JPS6256948B2 - - Google Patents

Info

Publication number
JPS6256948B2
JPS6256948B2 JP18377483A JP18377483A JPS6256948B2 JP S6256948 B2 JPS6256948 B2 JP S6256948B2 JP 18377483 A JP18377483 A JP 18377483A JP 18377483 A JP18377483 A JP 18377483A JP S6256948 B2 JPS6256948 B2 JP S6256948B2
Authority
JP
Japan
Prior art keywords
martensitic transformation
temperature
hardness
shape memory
aging treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18377483A
Other languages
Japanese (ja)
Other versions
JPS6075560A (en
Inventor
Kikuo Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP18377483A priority Critical patent/JPS6075560A/en
Publication of JPS6075560A publication Critical patent/JPS6075560A/en
Publication of JPS6256948B2 publication Critical patent/JPS6256948B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating And Analyzing Materials By Characteristic Methods (AREA)
  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Description

【発明の詳細な説明】 この発明は、高強度のBe含有Cu基形状記憶合
金の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a high-strength Be-containing Cu-based shape memory alloy.

一般に、形状記憶合金の形状記憶効果は、合金
のマルテンサイト変態に伴う現象で、マルテンサ
イト変態終了温度(M点)以下で変形を与え、
これを逆変態終了温度(A点)以上に加熱する
と元の状態に回復するため、熱応動素子として利
用され、用途により種々のマルテンサイト変態温
度のものが要望されている。
In general, the shape memory effect of shape memory alloys is a phenomenon accompanying martensitic transformation of the alloy, which causes deformation below the martensitic transformation end temperature (M point).
When heated above the reverse transformation end temperature (point A), it recovers to its original state, so it is used as a thermally responsive element, and there is a demand for materials with various martensitic transformation temperatures depending on the application.

従来、Cu基形状記憶合金として、CuZnAl系、
CuAlNi系、CuZnGa系、CuAlFe系、CuAlMn系
等が提案されている。これらのCu基形状記憶合
金において実用に供されている合金はCuZnAl系
合金のみであるが、そのマルテンサイト変態温度
は合金成分により変動しやすく、特にZnを多量
含有するので脱亜鉛現象による変態温度の変動が
大きいことが欠点である。
Conventionally, Cu-based shape memory alloys include CuZnAl-based,
CuAlNi-based, CuZnGa-based, CuAlFe-based, CuAlMn-based, etc. have been proposed. Among these Cu-based shape memory alloys, CuZnAl-based alloys are the only alloys that have been put to practical use, but their martensitic transformation temperatures tend to fluctuate depending on the alloy components.In particular, since they contain a large amount of Zn, the transformation temperature due to the dezincification phenomenon may vary. The disadvantage is that the fluctuation is large.

発明者は、かかる欠点を除くため、CuZnAl合
金のZnの全部又は一部をBeで置換したCuAlBe系
合金を提案した(特開昭57―158347号)。
In order to eliminate this drawback, the inventor proposed a CuAlBe alloy in which all or part of the Zn in the CuZnAl alloy was replaced with Be (Japanese Patent Laid-Open No. 158347/1983).

しかしながら、このCuAlBe系合金は、従来の
製造方法で製造した場合には硬度が低いため、高
強度を要求される用途には適さない欠点があつ
た。
However, this CuAlBe-based alloy has a drawback in that it has low hardness when manufactured using conventional manufacturing methods, making it unsuitable for applications requiring high strength.

発明者はCuAlBe系合金について種々検討した
結果CuAlBe系合金の時効硬化現象を利用して硬
度の増加と共にマルテンサイト変態温度を制御で
きることを知見した。この発明はこの知見に基い
てなされたものである。
As a result of various studies on CuAlBe alloys, the inventor found that the age hardening phenomenon of CuAlBe alloys can be used to increase the hardness and control the martensitic transformation temperature. This invention was made based on this knowledge.

すなわち、この発明は、Be 0.01〜5.5重量%含
有のCuAlBe系形状記憶合金において、溶体化処
理を施して急冷したのち、加熱して100℃〜400℃
で時効処理を行なうことを要旨とする。
That is, the present invention provides a CuAlBe-based shape memory alloy containing 0.01 to 5.5% by weight of Be, which is solution-treated and rapidly cooled, and then heated to 100 to 400 degrees Celsius.
The gist is to carry out the aging process.

この発明の対象とするCuAlBe系形状記憶合金
は、重量比でAl2〜15%、Be 0.01〜5.5%、残り
がCu及び製造上不可避な不純物からなり、ある
いは上記成分のほかにさらにZn 0.05〜15%を含
有してなる。
The CuAlBe-based shape memory alloy that is the subject of this invention consists of 2 to 15% Al, 0.01 to 5.5% Be, and the remainder Cu and impurities unavoidable during manufacturing, or in addition to the above components, 0.05 to 15% Zn. %.

この発明における時効処理は高強度を付与する
のに必要であるが、100℃未満では時効硬化現象
が起らず硬度の増大が期待できず、又400℃を超
えるとα相のほかに他の析出物が析出し、硬度は
増大せず、又工業的に利用しうるマルテンサイト
変態温度(Ms点)がえられないため、時効処理
温度は100℃〜400℃に限定した。
The aging treatment in this invention is necessary to impart high strength, but at temperatures below 100°C no age hardening phenomenon occurs and no increase in hardness can be expected, and at temperatures above 400°C other The aging treatment temperature was limited to 100°C to 400°C because precipitates precipitated, hardness did not increase, and an industrially usable martensitic transformation temperature (Ms point) could not be obtained.

又時効処理時間は、5分未満では硬度の増加や
平衡マルテンサイト変態温度がえられず、又5時
間以上では前記効果が飽和するので、5分以上5
時間以内が望ましい。
Furthermore, if the aging treatment time is less than 5 minutes, no increase in hardness or equilibrium martensitic transformation temperature will be obtained, and if the aging treatment time is 5 hours or more, the above effects will be saturated, so the aging treatment time should be 5 minutes or more.
Preferably within hours.

次に、この発明の実施例について説明する。 Next, embodiments of the invention will be described.

重量比でAl 8.1%、Be 0.9%、残部実質的に
Cuからなる合金の4Kgを真空溶解炉で溶製して
鋳塊をえた。この鋳塊を800℃に加熱し、熱間圧
延して5mm厚に仕上げた。この熱延材より試料を
採取し、これを800℃に加熱して15分保持し溶体
化処理を施して急冷した。そして、加熱して70〜
400℃の温度に10分間保持し、マルテンサイト変
態温度を走査型示差熱量計(DSC)にて、又硬
度をマイクロビツカース硬度計で測定した。その
結果を第1図に示す。
Weight ratio: Al 8.1%, Be 0.9%, balance essentially
An ingot was obtained by melting 4 kg of an alloy consisting of Cu in a vacuum melting furnace. This ingot was heated to 800°C and hot rolled to a thickness of 5 mm. A sample was taken from this hot-rolled material, heated to 800°C, held for 15 minutes, subjected to solution treatment, and rapidly cooled. Then, heat it to 70~
The sample was maintained at a temperature of 400°C for 10 minutes, and the martensitic transformation temperature was measured using a scanning differential calorimeter (DSC), and the hardness was measured using a micro-Vickers hardness meter. The results are shown in FIG.

この図より、マルテンサイト変態温度は時効処
理温度が70℃で最低温度となり、時効処理温度の
上昇と共にマルテンサイト変態温度も上昇する。
これは、第1図の硬度の関係から見て析出物によ
る現象と推定される。すなわち、100℃〜400℃で
の時効処理により、CuBeに富んだ析出物が析出
するため、母相はCuAlの富んだ相となりマルテ
ンサイト変態温度が上昇したものである。
From this figure, the martensitic transformation temperature reaches its lowest temperature when the aging treatment temperature is 70°C, and as the aging treatment temperature increases, the martensitic transformation temperature also increases.
This is presumed to be a phenomenon caused by precipitates in view of the hardness relationship shown in FIG. That is, due to the aging treatment at 100° C. to 400° C., CuBe-rich precipitates are precipitated, so that the parent phase becomes a CuAl-rich phase and the martensitic transformation temperature is increased.

この現象に伴つて硬度はビツカース硬度
(Hv)で350に達し、従来のCu基形状記憶合金に
ない高強度が得られるのである。又同時にマルテ
ンサイト変態温度も変化するので、この現象を利
用してマルテンサイト変態温度の制御を行なうこ
とができる。
As a result of this phenomenon, the hardness reaches 350 on the Vickers hardness (Hv), providing high strength not found in conventional Cu-based shape memory alloys. Furthermore, since the martensitic transformation temperature also changes at the same time, this phenomenon can be used to control the martensitic transformation temperature.

この発明は、上記のごとく、CuAlBe系形状記
憶合金において、溶体化処理を施したのち時効処
理を行なうことにより高強度がえられると共にマ
ルテンサイト変態温度を制御することができ、工
業上極めて有効な製造方法である。
As mentioned above, the present invention is capable of obtaining high strength and controlling the martensitic transformation temperature by applying solution treatment and then aging treatment to CuAlBe-based shape memory alloys, which is extremely effective industrially. This is the manufacturing method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は時効処理温度とビツカース硬度
(Hv)との関係及びマルテンサイト変態温度
(Ms点)との関係を示す図表である。
FIG. 1 is a chart showing the relationship between aging treatment temperature and Bitkers hardness (Hv) and the relationship between martensitic transformation temperature (Ms point).

Claims (1)

【特許請求の範囲】[Claims] 1 Be 0.01〜5.5重量%含有のCuAlBe系形状記
憶合金において、溶体化処理を施して急冷したの
ち、加熱して100℃〜400℃で時効処理を行なうこ
とを特徴とするCuAlBe系形状記憶合金の製造方
法。
1 A CuAlBe-based shape memory alloy containing 0.01 to 5.5% by weight of Be is subjected to solution treatment, rapidly cooled, and then heated and aged at 100°C to 400°C. Production method.
JP18377483A 1983-09-30 1983-09-30 Manufacture of shape memory cu-al-be alloy Granted JPS6075560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18377483A JPS6075560A (en) 1983-09-30 1983-09-30 Manufacture of shape memory cu-al-be alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18377483A JPS6075560A (en) 1983-09-30 1983-09-30 Manufacture of shape memory cu-al-be alloy

Publications (2)

Publication Number Publication Date
JPS6075560A JPS6075560A (en) 1985-04-27
JPS6256948B2 true JPS6256948B2 (en) 1987-11-27

Family

ID=16141711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18377483A Granted JPS6075560A (en) 1983-09-30 1983-09-30 Manufacture of shape memory cu-al-be alloy

Country Status (1)

Country Link
JP (1) JPS6075560A (en)

Also Published As

Publication number Publication date
JPS6075560A (en) 1985-04-27

Similar Documents

Publication Publication Date Title
US5958159A (en) Process for the production of a superelastic material out of a nickel and titanium alloy
JPS6214619B2 (en)
US4323399A (en) Process for the thermal treatment of aluminium - copper - magnesium - silicon alloys
US4046596A (en) Process for producing spectacle frames using an age-hardenable nickel-bronze alloy
JPS56265A (en) Method of reinforcing cu-ni-sn alloy
JPS60138032A (en) Cu base shape memory alloy
JPH0138867B2 (en)
JP4581425B2 (en) β-type titanium alloy and parts made of β-type titanium alloy
US3287180A (en) Method of fabricating copper base alloy
JPS6256948B2 (en)
JPS6361377B2 (en)
US4383004A (en) Thermocouple bimetal having a high application limit, and method of producing the same
US3347717A (en) High strength aluminum-bronze alloy
JPH07233432A (en) Shape memory alloy and its production
US4014716A (en) Wrought brass alloy having a low spring back coefficient and shape memory effect
JPS59215448A (en) Functional alloy
US4437911A (en) Beta alloys with improved properties
US3855012A (en) Processing copper base alloys
US4207380A (en) Aluminum thermostat metal
JPS61106740A (en) Ti-ni alloy having reversible shape memory effect and its manufacture
US3484307A (en) Copper base alloy
JPH059686A (en) Production of shape memory niti alloy
JPS6317902B2 (en)
JP2664055B2 (en) Manufacturing method of functional alloy members
US2317979A (en) Manganese-base alloy