチル、酢酸
n−ブチル、安息香酸ベンジル等のエステル類;
ベンゼン、トルエン、エチルベンゼン、テトラリ
ン等の芳香族炭化水素;n−ヘキサン、n−オク
タン、シクロヘキサン等の脂肪族炭化水素;ジク
ロロメタン、トリクロロエタン、クロロベンゼン
等のハロゲン化炭化水素;ニトロメタン、ニトロ
ベンゼン等のニトロ化合物;トリエチルアミン、
トリ−n−ブチルアミン、ベンジルジメチルアミ
ン、ピリジン、α−ピコリン、2−ヒドロキシピ
リジン等の第三級アミン;N,N−ジメチルホル
ムアミド、N,N−ジメチルアセトアミド、N−
メチルピロリドン等のカルボン酸アミド;ヘキサ
メチルリン酸トリアミド、N,N,N′,N′−テ
トラエチルスルフアミド等の無機酸アミド類;
N,N′−ジメチルアミダゾリドン、N,N,
N′,N′−テトラメチル尿素等の尿素類;ジメチ
ルスルホン、テトラメチレンスルホン等のスルホ
ン類;ジメチルスルホキシド、ジフエニルスルホ
キシド等のスルホキシド類;γ−ブチロラクト
ン、ε−カプロラクトン等のラクトン類;テトラ
グライム、18−クラウン−6等のポリエーテル
類;アセトニトリル、ベンゾニトリル等のニトリ
ル類;ジメチルカーボネート、エチレンカーボネ
ート等の炭酸エステル類等があげられる。 以上の溶媒の中でも、非プロトン性極性溶媒、
すなわちアミン類、アミド類、尿素類、スルホン
類、スルホキシド類、ラクトン類、ポリエーテル
類、ニトリル類および炭酸エステル類の使用が好
ましい。特に好ましいのは誘電率が20以上の非プ
ロトン性極性溶媒である。 本発明の反応は均一系或いは不均一懸濁系のい
ずれでも実施可能である。反応温度としては、通
常100〜300℃の条件が採用されるが、より好まし
い温度範囲は100〜250℃程度である。反応圧力と
しては、50Kg/cm2以上が採用されるが、通常150
〜600Kg/cm2程度で実施するのがより一般的であ
る。本法は回分式、半連続式、または連続式のい
ずれの反応形態でも実施することができる。反応
により生成した含酸素化合物、すなわちエチレン
グリコール、メタノール等は通常の分離方法、た
とえば蒸留により分離できる。さらに、その蒸留
残渣は触媒液として循環再使用することが可能で
ある。 [実施例] 以下に本発明を実施例により更に具体的に説明
するが、本発明はその要旨を超えない限り、以下
の実施例によつて限定されるものではない。 なお、生成物の生成量は、ロジウム原子の単位
量及び単位反応時間当りに生成する生成物のモル
数を示すターン・オーバー数(mol/g−
atomRh・hr)で表示した。 実施例 1 内容積35c.c.のハステロイC製のオートクレーブ
に0.5mg−atomのロジウムを含むテトラロジウム
ドデカカルボニル〔Rh4(CO)12〕、トリ−iso−
プロピルホスフイン0.5mmol、N,N′−ジ−t−
ブチル−1,4−ジアザブタジエン0.5mmol及び
溶媒としてN,N′−ジメチルイミダゾリドン10
mlを仕込んだ後、一酸化炭素と水素との等容混合
ガスを室温で300Kg/cm2まで圧入した。オートク
レーブの温度を220℃まで上げたときの反応圧力
の初期値は480Kg/cm2であつた。一酸化炭素と水
素との等容混合ガスを断続的に供給して反応圧力
を480〜460Kg/cm2の範囲に保持して、220℃で2
時間反応を行なつた。 反応後、オートクレーブを冷却し、内容物を取
り出してガスクロマトグラフイーによつて分析し
た結果、22.6mol/g−atomRh・hrのエチレング
リコール及び8.5mol/g−atomRh・hrのメタノ
ールが生成していることが確認された。 比較例 1 N,N′−ジ−t−ブチル−1,4−ジアザブ
タジエン0.5mmolを加えなかつた以外は、実施例
−1と同様の方法で反応を行なつた結果、
7.0mol/g−atomRh・hrのエチレングリコール
及び15.81mol/g−atomRh・hrのメタノールが
生成していることが確認された。 実施例 2〜7 N,N′−ジ−t−ブチル−1,4−ジアザブ
タジエンの代りに表−1に示す1,4−ジアザブ
タジエン類0.5mmolを使用した以外は実施例−1
と同様の方法で反応を行なつた。結果を表−1に
示す。
FIELD OF INDUSTRIAL APPLICATION The present invention relates to a process for producing ethylene glycol from synthesis gas, ie a mixture of carbon monoxide and hydrogen. Ethylene glycol is an extremely important chemical product industrially as a raw material for polyester fibers, a raw material for organic chemicals, or a non-volatile antifreeze solution. [Conventional technology] Traditionally, ethylene glycol has been produced by the oxidation reaction of ethylene.In recent years, a method for producing ethylene glycol has been to use synthesis gas, which is a cheaper and more abundant raw material than ethylene, as a raw material. is being developed. For example, Special Publication No. 53-31122, Special Publication No. 55-43821
No., Special Publication No. 53-15047, Special Publication No. 50-32118, Special Publication No. 56-40131, Special Publication No. 55-5497, Special Publication No. 55
−33694, Special Publication No. 55-33697, Japanese Patent Publication No. 1973-
No. 125203, Special Publication No. 10894, Special Publication No. 1983-40698
No., JP-A-52-42809, JP-A-52-42810, JP-A-56-40132, JP-A-53-121714, JP-A-Sho.
No. 54-71098, JP-A-54-48703, JP-A-54-
No. 92903, JP-A-54-16415, JP-A-54-122211
No., JP-A-55-9065, JP-A-53-108889, JP-A-56-75498, JP-A-57-128645, JP-A-Sho.
57-130941 and Japanese Patent Application Laid-open No. 57-130942, and U.S. Patent No. 4013700, 4199520, 4133776
No. 4151192, 4153623, 4225530, 4199521
As described in the specifications of No. 4190598, No. 4211719, and No. 4302547, a method of reacting carbon monoxide and hydrogen using a rhodium catalyst under high temperature and high pressure conditions is well known. ing. [Problems to be Solved by the Invention] However, the methods of the prior art exemplified above have not yet achieved sufficient catalytic activity to justify the use of expensive rhodium, and therefore cannot be implemented on an industrial scale. As a method, it had problems such as being difficult to adopt. [Means for Solving the Problems] The present inventors have arrived at the present invention as a result of taking the above facts into consideration and making intensive studies to increase the activity of rhodium catalysts. That is, the present invention provides a method for producing ethylene glycol by reacting carbon monoxide and hydrogen in a liquid phase in the presence of a rhodium catalyst, which has a trialkylphosphine and 1,4-diazabutadiene skeleton in the reaction system. The gist of the present invention is a method for producing ethylene glycol characterized by the presence of a compound. Hereinafter, the present invention will be explained in detail. The source of the raw material gases used in the present invention, ie, carbon monoxide and hydrogen, is not particularly limited, and may contain a small amount of inert gas such as nitrogen gas or carbon dioxide. The volume ratio of hydrogen to carbon monoxide is usually in the range of 1/10 to 10/1, and preferably the composition is in the range of 1/5 to 5/1. In the present invention, rhodium is present as a catalyst component. As for the supply form of the rhodium component, any rhodium metal or rhodium compound capable of forming a rhodium carbonyl compound in the reaction zone can be used. Specific examples of the rhodium compound include zero-valent compounds such as dirhodium octacarbonyl;
Complex compounds; salts such as rhodium trichloride, rhodium nitrate, rhodium acetate; oxides such as rhodium trihydroxide; trivalent complex compounds such as tris(acetylacetonato)rhodium; tetrarhodium dodecacarbonyl, hexalodium hexadecacarbonyl clusters such as rhodium tetracarbonyl anion, carbidehexarodium pentadecacarbonyl dianion, and other anion complexes. Furthermore, in the present invention, it is also possible to use a rhodium compound to which a phosphine compound that acts as a reaction accelerator is previously coordinated. Specific examples include RhH[P(i-Pr) 3 ] 3 , RhH
( PEt3 ) 4 , RhH( PEt3 ) 3 , {trans−Rh(CO)
(py) [P(i-Pr) 3 ] 2 }BPh 4 , trans-RhH
(CO)[P ( c- C6H11 ) 3 ] 2 , trans-RhH
(CO) [P(i-Pr) 3 ] 2 , Rh(CO)[P(n-
Bu) 3 ] 2 , RhH[P(t-Bu) 3 ] 2 , RhH[P
(c- C6H11 ) 3 ] 2 , [Rh(CO) 3P (i- Pr ) 3 ]
2 , Rh 2 (CO) 3 [P(i-Pr) 3 ] 3 , Rh 2
(CO) 4 [P(t-Bu) 3 ] 2 , Rh 2 (CO) 4 [P(c
−C 6 H 11 ) 3 ] 2 and the like. (In the above chemical formulas, i-Pr represents an isopropyl group, Et represents an ethyl group, py represents a pyridine group, Ph represents a phenyl group, c-C 6 H 11 represents a cyclohexyl group, and n-Bu represents an n- (butyl group and t-Bu represent t-butyl group, respectively.) The amount of rhodium used is as the concentration in the reaction solution.
It ranges from 0.0001 to 100 gram atoms, preferably from 0.001 to 10 gram atoms per liter of reaction solution. In the present invention, as a catalyst component, a trialkylphosphine which acts as a reaction accelerator and a general formula (): A compound having a 1,4-diazabutadiene skeleton represented by is present. Trialkylphosphine is thought to have the function of coordinating with rhodium, the main catalyst, and controlling its electronic state. Although the details of the control mechanism are not necessarily clear, it is assumed that, for example, the electron donating ability of trialkylphosphine plays an important role. In fact, the hydrogenation activity and selectivity to ethylene glycol of rhodium-phosphine catalyst systems vary widely depending on the type of phosphine. Therefore, in order to achieve a high level of ethylene glycol yield, it is necessary to use the general formula of phosphine.
PR 1 R 2 R 3 (wherein R 1 , R 2 and R 3 represent a primary alkyl group, a secondary alkyl group, a tertiary alkyl group or a cycloalkyl group, even if they are different from each other) It is particularly effective to use trialkylphosphines of the formula Specific examples of trialkylphosphines used in the present invention include trimethylphosphine, triethylphosphine, tri-n-propylphosphine, tri-n-butylphosphine, tri-n-octylphosphine, tri- iso-butylphosphine, tris(2-ethylhexyl)phosphine,
3 such as di-n-butyl-iso-butylphosphine
trialkylphosphine with primary alkyl groups; tri-iso-propylphosphine, tri-sec-butylphosphine, tri-tert-butylphosphine, tricyclopentylphosphine, tricyclohexylphosphine, di- iso-propyl-cyclopentylphosphine, di-iso-propyl-t-butylphosphine, di-t-butyl-
iso-bropylphosphine, di-t-butyl-sec
-butylphosphine, di-sec-butyl-iso-propylphosphine, di-iso-propyl-cyclohexylphosphine, di-t-butyl-cyclopentylphosphine, di-t-butyl-cyclohexylphosphine, di-sec -butyl-cyclohexylphosphine, dicyclopentyl-iso-propylphosphine, dicyclopentyl-t-butylphosphine, dicyclohexyl-iso-propylphosphine, diadamantyl-iso-propylphosphine, cyclopentyl-cyclohexyl-t
- Three secondary alkyl groups, tertiary alkyl groups, or cycloalkyl groups such as butylphosphine (hereinafter these are collectively referred to as "α-branched alkyl groups")
trialkylphosphine with; di-n-butyl-iso-propylphosphine, di-n-butyl-t-butylphosphine, di-n-butyl-cyclopentylphosphine, diethyl-iso-propylphosphine, diethyl - trialkylphosphine having two primary alkyl groups and one α-branched alkyl group, such as cyclopentylphosphine;
Di-iso-propyl-ethylphosphine, di-iso
-propyl-n-butylphosphine, di-t-butyl-methylphosphine, di-t-butyl-n-
Propylphosphine, di-t-butyl-n-butylphosphine, dicyclopentyl-ethylphosphine, dicyclopentyl-n-propylphosphine, dicyclopentyl-n-butylphosphine,
Dicyclohexyl-n-butylphosphine, dicyclohexyl-n-propylphosphine, diadamantyl-ethylphosphine, diadamantyl-
n-butylphosphine, dinorbornyl-ethylphosphine, dinorbornyl-n-butylphosphine, iso-propyl-t-butyl-n-butylphosphine, t-butyl-cyclohexyl-ethylphosphine, iso-propyl-cyclopentyl- Examples include trialkylphosphines having one primary alkyl group and two α-branched alkyl groups, such as n-octylphosphine. The amount of trialkylphosphine used above is
Usually 0.2 to 1 gram atom of rhodium
The amount is in the range of 1000 mol, preferably 0.5 to 100 mol, more preferably 0.8 to 10 mol. In addition, 1,4- represented by the above general formula ()
Among the compounds having a diazabutadiene skeleton, the general formula (): (In the formula, R 1 , R 2 , R 3 and R 4 are the same or different from each other and represent a hydrogen atom, an alkyl group, an aryl group, a heterocyclic group, a hydroxyl group, or an amino group. Also, R 1 and R 2 , It is more preferable to use a compound having a 1,4-diazabutadiene skeleton represented by R 2 and R 3 and R 3 and R 4 may be bonded to each other to form a ring. Specifically, N,N'-dimethyl-1,4-diazabutadiene N,N'-di-n-butyl-1,4-diazabutadiene N,N'-diisopropyl-1,4-diazabutadiene N,N'-di-t-butyl-1,4-diazabutadiene N,N'-dicyclohexyl-1,4-diazabutadiene N,N'-diisopropyl-2,3-dimethyl-
1,4-diazabutadiene N,N'-di-t-butyl-1,4-diazabutadiene N,N'-di-p-tolyl-1,4-diazabutadiene N,N'-bis(2,6-dimethylphenyl)-
1,4-diazabutadiene N,N'-bis(2,4,6-trimethylphenyl)-1,4-diazabutadiene N,N'-di-p-tolyl-2,3-dimethyl-
1,4-diazabutadiene 3,4,5,6,3',4',5',6'-octahydro-2,2'-dipyridyl 1,4-diazabutadienes such as; N-methylpicolinimine N-phenylpicolinimine N-methyl-2-methylimidazoleimine Monoheterocycle-containing α-diimines such as; dimethylglyoxime 1,2-benzoquinone dioxime Glyoxal dihydrazone Biacetyl dihydrazone 2-pyridine aldoxime Phenyl-2-pyridylketoxime Di-2-pyridylketoxime N-heteroatom-substituted α-diimines such as; 2,2'-bipyridine, 3,3'-dicarbomethoxy-2,2'-bipyridine, 6-methyl-2,2'-bipyridine, 6,6'-dimethyl-2,2'-bipyridine,6-butyl-2,2'-bipyridine,6-phenyl-2,2'-bipyridine,4,4'-dicarboxy-2,2'-bipyridine, 4,4 ′-diphenyl-
2,2'-bipyridine, 4-nitro-2,2'-bipyridine, 4,4'-dichloro-2,2'-bipyridine, 4,4'-di-t-butyl-2,2'-bipyridine, etc. 2,2'-bipyridines; 1,10-phenanthroline, 2,9-dimethyl, -1,10-phenanthroline, 2-methyl-1,10-phenanthroline, 5-amino-1, 10-phenanthroline,
4,7-dimethyl-1,10-phenanthroline,
1,10-phenanthrolines such as 3,4,7,8-tetramethyl-1,10-phenanthroline and 4,7-diphenyl-1,10-phenanthroline; 2,2'-biquinoline;2,2'-bipyrazine 2,2'-biimidazole 4,4',5,5'-tetracyano-2,2'-biimidazole 2,2'-bis(5-methyl-2-thiazoline) 1,4,5,8-tetraazaphenanthrene Bisheterocycles such as; 2-(2-pyridyl)quinoline Pyrido[2,3-e]benzothiazole 2-(2-pyridyl)imidazole 2-(2-pyridyl)benzimidazole 2-(2-pyridyl)imidazoline 2-(2-pyridyl)thiazole asymmetric bisheterocyclic compounds such as; 2,2′:6′,2″-terpyridine 2,6-di(2-quinolyl)pyridine N'-(2-pyridylmethyl)picolamidine picolinaldehyde azine 2-(2-pyridyl)-1,8-naphthyridine 2,7-di(2-pyridyl)-1,8-naphthyridine Examples include polydentate α-diimines such as . The amount of the above-mentioned compound having a 1,4-diazabutadiene skeleton used is usually 0.2 to 1000 mol, preferably 0.5 to 100 mol, per gram atom of rhodium.
mol, more preferably in the range of 0.8 to 10 mol. Although the invention can be carried out in the absence of a solvent, ie the reaction raw materials and catalyst components themselves serve as reaction medium, it is also possible to use a solvent. Examples of such solvents include diethyl ether,
Ethers such as anisole, tetrahydrofuran, ethylene glycol dimethyl ether, and dioxane; Ketones such as acetone, methyl ethyl ketone, and acetophenone; methanol, ethanol,
Alcohols such as n-butanol, benzyl alcohol, phenol, ethylene glycol, diethylene glycol; formic acid, acetic acid, propionic acid,
Carboxylic acids such as toluic acid; esters such as methyl acetate, n-butyl acetate, benzyl benzoate;
Aromatic hydrocarbons such as benzene, toluene, ethylbenzene, and tetralin; Aliphatic hydrocarbons such as n-hexane, n-octane, and cyclohexane; Halogenated hydrocarbons such as dichloromethane, trichloroethane, and chlorobenzene; Nitro compounds such as nitromethane and nitrobenzene; triethylamine,
Tertiary amines such as tri-n-butylamine, benzyldimethylamine, pyridine, α-picoline, 2-hydroxypyridine; N,N-dimethylformamide, N,N-dimethylacetamide, N-
Carboxylic acid amides such as methylpyrrolidone; inorganic acid amides such as hexamethylphosphoric acid triamide, N,N,N',N'-tetraethylsulfamide;
N,N'-dimethylamidazolidone, N,N,
Ureas such as N',N'-tetramethylurea; Sulfones such as dimethylsulfone and tetramethylenesulfone; Sulfoxides such as dimethylsulfoxide and diphenylsulfoxide; Lactones such as γ-butyrolactone and ε-caprolactone; Tetraglyme , 18-crown-6, and other nitriles; acetonitrile, benzonitrile, and other nitriles; and dimethyl carbonate, ethylene carbonate, and other carbonate esters. Among the above solvents, aprotic polar solvents,
That is, it is preferable to use amines, amides, ureas, sulfones, sulfoxides, lactones, polyethers, nitriles, and carbonate esters. Particularly preferred are aprotic polar solvents with a dielectric constant of 20 or more. The reaction of the present invention can be carried out in either a homogeneous system or a heterogeneous suspension system. As the reaction temperature, a condition of 100 to 300°C is usually adopted, but a more preferable temperature range is about 100 to 250°C. The reaction pressure used is 50Kg/ cm2 or higher, but usually 150Kg/cm2 or higher.
It is more common to carry out at around 600Kg/cm2. This method can be carried out in any batch, semi-continuous or continuous reaction mode. Oxygen-containing compounds produced by the reaction, ie, ethylene glycol, methanol, etc., can be separated by conventional separation methods, such as distillation. Furthermore, the distillation residue can be recycled and reused as a catalyst liquid. [Examples] The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited to the following Examples unless the gist thereof is exceeded. The amount of product produced is determined by the unit amount of rhodium atoms and the turnover number (mol/g-), which indicates the number of moles of product produced per unit reaction time.
atomRh・hr). Example 1 Tetrarhodium dodecacarbonyl [Rh 4 (CO) 12 ] containing 0.5 mg-atom of rhodium, tri-iso- was placed in a Hastelloy C autoclave with an internal volume of 35 c.c.
Propylphosphine 0.5 mmol, N,N'-di-t-
Butyl-1,4-diazabutadiene 0.5 mmol and N,N'-dimethylimidazolidone 10 as solvent
ml, then an equal volume mixed gas of carbon monoxide and hydrogen was injected at room temperature up to 300 kg/cm 2 . The initial reaction pressure was 480 Kg/cm 2 when the temperature of the autoclave was raised to 220°C. The reaction pressure was maintained in the range of 480 to 460 Kg/ cm2 by intermittently supplying an equal volume mixed gas of carbon monoxide and hydrogen, and the reaction pressure was maintained at 220℃.
A time reaction was performed. After the reaction, the autoclave was cooled, and the contents were taken out and analyzed by gas chromatography. As a result, 22.6 mol/g-atomRh・hr of ethylene glycol and 8.5 mol/g-atomRh・hr of methanol were produced. This was confirmed. Comparative Example 1 The reaction was carried out in the same manner as in Example 1, except that 0.5 mmol of N,N'-di-t-butyl-1,4-diazabutadiene was not added.
It was confirmed that 7.0 mol/g-atomRh·hr of ethylene glycol and 15.81 mol/g-atomRh·hr of methanol were produced. Examples 2 to 7 Example 1 except that 0.5 mmol of 1,4-diazabutadiene shown in Table 1 was used instead of N,N'-di-t-butyl-1,4-diazabutadiene.
The reaction was carried out in the same manner. The results are shown in Table-1.

【表】 実施例 9〜17 N,N′−ジ−t−ブチル−1,4−ジアザブ
タジエンの代りに表−2に示す1,4−ジアザブ
タジエン類0.5mmolを使用した以外は実施例−1
と同様の方法で反応を行なつた。結果を表−2に
示す。
[Table] Examples 9 to 17 Implemented except that 0.5 mmol of 1,4-diazabutadiene shown in Table 2 was used instead of N,N'-di-t-butyl-1,4-diazabutadiene. Example-1
The reaction was carried out in the same manner. The results are shown in Table-2.

【表】【table】

【表】 実施例 18 反応温度を220℃から230℃に変更した以外は、
実施例−1と同様の方法で反応を行なつた結果、
エチレングリコール26.7mol/g−atomRh・hr及
びメタノール13.1mol/g−atomRh・hrが生成し
ていることが確認された。 実施例 19〜20 N,N′−ジ−t−ブチル−1,4−ジアザブ
タジエンの使用量を表−3に示すように変えた以
外は、実施例−1と同様の方法で反応を行なつた
結果を表−3に示す。
[Table] Example 18 Except for changing the reaction temperature from 220°C to 230°C,
As a result of carrying out the reaction in the same manner as in Example-1,
It was confirmed that 26.7 mol/g-atomRh·hr of ethylene glycol and 13.1 mol/g-atomRh·hr of methanol were produced. Examples 19-20 The reaction was carried out in the same manner as in Example 1, except that the amount of N,N'-di-t-butyl-1,4-diazabutadiene used was changed as shown in Table 3. The results are shown in Table 3.

【表】 実施例 21〜22 トリ−iso−プロピルホスフイン0.5mmolを使
用する代りに表−4に示すトリアルキルホスフイ
ンを0.5mmol使用した以外は実施例−1と同様の
方法で反応を行なつた。結果を表−4に示す。
[Table] Examples 21 to 22 The reaction was carried out in the same manner as in Example 1, except that 0.5 mmol of trialkylphosphine shown in Table 4 was used instead of 0.5 mmol of tri-iso-propylphosphine. Summer. The results are shown in Table 4.

【表】 実施例 23〜25 N,N′−ジメチルイミダゾリドンの代りに、
表−5に示す溶媒を10ml使用した以外は実施例−
1と同様の方法で反応を行なつた。結果を表−5
に示す。
[Table] Examples 23-25 Instead of N,N'-dimethylimidazolidone,
Example except that 10ml of the solvent shown in Table 5 was used.
The reaction was carried out in the same manner as in 1. Table 5 shows the results.
Shown below.

【表】 実施例 26 内容積35c.c.のハステロイC製のオートクレーブ
に1.2mg−atomのロジウムを含むアセチルアセト
ナトビス(カルボニル)ロジウム、トリ−iso−
プロピルホスフイン1.2mmol、N,N′−ジ−t−
ブチル−1.4−ジアザブタジエン1.2mmol及び溶
媒としてN,N′−ジメチルイミダゾリドン5ml
を仕込んだ後、一酸化炭素と水素との等容混合ガ
スを室温で300Kg/cm2まで圧入した。オートクレ
ーブの温度を230℃まで上げたときの反応圧力の
初期値は475Kg/cm2であつた。一酸化炭素と水素
の等容混合ガスを断続的に供給して反応圧力を
500〜480Kg/cm2の範囲に保持して、230℃で1時
間反応を行なつた。 反応後、オートクレーブを冷却し、内容物を取
り出してガスクロマトグラフイーによつて分析し
た結果、16.9mol/g−atomRh・hrのエチレング
リコール及び15.4mol/g−atomRh・hrのメタノ
ールが生成していることが確認された。 実施例 27〜37 アセチルアセトナトビス(カルボニル)ロジウ
ム、トリ−iso−プロピルホスフイン、N,N′−
ジ−t−ブチル−1,4−ジアザブタジエンの使
用量を表−6に示すように変えた以外は、実施例
−26と同様の方法で反応を行なつた。結果を表−
6に示す。
[Table] Example 26 Acetylacetonatobis(carbonyl)rhodium, tri-iso- containing 1.2 mg-atom of rhodium in a Hastelloy C autoclave with an internal volume of 35 c.c.
Propylphosphine 1.2 mmol, N,N'-di-t-
1.2 mmol of butyl-1,4-diazabutadiene and 5 ml of N,N'-dimethylimidazolidone as solvent
After charging, an equal volume mixed gas of carbon monoxide and hydrogen was injected at room temperature up to 300 kg/cm 2 . The initial reaction pressure was 475 Kg/cm 2 when the temperature of the autoclave was raised to 230°C. The reaction pressure is increased by intermittently supplying an equal volume mixed gas of carbon monoxide and hydrogen.
The reaction was carried out at 230° C. for 1 hour while maintaining the temperature in the range of 500 to 480 Kg/cm 2 . After the reaction, the autoclave was cooled, and the contents were taken out and analyzed by gas chromatography. As a result, 16.9 mol/g-atomRh・hr of ethylene glycol and 15.4 mol/g-atomRh・hr of methanol were produced. This was confirmed. Examples 27-37 Acetylacetonatobis(carbonyl)rhodium, tri-iso-propylphosphine, N,N'-
The reaction was carried out in the same manner as in Example 26, except that the amount of di-t-butyl-1,4-diazabutadiene used was changed as shown in Table 6. Display the results -
6.

【表】 実施例 38〜40 アセチルアセトナトビス(カルボニル)ロジウ
ム、トリ−iso−プロピルホスフイン及びN,
N′−ジ−t−ブチル−1,4−ジアザブタジエ
ンの使用量並びに一酸化炭素と水素との容積比及
び反応温度を表−7に示すように変えた以外は実
施例−26と同様にして反応を行なつた。結果を表
−7に示す。
[Table] Examples 38-40 Acetylacetonatobis(carbonyl)rhodium, tri-iso-propylphosphine and N,
Same as Example 26 except that the amount of N'-di-t-butyl-1,4-diazabutadiene used, the volume ratio of carbon monoxide and hydrogen, and the reaction temperature were changed as shown in Table 7. The reaction was carried out using The results are shown in Table-7.

【表】 [発明の効果] 本発明方法によれば、従来の触媒系では実現す
ることのできなかつたような高い水準の収率でエ
チレングリコールを製造することが可能である。
[Table] [Effects of the Invention] According to the method of the present invention, it is possible to produce ethylene glycol at a high level of yield that could not be achieved using conventional catalyst systems.

Claims (1)

【特許請求の範囲】[Claims] 1 一酸化炭素及び水素を液相でロジウム触媒の
存在下に反応させてエチレングリコールを製造す
る方法において、反応系にトリアルキルホスフイ
ン及び1,4−ジアザブタジエン骨格を有する化
合物を存在させることを特徴とするエチレングリ
コールを製造する方法。
1. In a method for producing ethylene glycol by reacting carbon monoxide and hydrogen in a liquid phase in the presence of a rhodium catalyst, the presence of a compound having a trialkylphosphine and a 1,4-diazabutadiene skeleton in the reaction system. A method for producing ethylene glycol characterized by:
JP60106079A 1985-05-20 1985-05-20 Production of ethylene glycol Granted JPS61263941A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60106079A JPS61263941A (en) 1985-05-20 1985-05-20 Production of ethylene glycol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60106079A JPS61263941A (en) 1985-05-20 1985-05-20 Production of ethylene glycol

Publications (2)

Publication Number Publication Date
JPS61263941A JPS61263941A (en) 1986-11-21
JPS6257171B2 true JPS6257171B2 (en) 1987-11-30

Family

ID=14424572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60106079A Granted JPS61263941A (en) 1985-05-20 1985-05-20 Production of ethylene glycol

Country Status (1)

Country Link
JP (1) JPS61263941A (en)

Also Published As

Publication number Publication date
JPS61263941A (en) 1986-11-21

Similar Documents

Publication Publication Date Title
US4209467A (en) Hydroformylation process
JP2000256342A (en) Production of ester or lactone
US6750373B2 (en) One-step production of 1, 3-propanediol from ethylene oxide and syngas with a cobalt-iron catalyst
JPS6257171B2 (en)
EP0962440A1 (en) Oxidation catalytic system and process for producing ketoisophorone using the same
CN101151236A (en) Process for the preparation of aromatic aldehydes
CA1198448A (en) Process for the preparation of glycol aldehyde
JPH06329598A (en) Production of ester
JPS6114139B2 (en)
US6545190B2 (en) One step process for preparing a 1,3-diol
JPS6315250B2 (en)
JPS6257169B2 (en)
JPS629574B2 (en)
JPS647975B2 (en)
JPS59164740A (en) Production of oxygen-containing compound
JPS6139293B2 (en)
EP0808819A1 (en) Heterogeneous catalyst for the production of ethylidene diacetate
JP2022158861A (en) Catalyst for hydroxycarbonylation of alkene, metal complex, and method for producing carboxylic acid compound
EP0127276A2 (en) Carbonylation process
JPS6052140B2 (en) Manufacturing method of ethylene glycol
JPS5912657B2 (en) Method for producing 3-pentenoic acid ester
JPS60104024A (en) Production of oxygen-containing compound
JPH0437056B2 (en)
JPS6153339B2 (en)
JPH08245476A (en) Production of aldehydes

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term